精选高考物理易错题专题复习法拉第电磁感应定律含答案

合集下载

高考物理复习法拉第电磁感应定律专项易错题含详细答案

高考物理复习法拉第电磁感应定律专项易错题含详细答案

一、法拉第电磁感应定律1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。

线圈的半径为r1。

在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。

导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。

(2)通过电阻R1上的电荷量q。

【答案】(1)2023n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。

(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==2.两间距为L=1m的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、磁感应强度大小B=2T的匀强磁场中.金属棒P垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m0未知),将重物由静止释放,经过一段时间,将另一根完全相同的金属棒Q垂直放在导轨上,重物立即向下做匀速直线运动,金属棒Q恰好处于静止状态.己知两金属棒的质量均为m=lkg、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s2,sin 37°=0.6,cos37°=0.8.求:(1)金属棒Q放上后,金属棒户的速度v的大小;(2)金属棒Q放上导轨之前,重物下降的加速度a的大小(结果保留两位有效数字);(3)若平行直导轨足够长,金属棒Q放上后,重物每下降h=lm时,Q棒产生的焦耳热.【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】(1)金属棒Q 恰好处于静止时sin mg BIL θ=由电路分析可知E BLv = ,2E I R= , 代入数据得,3m/s v =(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得00sin ()m g mg m m a θ-=+代入数据得,22.7m/s a =(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2Q Q ==总3.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m4.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m 【解析】 【详解】解:(1)初始时:0E BLv =EI R r=+ 对棒2:F 安BIL ma ==解得:222010m/s B L v a R r==+(2)对棒1和2的系统,动量守恒,则最后稳定时:0()Mv m M v =+ 解得:8m/s v =(3)对棒2,由动量定理:BIL t mv ∆= ,其中q I t =∆解得:8C mvq BL== (4)由E t φ∆=∆ 、E I R r=+、 q I t =∆ 联立解得:BL xq R r R rφ∆∆==++ 又mv q BL=解得:22()mv R r x B L+∆=则稳定后两棒的距离:22()2m mv R r d d x d B L+'=-∆=-=5.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q=It ,EIR r=+;Et∆Φ=∆;1∆Φ=BL S联立解得11.512C 1.5C1.50.5BL S qR r ⨯⨯===++6.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

专题23 法拉第电磁感应定律——历年高考物理真题精选之黄金30题(解析版)

专题23   法拉第电磁感应定律——历年高考物理真题精选之黄金30题(解析版)

历年高考物理真题精选之黄金30题专题23 法拉第电磁感应定律一、单选题1.(2020·浙江·高考真题)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场。

长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO '上,随轴以角速度ω匀速转动。

在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态。

已知重力加速度为g ,不计其它电阻和摩擦,下列说法正确的是( )A .棒产生的电动势为212Bl ω B .微粒的电荷量与质量之比为22gdBr ωC .电阻消耗的电功率为242B r RπωD .电容器所带的电荷量为2CBr ω【答案】 B 【解析】A .如图所示,金属棒绕OO '轴切割磁感线转动,棒产生的电动势21=22r E Br Br ωω=⋅A 错误;B .电容器两极板间电压等于电源电动势E ,带电微粒在两极板间处于静止状态,则Eq mg d =即22212q dg dg dg m E Br Br ωω===B 正确;C .电阻消耗的功率22424E B r P R R ω==C 错误;D .电容器所带的电荷量22CBr Q CE ω==D 错误。

故选B 。

2.(2015·全国全国·高考真题)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a【答案】 C 【解析】因为当金属框绕轴转运时,穿过线圈abc 的磁通量始终为0,故线圈中无感应电流产生,选项BD 错误;但对于bc 与ac 边而言,由于bc 边切割磁感线,故bc 边会产生感应电动势,由右手定则可知,c 点的电势要大于b 点的电势,故U bc 是负值,且大小等于Bl×=Bl 2ω,故选项C 正确;对于导体ac 而言,由右手定则可知,c点的电势大于a 点的电势,故选项A 错误,所以选项C 是正确的.3.(2014·江苏·高考真题)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在t ∆时间内,磁感应强度的方向不变,大小由B 均匀的增大到2B .在此过程中,线圈中产生的感应电动势为( )A .22Ba t ∆B .22nBa t ∆ C .2nBa t ∆D .22nBa t ∆【答案】 B 【解析】在此过程中,线圈中的磁通量改变量大小22222B B a Ba t ϕ-∆=⨯=∆,根据法拉第电磁感应定律22ϕ∆∆===∆∆∆B nBa E n n S t t t ,B 正确; B E nn S t t ϕ∆∆==∆∆,知道S 是有效面积,即有磁通量的线圈的面积.4. (2008·全国·高考真题)矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示。

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案一、法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。

【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。

(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。

高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

专题27 法拉第电磁感应定律目录题型一实验:探究影响感应电流方向的因素 (1)题型二感应电流的产生和方向判断 (4)题型三楞次定律推论的应用 (6)题型四“三定则、一定律”的应用 (9)题型五法拉第电磁感应定律的理解及应用 (10)题型六导体切割磁感线产生的感应电动势 (13)类型1 平动切割磁感线 (14)类型2 转动切割磁感线 (15)类型3 有效长度问题 (16)题型六自感现象 (17)题型一实验:探究影响感应电流方向的因素1.实验设计如图2所示,通过将条形磁体插入或拔出线圈来改变穿过螺线管的磁通量,根据电流表指针的偏转方向判断感应电流的方向。

2.实验结论当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减小时,感应电流的磁场与原磁场的方向相同。

3.注意事项实验前应首先查明电流表中电流的流向与电流表指针偏转方向之间的关系,判断的方法是:采用如图所示的电路,把一节干电池与电流表及线圈串联,由于电流表量程较小,所以在电路中应接入限流变阻器R,电池采用旧电池,开关S采用瞬间接触,记录指针偏转方向。

【例1】探究感应电流方向的实验所需器材包括:条形磁体、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系).(1)实验现象:如图所示,在四种情况下,将实验结果填入下表.①线圈内磁通量增加时的情况①线圈内磁通量减少时的情况请填写表格中的空白项.(2)实验结论:当穿过闭合线圈的磁通量增加时,感应电流的磁场与原磁场方向________(选填“相同”或“相反”).(3)总结提炼:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的________.(4)拓展应用:如图所示是一种延时继电器的示意图.铁芯上有两个线圈A和B.线圈A和电源连接,线圈B与直导线ab构成一个闭合回路.弹簧K与衔铁D相连,D的右端触头C 连接工作电路(未画出).开关S闭合状态下,工作电路处于导通状态.S断开瞬间,延时功能启动,此时直导线ab中电流方向为________(选填“a到b”或“b到a”).说明延时继电器的“延时”工作原理:________.【例2】在“探究电磁感应的产生条件”的实验中,先按如图甲所示连线,不通电时,电流计指针停在正中央,闭合开关S时,观察到电流表指针向左偏。

高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。

线圈的半径为r 1。

在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。

导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。

(2)通过电阻R1上的电荷量q。

【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。

(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;(2) 0~t1时间内通过电阻R1的电荷量q.【答案】(1)202n B rEtπ=(2)20123n B t rqRtπ=【解析】【详解】(1)由法拉第电磁感应定律E ntφ∆=∆有202n B rBE n St tπ∆==∆①(2)由题意可知总电阻R总=R+2R=3 R②由闭合电路的欧姆定律有电阻R1中的电流EIR=总③0~t1时间内通过电阻R1的电荷量1q It=④由①②③④式得20123n B t rqRtπ=4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

高考物理法拉第电磁感应定律-经典压轴题及答案解析

高考物理法拉第电磁感应定律-经典压轴题及答案解析

【答案】(1) v1
2gr (2) x 2
rh (3) Q 1 mgr
2
2
【解析】
【分析】
【详解】
(1)a 棒沿圆弧轨道运动到最低点 M 时,由机械能守恒定律得:
mgr
1 2
mv02
解得 a 棒沿圆弧轨道最低点 M 时的速度 v0 2gr
从 a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总 是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:
有:
Mgh
mghsin
Q总
1(M 2
m)vm2
Q 总=96J
电阻 R 产生的焦耳热: QR R Q总 R r
QR=57.6J 【点睛】本题有两个关键:一是推导安培力与速度的关系;二是推导感应电荷量 q 的表达 式,对于它们的结果要理解记牢,有助于分析和处理电磁感应的问题.
7.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距 lm,导轨平 面与水平面成 θ=37°角,下端连接阻值为 R 的电阻.匀强磁场方向与导轨平面垂直.质量 为 0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动 摩擦因数为 0.25.求:
线框匀速运动,其受到的安培力为阻力大小即为 F1 ,由能量守恒:
Q W 安 F1L 0.02 0.1J 2.0 103 J
(2) 金属框拉出的过程中产生的热量:
Q I 2Rt
线框的电阻:
Q 2.0103
R
I 2t
0.22
Ω 0.05
1.0Ω
2.如图所示,竖直平面内两竖直放置的金属导轨间距为 L1,导轨上端接有一电动势为 E、 内阻不计的电源,电源旁接有一特殊开关 S,当金属棒切割磁感线时会自动断开,不切割 时自动闭合;轨道内存在三个高度均为 L2 的矩形匀强磁场区域,磁感应强度大小均为 B, 方向如图。一质量为 m 的金属棒从 ab 位置由静止开始下落,到达 cd 位置前已经开始做匀 速运动,棒通过 cdfe 区域的过程中始终做匀速运动。已知定值电阻和金属棒的阻值均为 R,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为 g,求:

高考物理法拉第电磁感应定律-经典压轴题含答案解析

高考物理法拉第电磁感应定律-经典压轴题含答案解析

高考物理法拉第电磁感应定律-经典压轴题含答案解析一、法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=36,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg4.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。

法拉第电磁感应定律及答案

法拉第电磁感应定律及答案

法拉第电磁感应定律1、50匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场。

若线圈所围面积里磁通量随时间变化的规律如图所示,则在0到0.01秒内,线圈中感应电动势最大时刻为 O ,感应电动势为零的时刻为 D ,在0到D 时间内线圈中平均感应电动势为 0.4 。

2、如图两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面。

两导轨间距为L ,左端接一电阻R ,其余电阻不计。

长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过R 的电荷量是 31/2BL 2/2R 。

3.如图所示,圆环a 和b 的半径之比R 1∶R 2=2∶1,且是粗细相同,用同样材料的导线构成,连接两环导线的电阻不计,匀强磁场的磁感应强度始终以恒定的变化率变化,那么,当只有a环置于磁场中与只有b 环置于磁场中的两种情况下,AB 两点的电势差之比为多少? 2:14、如图所示,在一磁感应强度B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h =0.1m 的平行光滑的金属导轨MN 与PQ ,导轨的电阻忽略不计.在两根导轨的端点N 、Q 之间连接一阻值R =0.3Ω的电阻,导轨上跨放着一根长为L =0.2m ,每米长电阻r =2.0Ω/m 的金属棒ab ,金属棒与导轨正交,交点为c 、d .当金属棒以速度v=4.0m/s 向左做匀速运动时,试求:(1)电阻R 中的电流强度大小和方向;0.4A(2)使金属棒做匀速运动的外力;0.02N(3)金属棒ab 两端点间的电势差.0.32V5、用相同导线绕制的边长为L 或2L (短边为L ,长边为2L )的四个闭合导体线框,以相同的速度分别匀速进入右侧匀强磁场,如图所示。

在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d 。

下列判断正确的是( B )A.U a < U b < U c < U dB.U a < U b < U d < U cC.U a = U b < U c = U d D .U b < U a < U d < U c6、固定在水平桌面上的金属框架cdef 处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦地滑动.此时abcd 构成一个边长为L 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B0.(1)若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,在图中标出感应电流的方向.Kl 2/R(2)在上述(1)的情况中,棒始终保持静止,当t =t 1时垂直于棒的水平拉力为多少?kl 3(B 0+kt 1)/R(3)若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度怎样随时间变化?(写出B 与t 的关系式) LB 0/l+vt7、下列关于感应电动势大小的说法中,正确的是( D )A .线圈中磁通量变化越大,线圈中的感应电动势一定越大B .线圈中磁通量越大,感应电动势一定越大C .线圈放在磁感应强度越强的地方,感应电动势一定越大D .线圈中磁通量变化越快,感应电动势越8、如图中半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的大小和方向是(金属圆盘的电阻不计)( D)NN N N (a) (b) (c)(d)A .由c 到d ,I =Br 2ω/RB .由d 到c ,I =Br 2ω/RC .由c 到d ,I =Br 2ω/(2R )D .由d 到c ,I =Br 2ω/(2R ) 9、 一直升飞机停在南半球的地磁极上空。

高考物理易错题精选-法拉第电磁感应定律练习题含答案

高考物理易错题精选-法拉第电磁感应定律练习题含答案

一、法拉第电磁感应定律1.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。

线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =E I R=q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.(1)刚进入磁场时回路的电流强度i 0;(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .【答案】06(23)B ghi r=+;023(2)m gh umgt rS ++=();22max 4(23)P r =+ 【解析】 【详解】解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为0v ,则:2012mgh mv =解得:0v 2gh =刚进入磁场时产生的感应电动势:10e Bdv = 导轨宽度:3d L =回路电阻:(23)R Lr =+ 联立可得:06(23)B gh i r=+(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ∆时间内,根据动量定理:22()ii B d v umg t m v R∑+∆=∑∆22(3(23)i i L t umg t m v Lr+∑∆=∑∆+2(23)i i v t umg t m v r∆+∑∆=∑∆+200(23)umgt mv r+=+得:023(2)m gh umgt rS ++=() (3)金属棒匀加速运动,v at =切割磁感线的有效长度为:021'2cos60)tan 602l L at =⋅-︒( 产生感应电动势:E Bl v '=2212(cos60)tan 603()2E B L at at Ba L at t =⋅︒-︒⋅=-回路的瞬时电阻:2022121[2(cos60)tan 60(cos60)(23)()2cos602R r L at L at r L at =︒-+︒-=+- 功率:2222222222242222()[()]24(23)()(23)(23)E L L P at Lt a t R a a r L at r r===-+=--++-++ 金属棒运动到D 点,所需的时间设为t ',则有: 21122L at '= 解得:Lt a'=当2Lt t a'=<时, 22max 4(23)P r =+4.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。

高考物理法拉第电磁感应定律-经典压轴题附答案解析

高考物理法拉第电磁感应定律-经典压轴题附答案解析
(1)棒进入磁场时受到的安培力F;
(2)在0~4s时间内通过电阻R的电荷量q;
(3)在0~5s时间内金属棒ab产生的焦耳热Q。
【答案】(1) (2) (3)
【解析】(1)棒进入磁场之前对ab受力分析由牛顿第二定律得
由匀变速直线位移与时间关系
则由匀变速直线运动速度与时间 Nhomakorabea系得金属棒受到的安培力
(2)由上知,棒进人磁场时 ,则金属棒作匀速运动,匀速运动时间
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
对棒2: 安
解得:
(2)对棒1和2的系统,动量守恒,则最后稳定时:
解得:
(3)对棒2,由动量定理: ,其中
解得:
(4)由 、 、
联立解得:

解得:
则稳定后两棒的距离:
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成 =30角,上端连接 的电阻.质量为m=0.2kg、阻值 的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.

法拉第电磁感应定律试题及答案

法拉第电磁感应定律试题及答案

法拉第电磁感应定律试题及答案法拉第电磁感应定律试题及答案(40分钟 5 0分)一、选择题(本题共5小题,每小题6分,共30分)1.关于感应电动势,下列说法中正确的是()A.电源电动势就是感应电动势B.产生感应电动势的那部分导体相当于电源C.在电磁感应现象中没有感应电流就一定没有感应电动势D.电路中有电流就一定有感应电动势2.(2013揭阳高二检测)从同一位置将一磁铁缓慢地或迅速地插到闭合线圈中同样位置处,不发生变化的物理量有()A.磁通量的变化率B.感应电流的大小C.消耗的机械能D.磁通量的变化量3.穿过某线圈的磁通量随时间的变化关系如图所示,在线圈内产生感应电动势最大值的时间是()A.0~2 sB.2~4 sC.4~6 sD.6~10 s4.(2013白城高二检测)一接有电压表的矩形线圈在匀强磁场中向右做匀速运动,如图所示,下列说法正确的是()A.线圈中有感应电流,有感应电动势B.线圈中无感应电流,也无感应电动势C.线圈中无感应电流,有感应电动势D.线圈中无感应电流,但电压表有示数5.如图甲所示,圆形线圈M的匝数为50匝,它的两个端点a、b 与理想电压表相连,线圈中磁场方向如图,线圈中磁通量的变化规律如图乙所示,则ab两点的电势高低与电压表读数为()A.φa>φb,20VB.φa>φb,10VC.φa<φb,20VD.φa<φb,10V二、非选择题(本题共2小题,共20分。

需写出规范的解题步骤)6.(10分)如图所示,用质量为m、电阻为R的均匀导线做成边长为l的单匝正方形线框MNPQ,线框每一边的电阻都相等。

将线框置于光滑绝缘的水平面上。

在线框的右侧存在竖直方向的有界匀强磁场,磁场边界间的距离为2l,磁感应强度为B。

在垂直MN边的水平拉力作用下,线框以垂直磁场边界的速度v匀速穿过磁场。

在运动过程中线框平面水平,且MN边与磁场的边界平行。

求:(1)线框MN边刚进入磁场时,线框中感应电流的大小;(2)线框MN边刚进入磁场时,M、N两点间的电压;(3)在线框从MN边刚进入磁场到PQ边刚穿出磁场的过程中,线框中产生的热量是多少?7.(10分)(能力挑战题)如图所示,矩形线圈在0.01s内由原始位置Ⅰ转落至位置Ⅱ。

备战高考物理法拉第电磁感应定律-经典压轴题含详细答案

备战高考物理法拉第电磁感应定律-经典压轴题含详细答案

一、法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。

当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。

重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图所示,平等光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L ,A 、C 两点间连接有阻值为R 的电阻,一根质量为m 、电阻也为R 的直导体棒EF 跨在导轨上,两端与导轨接触良好。

高考物理易错题精选-法拉第电磁感应定律练习题及详细答案

高考物理易错题精选-法拉第电磁感应定律练习题及详细答案

一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。

精选高考物理易错题专题复习法拉第电磁感应定律含答案解析

精选高考物理易错题专题复习法拉第电磁感应定律含答案解析

精选高考物理易错题专题复习法拉第电磁感应定律含答案解析一、法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。

2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。

2023年高考物理热点复习:法拉第电磁感应定律 自感现象(附答案解析)

2023年高考物理热点复习:法拉第电磁感应定律 自感现象(附答案解析)

第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。

2020届高考物理复习:法拉第电磁感应定律(解析版)

2020届高考物理复习:法拉第电磁感应定律(解析版)

2020届高考物理 法拉第电磁感应定律(解析版)1. 如图所示,一正方形线圈的匝数为 n ,边长为 a ,线圈平面与匀强磁场垂直,且一半处在磁场中. 在 Δt 时间内,磁感应强度的方向不变,大小由 B 均匀地增大到 2 B .在此过程中,线圈中产生的感应电动势为( B )A .B .C .D . 【解析】当磁场增强时线圈中产生感生电动势,由法拉第电磁感应定律221a t B n S t B n t E ∆∆∆∆ϕ∆===,选项B 正确 2. 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场。

如图所示,一个半径为r 的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B ,环上套一带电量为+q 的小球。

已知磁感应强度B 随时间均匀增加,其变化率为k ,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是 ( D )A .0B .212r qk C .22r qk π D .2r qk π【解析】由法拉第电磁感应定律得感生电动势:22r k r tB t E ππ∆∆∆∆Φ===,而电场力做功W=qU ,小球在环上运动一周U=E ,故2r qk W π=。

D 正确。

3. 如图.在水平面(纸面)内有三报相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V”字型导轨。

空间存在垂直于纸面的均匀磁场。

用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触。

下列关于回路中电流i 与时间t 的关系图线.可能正确的是( A )22Ba t ∆22nBa t ∆2nBa t ∆22nBa t∆【解析】设“V”字形导轨夹角为2θ,MN 向右匀速运动运动的速度为v ,根据法拉第电磁感应定律:,设回路中单位长度的导线的电阻为R O ,, 根据欧姆定律:,A 选项对。

4. 如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为E l ;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2。

高考物理二轮复习综合训练——法拉第电磁感应定律(word版含答案)

高考物理二轮复习综合训练——法拉第电磁感应定律(word版含答案)

法拉第电磁感应定律一、选择题(共15题)1.在竖直方向的匀强磁场中,水平放置一圆形导体环,导体环面积为S=1m2,导体环的总电阻为R=Ω。

规定导体环中电流的正方向如图甲所示,磁场向上为正。

磁感应强度B随时间t的变化如乙图10B=。

下列说法正确的是()所示,00.1TA.t=1s时,导体环中电流为零B.第2s内,导体环中电流为负方向C.第3s内,导体环中电流的大小为0.1AD.第4s内,通过导体环中某一截面的电荷量为0.01C2.一匀强磁场,磁场方向垂直于纸面,规定垂直纸面向里的方向为正,在磁场中有一细金属圆环,圆环平面位于纸面内,如图甲所示。

现令磁感应强度B随时间t变化,先按图乙中所示的Oa图线变化,后来又按图线bc和cd变化,令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则()A.E1>E2,I1沿逆时针方向,I2沿顺时针方向B.E1<E2,I1沿逆时针方向,I2沿顺时针方向C.E1<E2,I1沿顺时针方向,I2沿逆时针方向D.E2=E3,I2沿顺时针方向,I3沿逆时针方向3.如图所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合,磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0,使该线框从静止开始绕过圆心O 且垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。

现使线框保持图中所示位置不变,磁感应强度大小随时间线性变化。

为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率B t∆∆的大小应为A .0B ωπ B .02B ωπ C .04B ωπ D .02B ωπ4.如图所示,a 、b 是同一导线制成的粗细均匀的闭合导线环,两导线环的半径之比为4:5,其中仅在a 环所围区域内有方向垂直于纸面向里的匀强磁场。

当该磁场均匀变化时,a 、b 两环内的感应电流之比为( )A .1:1B .4:5C .5:4D .16:255.磁悬浮列车是高速低耗交通工具,如图(a )所示,它的驱动系统简化为如图(b )所示的物理模型。

高考物理复习法拉第电磁感应定律专项易错题及详细答案

高考物理复习法拉第电磁感应定律专项易错题及详细答案

高考物理复习法拉第电磁感应定律专项易错题及详细答案一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求: (1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J 【解析】 【详解】(1)由题图知,杆运动的最大速度为4/m v m s =,有22sin sin mB L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =,由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =. 【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.3.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=4.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。

线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =E I R = q It = l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR = 解得:43cd BlvU =3.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv 线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=4.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=5.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab 施加水平向右的力,使其从图示位置开始运动并穿过n 个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R 的电荷量q 。

(2)对导体棒ab 施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t 。

(3)对导体棒ab 施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab 进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab 保持该匀速运动穿过整个磁场区,求棒ab 通过第i 磁场区时的水平拉力Fi 和棒ab 通过整个磁场区过程中回路产生的电热Q 。

【答案】⑴;⑵;⑶【解析】试题分析:⑴电路中产生的感应电动势。

通过电阻的电荷量。

导体棒穿过1区过程。

解得(2)棒匀速运动的速度为v ,则设棒在前x0/2距离运动的时间为t1,则 由动量定律:F0 t 1-BqL=mv ;解得:设棒在后x0/2匀速运动的时间为t2,则所以棒通过区域1所用的总时间:(3)进入1区时拉力为,速度,则有。

解得;。

进入i 区时的拉力。

导体棒以后通过每区都以速度做匀速运动,由功能关系有解得。

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化6.如图所示,两彼此平行的金属导轨MN 、PQ 水平放置,左端与一光滑绝缘的曲面相切,右端接一水平放置的光滑“>”形金属框架NDQ ,∠NDQ=1200,ND 与DQ 的长度均为L ,MP 右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导轨MN 、PQ 电阻不计,金属棒与金属框架NDQ 单位长度的电阻值为r ,金属棒质量为m ,长度与MN 、PQ 之间的间距相同,与导轨MN 、PQ 的动摩擦因数为.现让金属棒从曲面上离水平面高h 的位置由静止释放,金属棒恰好能运动到NQ 边界处.(1)刚进入磁场时回路的电流强度i 0;(2)棒从MP 运动到NQ 所用的时间为t ,求导轨MN 、PQ 的长度s ;(3)棒到达NQ 后,施加一外力使棒以恒定的加速度a 继续向右运动,求此后回路中电功率的最大值p max .【答案】06(23)B ghi r=+;023(2)m gh umgt rS ++=();22max 4(23)P r =+ 【解析】【详解】解:(1)金属棒从光滑绝缘曲面向下运动,机械能守恒,设刚进入MP 边界时,速度大小为0v ,则:2012mgh mv =解得:0v =刚进入磁场时产生的感应电动势:10e Bdv =导轨宽度:d =回路电阻:(2R Lr =+联立可得:0i =(2)设长度为S ,从MP 到NQ 过程中的任一时刻,速度为i v ,在此后无穷小的t ∆时间内,根据动量定理:22()ii B d v umg t m v R∑+∆=∑∆i t umg t m v +∑∆=∑∆2i i v t umg t m v ∆+∑∆=∑∆200umgt mv +=得:S =(3)金属棒匀加速运动,v at =切割磁感线的有效长度为:021'2cos60)tan 602l L at =⋅-︒( 产生感应电动势:E Bl v '=2212(cos60)tan 60()2E B L at at L at t =⋅︒-︒⋅=-回路的瞬时电阻:20220121[2(cos60)tan 60(cos60)(2()2cos602R r L at L at r L at =︒-+︒-=+- 功率:222222222224222)()]24E L L P at Lt a t R a a ===-+=--+金属棒运动到D 点,所需的时间设为t ',则有:21122L at '=解得:L t a'=当2Lt t a '=<时, 22max 4(23)P r =+7.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上线圈的电阻r=1.0Ω,定值电阻、,电容器的电容C=30μF.在一段时间内,螺线管中磁场的磁感应强度B 按如图所示的规律变化.(1)求螺线管中产生的感应电动势.(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1)1.2V (2) (3)【解析】 【详解】(1)根据法拉第电磁感应定律得(2)根据闭合电路欧姆定律得电阻的电功率.(3)开关S 断开后,流经电阻的电荷量即为S 闭合时电容器所带的电荷量.电容器两端的电压流经电阻的电荷量. 故本题答案是:(1)1.2V (2) (3)【点睛】根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。

相关文档
最新文档