三年级数学乘除法巧算

合集下载

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

(完整版)三年级奥数乘除法巧算

(完整版)三年级奥数乘除法巧算

1、乘除法巧算这一讲介绍的是乘除法巧算的一些基本方法,同加减法一样,通过“带符号搬家”来适当改变运算顺序。

例题1计算:(1)2×13×5(2)51÷17×17÷51(3)12×7÷3÷7分析:仔细观察算式,如何改变运算顺序来使得计算简单些呢?练习1、计算:(1)4×7×25 (2)21×19÷7÷19 .在乘法巧算时,有三组乘法在巧算时经常用到:2×5=10,4×25=100, 8×125=1000 .还有许多两位数乘法中的乘数,十位相同,个位相加得10,例如:47和43,72和78、65和65等,我们把这样的情况称为“头同尾合十”。

对于“头同尾合十”的两个数可以这样进行计算:把“尾×尾”的结果作为得数的末两位,“头×(头+1)”的结果作为得数的头。

例题2计算:(1)25×28 ;125×24 ;(2)300÷25 ;8000÷125 ;(3)45×45 ;41×49 .分析:前两个小题中都有25或者125,这两个数能够如何巧算呢?第3小题的每组数有什么特点?练习:2、计算:(1)25×24 ;(2)2000÷125 ;(3)88×82 .在计算连续乘除法运算时,式子中经常会出现括号。

在乘除法中去括号同在加减法中去括号类似,要注意变号的问题,具体来说,乘除法中去括号的法则是:例题3计算:(1)(126÷9)×(9÷3)÷(6÷3);(2)512÷(512÷16×8).分析:在去括号的时候要注意些什么?去括号后算式变成了什么样?能够如何巧算?练习3、计算:(10÷7)×(7÷6)×(6÷5)例题4计算:(1)23×70×22÷11÷7 ;(2)300×13÷4÷25分析:(1)算式中有几个数有倍数关系,该如何计算?(2)看到4和25,能不能让它俩相乘呢?练习4、计算:3000×28÷125÷8÷14除了“带符号搬家”、“添、脱括号”等巧算方法之外,还有一个非常重要的方法,那就是运用乘法分配律进行巧算。

三年级奥数12-巧算乘除法

三年级奥数12-巧算乘除法
(2) 173x99
速算
(3)11125-125
13.用简便方法计算。
⑵5600-(28北)
(6)8100廿TOX15
作业
1•巧算(提示:特殊数的计算)
125x16x5
240x5
4804x25
2.速算下列各题(提示:头同尾合十、尾同头合十)
29x21
31x71
3.用简便方法计算
72x32
84x999
100+76x73
4.用巧妙的方法计算。
(1)37x48x625
(2)25x19x64x 125
6.用简便方法进行计算。
(3)36024x125
⑵427 x25
8.巧算。
(1)1295x11
(2)3782 x 11
9.计算下列各题。
(1)84x86
(2)34X74
11.速算下列各题。
(9+99+999)x9999
(1)25X13X4
(3)27X50X2
⑷5X25X4X20
例2运用简便方法计算。
(1)44X25
⑷64X25X125
(5)75X16
例3乘数是5 ,25、125 ,625的乘法
(1)12X5
(2)24X25
(3)48x125
⑷64X625
例4速算下列各题
⑵382X41十58X382+382
(3)102X19
⑸67X33+68 X67一67
例5用简便方法计算下列各题。
(1)13X5(2)26X25
(3)97X125
⑷34X625
例6一个数乘以11的速算
(1)45362X11
例7用简便方法计算下列各题

三年级思维拓展- 速算与巧算(二)

三年级思维拓展- 速算与巧算(二)

速算与巧算(二)知识要点上一章我们学习了加减法的运算技巧,本章我们将学习乘除法的巧算方法。

下面,我们介绍乘法的一些运算定律,它们是乘法巧算的理论依据,并给出一些巧算方法。

一、乘法运算定律1.乘法交换律:两个数相乘,交换因数的位置,积不变。

即:a×b=b×a。

2.乘法结合律:三个数相乘,可以先把前两个数相乘,再与后一个数相乘,或者先把后两个数相乘,再与第一个数相乘,积不变。

即:(a×b)×c=a×(b×c)。

3.乘法分配律:两个数的和与一个数相乘,可以用这两个数分别与这个数相乘,再把所得的积相加。

即a×(b+c) =a×b+a×c变式:a×(b-c) =a×b-a×ca×b+a×c = a×(b+c)a×b-a×c = a×(b-c)二、乘除混合运算中的巧算技巧1. 带着符号搬家:在乘除混合运算中,运算的次序可以交换,运算的结果不会改变。

但必须在交换位置时,连同前面的运算符号一起“搬家”。

2. 去括号:乘除混合运算中,如果括号前面是“×”号,去掉括号的时候不改变括号里面的符号;如果括号前面是“÷”号,去掉括号的时候要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。

3. 添括号:乘除混合运算中,可通过添加括号来改变运算顺序,添加括号时,如果括号前面是“×”号,不改变括号里面的符号;如果括号前面是“÷”号,要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。

三、除法中的特殊的性质1. 商不变性质:除法算式中,被除数和除数同时扩大或缩小相同的倍数,商不变。

即:a÷b=(a×n)÷(a×n) ,a÷b=(a÷n)÷(a÷n) (n≠0)2. 运用除法的性质进行巧算:(a±b)÷c=a÷c±b÷c四、乘法中的好朋友同学们应该记住一些特殊的乘积,他们的结果为整十、整百……,我们称这些数为乘法中的好朋友:2×5=10 4×25=1008×125=1000 16×625=10000精选例题☝【例1】:请用简便方法计算下列各题。

三年级奥数-乘除巧算

三年级奥数-乘除巧算
乘除巧算
专题简析
前面我们已给小朋友们介绍了加减中的巧算, 大家学会了运用“凑整”的方法进行巧算,实际 上这种;凑整“的方法也同样可以运用在乘、除计 算中。为了更好地凑整,为了更好地“凑整”, 同学们要牢记以下几个计算结果: 25×4=100 125×8=1000.
巧算中,经常要用到一些运算定律,例如乘 法交换律、乘法结合律、乘法分配律等,善于运 用运算定律,是提高巧算能力的关键。
(3)2340÷5
2、计算。 (1)7200÷25
(2)3600÷25
(3)5600÷25
3、你能很快计算下面各题吗? (1)32000÷125
(2)78000÷125
(3)43000÷125
【例题5】
计算 (1)49×55+55×51
(2)79×85+35×79-20×79
【练习5】
1、(1)26×49+49×74 (2)82×173-73×82
2、(1)68×99+68 (2)614×14+88×614-614×2
3、1750÷14-350÷14 7175÷35-700÷35+525÷35
精讲精练
【例题1】
你有好办法算出下面各题的结果吗?
(1)25×17×4
(2) 8×18×125
(3)8×25×4×125
(4) 125×2×8×5
【练习1】
1、计算: 25×23×4
125×27×8
2、计算。 (1)5×25×2×4
(2)125×4×8×25
(3)2×125×8×5
【例题2】
你有好办法计算下面各题吗? (1)25×8 (2) 16×125 (3)16×25×25 (4) 125×32×25

三年级奥数乘除法中的巧算

三年级奥数乘除法中的巧算

第二讲速算与巧算(二)一、乘法中的巧算1. 两数的乘积是整十、整百、整千的,殊的等式:5X 2=1025 X 4=100125X 8=1000例 1 计算① 123X 4X 255X 4解:=123X( 4X 25)X(5X 2)=123 X 100 = 1230010=10000002. 分解因数,凑整先乘。

例 2 计算①24 X 25③125X 5X 32X 5=6 X(4X 25) =7X 5X 4X 8X 5=6 X 100 =7 ( 125X 8)X( 5X 5X 4)=600=1000X 100=100000 要先乘. 为此,要牢记下面这三个特②125 X 2X 8X 25X= ( 125X 8)X( 25X 4)=1000 X 100X②56 X 125X 8X 125=7X(8X125) =125X 1000 ==70003. 应用乘法分配律。

例 3 计算① 175 X 34+ 175X 66 35+67X 52+6解:=175 X(34+66)=67 35+52+ 1)=175X 100=17500 ②67 X12+67XX(12+=67 X100 =6700例 4 计算① 123 X 101 99解:=123 X(100+1)=123X 100+ 123 (100-1 )②123 X =123 X=12300+ 123 =12300-123=12423 =121774. 几种特殊因数的巧算。

例5 一个数X 10,数后添0;一个数X 100,数后添00;一个数X 1000,数后添000;以此类推。

女口:15X 10=15015X 100=150015X1000=15000例6 一个数X 9,数后添0,再减此数;一个数X 99,数后添00,再减此数;一个数x 999,数后添000,再减此数;以此类推。

如:12X 9= 120-12 = 10812X 99= 1200- 12= 118812X 999= 12000-12=11988例7 一个偶数乘以5,可以除以2添上0。

小学三年级奥数-乘除巧算

小学三年级奥数-乘除巧算

4. 82×88先用首位数字加1再乘首位数字,即(8+1)×8=72作为积的前两位数字,再 用两个末位数字相乘2×8=16作为积的末位两个数字,所以82×88=7216;
5. 51×59先用首位数字加1乘首位数字,即(5+1)×5=30作为积的前两位数字,再用 两个末位数字相乘1×9=9,它们的积是一位数,要前9前面加一个0,作为积的末两个 数字,所以,51×59=3009。
PART 01
乘除巧算
一、知识要点
前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用 “凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用 在乘除计算中。为了更好地凑整,同学们要牢记以下几个计算结果:
2×5=10,4×25=100,8×125=1000。 提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌
01 练习5: 03 29×25 05 221×25 07 2561×25
02 计算: 04 17×25 06 322×25 08 3753×25
产品品鉴会活 动方案
汇报人姓名
272000÷1000=272。
1. 练习4: 2. 你能迅速算出结果吗? 3. 170÷5 (2)3270÷5 (3)2340÷5 4. 计算: 5. 7200÷25 6. 3600÷25 7. 5600÷25 8. 你有好办法计算下面各题吗? 9. 32000÷125 10. 78000÷125 11. 43000÷125
握一定的运算技巧。巧算中,经常要用到一些运算定律,例如乘法 交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提 高巧算能力的关键。
二、精讲精练
【例题1】你有好办法算出下面各题的结果吗? 25×17×4 8×18×125 8×25×4×125 125×2×8×5 【思路导航】(1)我们知道25×4=100,因而我们要尽量把25与4放在一块计算,这样比较简便。 所以我们先算25×4=100,再与17相乘即 100×17=1700

乘除法巧算

乘除法巧算

乘除法巧算三年级乘除法巧算多位数×/÷一位数(要尽量达到口算的标准)多位数×/÷多位数(列于竖式排序精确)二、乘法中的“好朋友”(1)2×5=10不断扩大倍倍(2)4×25=100(3)8×125=1000扩大2倍5倍(4)16×625=10000※(5)7×11×13=1001(6)37×3=111三、乘除法中的技巧1.一个数除以10、100、1000、10000……【添0】1的后面有几个零那么就在这个数的后面添几个零。

例1:39×10=390,39×100=3900,39×1000=39000101×10000=1010000……【拓展】:一个数乘以20,300,4000……先用这个数除以0前面的数,再迎0.38×59×238×52.“好朋友”的运用【拆】如果好朋友没有直接给出,可以拆数来找。

25×63×4777837×9=25×4×63=7136=37×3×3=100×63=111×3=6300=6006=3333.多位数与11相加【两边一拉,中间相加】从后向前做加法。

基准11=13211=14543111+2=3以上这两种这就是搞乘法时没位次的,下面在握一下存有位次的例子。

例5:11=517。

首位4,加之位次1,就等5方法2:是根据竖式47两种方法归纳的说道就是,“两边一扎,中间相乘”,第二种方法只是使孩子们更好的认知这个技巧。

例611=137181(又发生了位次,这也就是为什么必须从后面往前面提)4.一个数与5相乘基准7:56×56的一半112×56的一半5.一个数与15相加例8:56×56+28=84(56加之56的一半)112×112+56=168(112加上112的一半)6.一个数与99相加【添减法】一个数与99相乘,先在这个数后面添00,再减去这个数。

三年级奥数乘除法中的巧算

三年级奥数乘除法中的巧算

第二讲速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25 ②125×2×8×25×5×4解:=123×(4×25)=(125×8)×(25×4)×(5×2)=123×100=12300 =1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25 ②56×125 ③125×5×32×5=6×(4×25)=7×8×125=7×(8×125)=125×5×4×8×5=6×100 =7×1000 =(125×8)×(5×5×4)=600 =7000 =1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66 ②67×12+67×35+67×52+6解:=175×(34+66)=67×(12+35+52+1)=175×100 =67×100=17500 =6700例4计算①123×101 ②123×99解:=123×(100+1)=123×100+123 =123×(100-1)=12300+123 =12300-123 =12423 =121774.几种特殊因数的巧算。

三年级乘除法速算巧算

三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1 计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=1000000分解因数,凑整先乘。

2.例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3 计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算①123×101②123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

三年级计算乘除法速算与巧算教师版

三年级计算乘除法速算与巧算教师版

知识要点二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠ ⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)乘除法速算与巧算两人和倍乘5、15、25、125【例 1】 下面这些题你会算吗?(1)125(408)⨯+ (2)(1004)25-⨯ (3)(1008)25-⨯【分析】 (1)125(408)125401258500010006000⨯+=⨯+⨯=+=(2)(1004)251002542525001002400-⨯=⨯-⨯=-= (3)(1008)251002582525002002300-⨯=⨯-⨯=-=【例 2】 下面这道题怎样算比较简便呢?看谁算的快!2625⨯【分析】 26不能被4整除,但26可以拆成642⨯+,这样2625⨯,可转化为6425⨯⨯再加上225⨯,这样就可速算了. 原式64225=⨯+⨯()642522560050650=⨯⨯+⨯=+=【例 3】 你知道下题怎样快速的计算吗?⑴786 5 ⨯ ⑵12425⨯ ⑶96125 ⨯ ⑷75258⨯⨯ 【分析】 我们刚刚学过了乘 5,25,125的速算法,大显身手练一下吧!⑴7865786(52)2786023930⨯=⨯⨯÷=÷=或 786539325393103930⨯=⨯⨯=⨯= ⑵12425124(254)41240043100⨯=⨯⨯÷=÷=或1242531425311003100⨯=⨯⨯=⨯=⑶9612596(1258)896000812000 ⨯=⨯⨯÷=÷=或 9612512812512100012000⨯=⨯⨯=⨯= ⑷7525825475210015015000⨯⨯=⨯⨯⨯=⨯=【例 4】 计算:813125⨯⨯= 【分析】 根据乘法凑整原则81312581251310001313000⨯⨯=⨯⨯=⨯=去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.【例 5】 为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?192564125⨯⨯⨯ 【分析】 把64分成482⨯⨯,用乘法结合律便可速算.原式2541258192=⨯⨯⨯⨯⨯()()()1001000383800000=⨯⨯=【例 6】 计算:1733212525⨯⨯⨯. 【分析】 原式1734812525=⨯⨯⨯⨯()173425812517300000=⨯⨯⨯⨯=()()【例 7】 请快速计算下面各题. ⑴200425⨯ ⑵125792⨯ 【分析】 ⑴200425(20004)2520002542550100⨯=+⨯=⨯+⨯=⑵125792125(8008)1258001258100010010001000(1001)99000⨯=⨯-=⨯-⨯=⨯-=⨯-=【例 8】 456212525548⨯⨯⨯⨯⨯⨯ 【分析】 原式456252541258=⨯⨯⨯⨯⨯⨯()()()456101001000=⨯⨯⨯ 456000000=【例 9】 聪明的你也来试试吧!⑴2415 ⨯ ⑵8475⨯ ⑶3975 ⨯ ⑷56625 ⨯【分析】 ⑴2415(24242)10(2412)10360⨯=+÷⨯=+⨯=⑵8475(214)(253)(213)(425)631006300⨯=⨯⨯⨯=⨯⨯⨯=⨯= ⑶3975 (401)7540751753000752925⨯=-⨯=⨯-⨯=-=⑷56625(78)(1255)(75)(8125)35100035000⨯=⨯⨯⨯=⨯⨯⨯=⨯=【例 10】 请你简便计算.⑴5365⨯ ⑵63815⨯ ⑶3225⨯ ⑷6875⨯【分析】 ⑴5365536(52)2536022680⨯=⨯⨯÷=÷=⑵63815(6386382)109570⨯=+÷⨯= ⑶322532(254)432004800⨯=⨯⨯÷=÷=⑷6875174253173(425)5100⨯=⨯⨯⨯=⨯⨯⨯=【例 11】 计算:125161119⨯-⨯=____________. 【分析】 根据乘法凑整原则整理为125161119⨯-⨯ ()=125829992000100012000100011001⨯⨯-=--=-+=【例 12】 计算:()450002590÷⨯=【分析】()450002590÷⨯()=450005045=450005045=100050=20÷⨯÷÷÷乘9、99、999【例 13】 下面各题怎样算简便呢?⑴129⨯ ⑵1299⨯ ⑶12999⨯【分析】 ⑴利用公式,可以得出结果:12912012108⨯=-=;⑵12991200121188⨯=-=,此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘99”.的补数是88去11112=118812× 99⑶12999120001211988⨯=-=,此题可用小技巧:“去1添补,中间隔9”法. 注意:只适用于“两位数乘999”.中间隔的补数是88去1是12=1198812×【例 14】 计算:123456789876543219⨯=【分析】 原式()21111111119=⨯ 999999999111111111=⨯111111111000000000111111111=- 111111110888888889=【例 15】 算式1234567898765432163⨯值的各位数字之和为 。

三年级数学乘除法巧算

三年级数学乘除法巧算

三年级数学乘除法巧算
本文介绍了一些简便的乘除法计算方法,旨在培养学生的简算意识和数感,提高心算和运算速度。

例1中,通过巧妙运用乘法交换律和结合律,可以简单地计算出两个乘法式的结果。

例2中,介绍了乘法的分配律,通过将乘法拆分为加法,可以更方便地进行计算。

例3中,再次运用了乘法的分配律,将一个较大的乘法式拆分为两个较小的乘法式,从而更容易计算。

例4中,介绍了乘除法的巧算方法,通过将除法转化为乘法,可以更快速地计算出结果。

总之,学生应该注重观察力、表达能力和书写格式步骤,建立简算意识,培养数感,以提高心算和运算速度。

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

三年级数学思维能力提升--乘除法巧算

三年级数学思维能力提升--乘除法巧算

三年级数学思维能力提升乘除法巧算知识与方法归纳基本特点:乘法巧算中几个常用凑整数:2×5 = 10 4×25 = 100 8×125 = 1000基本方法:(1)去括号和添括号法则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。

例如:① a×(b÷c)= a×b÷c ②a÷(b÷c)= a÷b×c(2)带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。

不论数移动到哪个位置,它前面的运算符号不变。

(3)利用乘法的意义巧算乘法是求几个相同加数的和的简便运算;可以利用乘法的意义,先计算出相同加数的个数,再计算结果,使计算简便。

(4)抵消思想同级运算能抵消的先抵消,就能使计算简便。

典型题讲解例1、用简便方法计算下列各题。

(1)19×25×4 (2)125×27×8 (3)5×25×4×2例2、用简便方法计算下列各题。

(1)125×32 (2)28×25 (3)25×6×64×125练习1、简便计算下列各题。

(1)36×4×25 (2)125×16×5 (3)125×48 ×5例3、简便计算下列各题。

(1)170÷5 (2)2100÷25 (3)35000÷125例4、简便计算下列各题。

(1)3100÷4÷25 (2)12000÷125÷8练习2、简便计算下列各题。

小学三年级奥数乘除巧算

小学三年级奥数乘除巧算

【例题3】你能很快算出它们的结果吗?
【思路导航】通过观察,我们可以发现这两题都是两位数乘两位数,被乘数和乘数十位上的数字相同,个位数字和是10,像这样的题目,我们可以将首位数字加1再乘首位数字,得数作为积的前两位数字;将两个末位数字相乘,得数作为积的末位两个数字,如果末位数字相乘的积是一位数,要在前面加一个0。
01
02
03
04
01
练习5:
02
计算:
03
29×25
04
17×25
05
221×25
06
322×25
07
2561×25
08
3753×25
4
1000×100=100000。
练习2:
125×32
(1)125×16×5 (2)25×8×5
(1)25×12
48×125
(1)125×64×25 (2)32×25×25
01
03
05
02
04
06
1000×10=10000
练习1:
计算:
25×23×4
125×27×8
计算:
5×25×2×4
125×4×8×25
2×125×8×5
想一想,怎样算比较简便?
125×16
【例题2】你有好办法计算下面各题吗? (1)25×8 (2)16×125 (3)16×25×25 (4)125×32×25 【思路导航】(1)已知25×4=100,因为8=2×4,所以我们可以把25×8转化为25×4×2.然后先算25×4=100,再算出100×2=200。 (2)125×8=1000,16=8×2.因而我们可以把16×125转化为2×(8×125),然后算出8×125=1000,再乘2得到2000;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、乘除法简巧算
〖趣味数学〗
将盘中5个桃子平均分给5个小朋友,要使盘中还留有一个桃子,你会分吗?
〖知识要点〗
1、学生观察能力、表达能力与书写格式步骤;
2、建立简算意识,培养数感,提高心算和运算速度;
〖例题精讲〗
例1、乘法中的巧算:○1○1交换律○2○2结合律
(1)25×55×4 (2)25×32×125×7
= 25×4×55 =25×4×(8×125)×7
= 100×55 =100×1000×7
=5500 =700000
〖我真行1〗
(1)5×25×2×4 (2)125×48×8 (3)25×64×125
例2、乘法的分配律:
(1)25×(40+4)(2)39×47+39×53
=25×40+25×4 =39×(47+53)
=1000+100 =39×100
=1100 =3900
〖我真行2〗
(1)125×(80+8)(2)66×36+33×36+36
例3、巧用乘法的分配律:
(1)39×101 (2)22×99
=39×(100+1) =22×(100-1)
=39×100+39×1 =22×100-22×1
=3900+39 =2200-22
=3939 =2178
〖我真行3〗
(1)44×1002 (2)556×99
例4、乘除法中的巧算:
(1)17÷8+19÷8+28÷8 (2)77×5÷11 (3)7500÷(100÷3)
=(17+19+28)÷8 =77÷11×5 =7500÷100×3
= 64÷8 =7×5 =75×3
=7 =35 =225
(4)76×25 (5)700÷25
=76×25×4÷4 =(700×4)÷(25×4)
=7600÷4 =2800÷100
=1900 =28
〖我真行4〗
(1)12÷25×100 (2) 31÷9+33÷9+35÷9
(3)48×125 (4)3000÷125
〖方法归纳〗
学习利用乘法的交换律、结合律、分配律;除法的分配性质,同级运算“带号搬家”,去括号等进行简便计算。

〖我真棒〗
4600÷(23÷3) 84×29-18×84-84 11×37+99×7
7×(7+1)
方法归类:这种好方法也适用于个位数是5的两个相同的多位数相乘的计算。

相关文档
最新文档