同步硝化反硝化
同步硝化反硝化SND
同步硝化反硝化SND根据传统生物脱氮理论,脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中;实际上,较早的时期,在一些没有明显的缺氧及厌氧段的活性污泥工艺中,人们就层多次观察到氮的非同化损失现象,在曝气系统中也曾多次观察到氮的消失。
在这些处理系统中,硝化和反硝化反应往往发生在同样的处理条件及同一处理空间内,因此,这些现象被称为同步硝化/反硝化(迪)。
一、同步硝化反硝化的优点对于各种处理工艺中出现的SND现象已有大量的报道,包括生物转盘、连续流反应器以及序批示SBR反应器等等。
与传统硝化-反硝化处理工艺比较,SND 具有以下的一些优点:1、能有效地保持反应器中pH稳定,减少或取消碱度的投加;2、减少传统反应器的容积,节省基建费用;3、对于仅由一个反应池组成的序批示反应器来讲,SND能够降低实现硝化一反硝化所需的时间;4、曝气量的节省,能够进一步降低能耗。
因此SND系统提供了今后降低投资并简化生物除氮技术的可能性。
二、同步硝化反硝化的机理1、宏观环境生物反应器中的溶解氧DO主要是通过曝气设备的充氧而获得,无论何种曝气装置都无法使反应内氧气在污水中充分混匀。
最终形成反应器内部不同区域缺氧和好氧段,分别为反硝化菌和硝化菌的作用提供了优势环境,造成了事实上硝化和反硝化作用的同时进行。
除了反应器不同空间上的溶氧不均外,反应器在不同时间点上的溶氧变化也可以导致同步硝化/反硝化现象的发生。
HyungseokYoo 研究了SBR反应器在曝气反应阶段,反应器内DO浓度历经减小后逐渐升高,并伴随的同步硝化/反硝化现象。
2、微环境理论缺氧微环境理论是目前已被普遍接受的一种机理,被认为是同步硝化/反硝化发生的主要原因之一。
这一理论的基本观点认为:在活性污泥的絮体中,从絮体表面至其内核的不同层次上,由于氧传递的限制原因,氧的浓度分布是不均匀的,微生物絮体外表面氧的浓度较高,内层浓度较低。
硝化反硝化
硝化反硝化一、硝化反应在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
硝化反应包括亚硝化和硝化两个步骤:二、反硝化反应在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。
反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。
反硝化反应方程式为:NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH-三、短程硝化反硝化短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。
短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。
影响因素:1、pH硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。
当pH降到5.5以下,硝化反应几乎停止。
反硝化细菌最适宜的pH值为7.0~7.5之间。
考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。
2、溶解氧(DO)硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。
反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。
反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑XXX用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。
3、温度生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。
亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。
硝化反硝化脱氮机理及影响因素研究 (1)
同步硝化反硝化脱氮机理及影响因素研究贾艳萍*贾心倩马姣(东北电力大学化学工程学院,吉林吉林132012)摘要:本文结合国内外研究,从宏观环境理论、微环境理论以及微生物学理论三方面阐明了同步硝化反硝化的脱氮机理,并对同步硝化反硝化的影响因素进行了综述,提出了该技术今后的研究方向。
关键词:同步硝化反硝化;脱氮机理;影响因素引言氮、磷等物质排入江河易导致水体的富营养化,传统脱氮理论认为,废水中氨氮必须经硝化反应和反硝化反应过程,才能够达到脱氮目的,这是因为硝化和反硝化过程中微生物生长的环境有很大差异,硝化反应需要有氧气存在的环境,而反硝化则需在厌氧或缺氧环境中进行。
近年来,国内外学者通过大量的试验对工程实践中遇到的现象和问题进行了研究,以传统的生物法脱氮理论作基础,发现硝化反应和反硝化反应可以在同一操作条件下同一反应器内进行,即同步硝化反硝化(简称SND),它使传统工艺中分离的硝化和反硝化两个过程合并在同一个反应器中,避免了亚硝酸盐氧化成硝酸盐及硝酸盐再还原成亚硝酸盐这两个多余的反应,从而可节省约25%的氧气和40%以上的有机碳,在反应过程中不需要添加碱度和外加碳源。
与传统工艺相同处理效果情况下减少了20%的反应池体积,需要更低的溶解氧浓度(1.0mg/L左右),无混合液的回流以及反硝化搅拌设施[1,2]。
因此,SND简化了生物脱氮工艺流程,减少了运行成本。
它突破了传统的生物脱氮理论,简化了脱氮反应发生的条件和顺序,强化了生物脱氮过程,使传统的生物脱氮理论发生了质的飞跃。
1 同步硝化反硝化作用机理SND的脱氮机理可以从宏观环境理论、微环境理论和微生物学理论三个方面加以解释1.1宏观环境理论一般来说,反应中所需的DO都是通过曝气来供给,不同的曝气装置会导致反应器内DO的分布状态不同。
但是在好氧条件下的活性污泥脱氮系统中,无论哪种曝气装置都无法保证反应器中的DO在废水中分布均匀,例如:在SBR反应器中,曝气并不能保证整个反应器中DO完全处于均匀的混合状态,缺氧区域的存在就为该反应器中成功实现SND提供了可能。
膜生物反应器中同步硝化反硝化动力学模型
⑥
20 Si eh E gg 0 8 c.T c. nn.
环 境 科 学
膜 生 物反 应 器中 同步硝 化 反硝 化动 力学模 型
蒋胜 韬 王 三 秀
( 江 台州 学 院 , 浙 台州 370 100)
摘
要
在 对硝化基础反应动力学和反硝化基础反应动力 学分 析的基础上 , 建立 了一体 式膜 生物反应器 中的同步硝化反硝
浓度。
第一作者简介: 蒋胜韬 (9 O ) 男 , 18 一 , 江西 吉安人 , 士, 师。研 硕 讲
究 方 向 : 染 治 理 。E m i: t @ 16 CB。 水污 — al s 0 2 .O j8
亚硝化 菌和 硝化 菌 的反 应速 率 常数 见 表 1 其 ,
68 24
1 同步硝化反硝化基础动力学
1 1 硝 化反应 基础动 力学 .
物, 依靠氨 氮 和 亚硝 酸盐 氮 的氧 化 获 得 能 量 生 长 , 需要 氧气作 为呼吸 的最 终 电子 受 体 ; 反硝 化 细菌 大
多为 异养性兼性 厌氧 微 生 物 , 缺 氧 和低 溶解 氧 的 在
生 物硝化 是 在两 组 自养 型硝 化 细菌 . 硝 酸 细 亚 菌和硝 酸细菌 的作 用 下 , 氨氮 转化 为 硝态 氮 的反 将
型与异养 型 细 菌 的 动力 学 模 型相 似 。亚 硝 酸 细 菌 和 N ; N, H 一 以及硝 酸 细菌 和 N ;N 的关 系可 以用 O .
Moo n d方程来表 示 :
~
才 能合 成 。从微 观环境 角度 而言 , 由于 M R中能够 B 存在 高浓度 的活性 污泥 , 限制 了氧 气 向污 泥 絮体 内
反硝化 A
同步硝化反硝化生物脱氮技术的研究进展
,
,
Du X i Zha n m i。 n’ ngYi g n
Gu n z o n v r iy Gu n z o 0 0 a g h u U i e st , a g h u 51 0 6; 3 o t i a I siu eofEn io m e t l in e , i ity of .S u h Ch n tt t v r n n a Sc e c s M n sr
【 要】 摘 同步硝化 反硝化 工艺 同传 统 的生物脱 氮 工艺相 比 ,可 以 节约氧和 碳源 的耗量 ,大大 降低 生产 运行 费用 ,具 有很 大 的发展前 途 。结 合 国 内外研 究成果 ,从 微环 境理 论 、宏观 环境 理论 和微 生物 学理论 方面 对 同步硝 化反 硝化 的产 生机 理进行 了 综述 ,并分 析 了同步 硝化 反硝化 的 实
a p csa a ig c r o o re , e r a i g u p ra r t g a d o ea i g c s s e t ss v n a b n s u c s d c e sn p e e ai n p r t o t n n Ac o d n o t e lt s r s a c n i g n S D i b t o e t n b o d t e c r i g t h ae t e e l h f dn so N n o h d m s i a d a r a , h i c m e h n s f rS c a im o ND sr v e d a da a y e n v r u s e t c u i g ma r e v r n e t n i r e v r n n h oy a l a i lg h o y Re l ai n wa e iwe n n lz d l a i sa p csm Id n c o n 】 m n dm c o n i me tte r swc 1 sb o o y t e r a i t o o a o z o c n i o s n f e c n a t r fS D tc n l g r n l z d l ep p r Ac o d n h ae t p l ai n f N D tc n lg , o eu s le r b e s o d t n di l n ig f co so N e h o o y we e a ay e n t a e . c r ig t t e lts p i t so i a n u h o a c o S e h o o y s m n o v dp o lm a i sp o p c s eea s lrf d r i r s e t w r loc a i e d t l K e wo d : i d n t c t n; smu tn o sntj c t n a d d n ti c to : m e h n s ; i fu n i g fc o y r s b0 e i ai r o i l e u i f ai n e i’ a i n a ri o lf i c a im n e cn tr l a
同步硝化反硝化原理
同步硝化反硝化原理同步硝化反硝化是一种重要的废水处理技术,它通过微生物的代谢作用将废水中的氨氮和硝酸盐氮转化为氮气释放到大气中,从而达到净化水质的目的。
这种技术在污水处理中得到了广泛的应用,下面我们就来详细了解一下同步硝化反硝化的原理。
首先,我们来介绍一下硝化反应和反硝化反应的基本过程。
硝化反应是指氨氮在微生物的作用下被氧化成亚硝酸盐,然后再被氧化成硝酸盐的过程。
而反硝化反应则是指硝酸盐被还原成氮气或氮氧化物的过程。
这两种反应是废水处理中常见的氮素转化过程。
在同步硝化反硝化中,硝化和反硝化两种反应同时进行。
这是通过控制氧气的供应来实现的。
在废水处理系统中,通常会设置好氧区和缺氧区,氨氮在好氧区被氧化成亚硝酸盐和硝酸盐,然后在缺氧区被还原成氮气或氮氧化物。
这样就实现了硝化和反硝化两种反应的同步进行。
同步硝化反硝化的原理是基于微生物的代谢特点。
在好氧条件下,氨氮被氧化成亚硝酸盐和硝酸盐,而在缺氧条件下,硝酸盐被还原成氮气或氮氧化物。
这种技术不仅能够高效地去除废水中的氨氮和硝酸盐氮,还能够减少化学药剂的使用,降低处理成本。
此外,同步硝化反硝化还具有一定的适用性。
它适用于有机负荷较高、氨氮负荷较高的废水处理系统,能够有效地提高氮素的去除效率。
而且,同步硝化反硝化技术还能够适应废水水质和流量的波动,具有一定的抗冲击负荷能力。
总的来说,同步硝化反硝化是一种高效、经济的废水处理技术,它通过控制好氧和缺氧条件下微生物的代谢过程,实现了氨氮和硝酸盐氮的同步转化,达到了净化水质的目的。
这种技术不仅能够高效去除氮污染物,还能够降低处理成本,具有一定的适用性和稳定性。
因此,在废水处理领域具有广阔的应用前景。
生活污水同步硝化反硝化脱氮研究
生活污水同步硝化反硝化脱氮研究一、本文概述随着城市化进程的加速和人口规模的不断扩大,生活污水的处理和脱氮问题日益凸显,成为环境保护领域的重要研究课题。
其中,同步硝化反硝化(SND)作为一种高效、节能的脱氮技术,受到了广泛关注。
本文旨在探讨生活污水同步硝化反硝化脱氮的研究现状、影响因素、技术优化以及实际应用前景,以期为生活污水的有效处理和氮素减排提供理论支持和实践指导。
本文将对同步硝化反硝化脱氮的基本原理进行介绍,阐述其在生活污水处理中的应用优势及限制因素。
通过综述国内外相关研究成果,分析影响同步硝化反硝化脱氮效果的关键因素,如微生物群落结构、环境条件、碳源种类等。
在此基础上,探讨如何通过技术优化和创新,提高同步硝化反硝化脱氮的效率和稳定性。
结合实际案例,分析同步硝化反硝化脱氮在生活污水处理中的实际应用效果,展望其未来的发展前景和研究方向。
通过本文的研究,旨在为生活污水的脱氮处理提供科学依据和技术支持,推动相关领域的技术进步和可持续发展。
二、同步硝化反硝化脱氮技术的研究进展随着环境保护意识的提高和污水处理技术的发展,同步硝化反硝化脱氮技术(SND)作为一种高效、节能的污水处理方法,受到了广泛关注。
近年来,关于SND技术的研究进展主要体现在反应机理、影响因素以及工艺优化等方面。
在反应机理方面,研究者们通过深入探究SND过程中微生物的群落结构、代谢途径以及电子传递链等关键要素,揭示了SND技术的生物学本质。
这些研究不仅为SND技术的应用提供了理论基础,也为后续的优化和改进提供了方向。
在影响因素方面,温度、pH值、溶解氧浓度、碳氮比等因素对SND过程的影响得到了广泛研究。
通过调控这些因素,可以有效地提高SND技术的脱氮效率。
例如,适当提高反应温度可以加速微生物的代谢活动,从而提高SND速率;而控制适当的溶解氧浓度则可以避免硝化和反硝化过程之间的竞争,实现两者的协同进行。
在工艺优化方面,研究者们通过改进反应器结构、优化曝气方式、引入外源碳源等手段,不断提高SND技术的处理效果和运行稳定性。
短程硝化反硝化与同步硝化反硝化
短程硝化反硝化与同步硝化反硝化短程硝化反硝化与同步硝化反硝化1. 简介短程硝化反硝化和同步硝化反硝化是两种常见的废水处理方法,它们在去除氨氮和硝酸盐方面具有独特的优势。
本文将详细介绍这两种技术的原理、应用领域,并对其效果和限制进行评估。
2. 短程硝化反硝化2.1 硝化反硝化原理短程硝化反硝化是一种将硝化和反硝化两个过程耦合起来,实现废水中氨氮的高效去除的技术。
在短程硝化反硝化过程中,废水中的氨氮首先经过硝化作用被氧化为硝态氮,然后立即发生反硝化作用将硝态氮还原为氮气排出。
2.2 应用领域短程硝化反硝化广泛应用于城市污水处理厂、工业废水处理厂等领域。
它在处理高浓度氨氮废水以及有限操作空间的情况下具有明显的优势。
由于其反应迅速、体积小、投资少的特点,使得短程硝化反硝化成为一种非常经济有效的废水处理方法。
2.3 效果和限制短程硝化反硝化的主要优势在于处理效果显著,能够快速去除废水中的氨氮,达到废水排放标准。
然而,由于该技术对废水中的氨氮浓度要求较高,处理低浓度氨氮废水时效果不明显。
短程硝化反硝化还对温度和pH值等环境因素较为敏感。
3. 同步硝化反硝化3.1 硝化反硝化原理同步硝化反硝化是指在同一处理单元中同时进行硝化和反硝化过程的一种废水处理技术。
该技术通过优化废水处理工艺,加强好氧和厌氧条件下微生物的协同作用,实现氨氮和硝态氮的同时去除。
3.2 应用领域同步硝化反硝化广泛应用于生活污水处理、工业废水处理以及农业废水处理等领域。
由于同步硝化反硝化能够同时去除氨氮和硝态氮,使得废水处理过程更加高效,减少了处理单元的占地面积,降低了处理成本,因而受到了广泛的关注和应用。
3.3 效果和限制同步硝化反硝化的主要优势在于处理效果稳定,同时可以实现氨氮和硝态氮的全面去除。
然而,该技术对微生物的选择性较高,因此在操作和维护时需要严格控制环境因素,以确保微生物的正常生长和活性。
同步硝化反硝化对废水中COD和其他有机物的降解效果较差,需要配合其他技术进行。
同步硝化反硝化研究进展
( . 江台州学 院 , 1浙 浙江 台州 37 0 100;
2 南 昌大学鄱 阳湖生态环境 与资源利用教育部 重点实验室 , . 江西
南 昌 30 3 ) 30 1
摘要: 同步硝化反硝化工 艺同传统的 生物脱氮 工艺相 比, 以节省碳 源, 少曝 气量 , 可 减 降低设备运行 费用等优
中 图分 类 号 : 7 1 1 X 0 . 文 献 标 识 码 : A
S u o r s n S m u t n o s Nirfc to a d De irfc to t dy Pr g e s o i la e u t i a in n n t i a i n i i
Abta tSm l n o s i f a o n e iict n( N src :i ut eu ti t na ddntf a o S D)h ssm b i sm r s ncmpr a nr c i i ri i a eov u e t i o ai o o i .
s n wi ta iin lme o o i g n r mo a .r i t o o l e u e e r y c ns mp in a d o t r d t a t d frn  ̄o e e v 1 h s me h d c u d r d c neg o u t n h o h o c nsr to o t r e p p rma e a s mma y o ure td me t n o eg td tt fsmu — o tucin c s . h a e d u r n c r n o si a d fr in su y sauso i ha c
点, 具有很大的发展 前途 。文章结合 国内外研究 , 从微 环境理论 、 生物 学理论和 中间产物理论方面对 同步硝 微 化反硝化 的产 生机理进行 了综述 , 并分析 了同步硝化反硝化 的实现条件和影响 因素 。
同步硝化反硝化和短程硝化反硝化
同步硝化反硝化和短程硝化反硝化随着人类对环境保护意识的提高,对水体生态系统的关注愈发增加。
其中,氮循环作为生态环境中的重要一环,也备受关注。
在氮循环中,“同步硝化反硝化”和“短程硝化反硝化”是两个重要的过程,对于水体的氮素转化和利用具有重要的作用。
以下将从深度和广度的角度进行全面评估,以便更好地了解这两个过程。
1. 同步硝化反硝化的概念同步硝化反硝化是指在同一微生物体内,氨氮直接转化为硝酸盐,然后直接再被还原为氮气的过程。
这一过程通常由单一微生物完成,也被称为全硝化或类全硝化反应。
在自然界中,同步硝化反硝化主要由厌氧异养细菌完成,这些细菌具有很强的氨氧化和硝化能力,能够将氨氮快速氧化为亚硝酸盐,然后在厌氧条件下迅速还原为氮气,从而将氨氮转化为无害的氮气释放到大气中。
2. 短程硝化反硝化的概念短程硝化反硝化指的是在很短的时间和空间内,氨氮被氧化为硝酸盐然后迅速还原为氮气的过程。
这一过程通常发生在水体底泥或水体微缝隙中,因此被称为短程硝化反硝化。
在水体中,短程硝化反硝化通常由微生物和底泥中的细菌完成,底泥中的微生物可以迅速氧化水体中的氨氮为硝酸盐,然后水体中的细菌则可以迅速还原硝酸盐为氮气,从而在水体中形成短程硝化反硝化过程。
3. 两者的联系和区别同步硝化反硝化和短程硝化反硝化虽然是两种不同的氮素转化过程,但它们之间也存在着联系和区别。
联系在于,两者都是对氨氮进行氧化和还原的过程,最终都将氨氮转化为无害的氮气释放到大气中。
而区别在于,同步硝化反硝化主要发生在水体中的微生物体内,而短程硝化反硝化则主要发生在水体底泥和微缝隙中,两者的位置和速率都存在较大差异。
在我们对同步硝化反硝化和短程硝化反硝化进行全面评估之后,可以发现两者在氮素转化和利用过程中都起着非常重要的作用,对于维护水体生态系统的健康具有重要意义。
总结回顾:通过全面的评估和深入的探讨,我们对同步硝化反硝化和短程硝化反硝化有了更深入的理解。
也了解到两者在水体氮素转化中的重要性和作用。
我用氧化沟实现了同步硝化反硝化!
我用氧化沟实现了同步硝化反硝化!一、基本状况工业园区污水处理厂某氧化沟设计处理量7500m³/d,实际水量仅2000m³/d左右,工艺采纳:高效水解酸化池+改良型奥贝尔氧化沟+深度处理。
酸化池池容分别为2000m³;氧化沟外、中、内池容比:3.6:1.5:1;氧化沟池容约6500m³,设计进水水质与生活污水类似,设计出水一级A标。
氧化沟结构详见图1。
图中红色部分为表曝机,共计6台表曝机,其中外沟4台,中沟、内沟共用两台。
外沟加装有4台推流器,对外沟表曝机的开停可实现外沟缺氧、好氧的转变。
因二沉池结构的缺陷,二沉池污泥回流需要开两台,每台水泵的流量为:160m³/h。
因近期进水冲击比较大,将深度处理的一部分出水回流至进水口来对进水进行稀释,回流量约为2000m³/d。
二、操作说明该厂在设计之初未考虑TN指标,氧化沟均采纳表曝机曝气与推流,在笔者的剧烈要求下,在外沟加装4台推流器,原有表曝机未拆除。
因企业偷排严峻,各项指标,氧化沟溶解氧下降较为明显,故而这段时间内加开外沟表曝机,正常状况下加开2台,严峻时加开4台。
由于外沟没有在线溶氧仪,同时现场没有便携式溶氧仪,因此无法对外沟溶解氧进行监测。
中沟的在线溶氧仪溶解氧保持在 6.0以上(可能是在线溶氧仪的问题,或者是这个水必需是这个溶解氧。
)出水各项指标方能满意排放要求。
整个系统在此阶段运行中未投加碳源。
污泥浓度在5.5-6.0g/L之间。
SVI在135-145之间。
在运行过程中,硝化液回流泵未开,仅开两台污泥回流泵,回流比约为200%(相对于氧化沟每天4000m³的进水量。
)管网来水2000m³/d,出水回流至调整池2000m³/d,酸化池及氧化沟进水4000m³/d,出水口排放量2000m³/d。
三、十日数据变化曲线说明:二沉池因悬浮物比较多,在经过深度处理后,出水COD在25-30之间徘徊。
同步硝化反硝化综述
同步硝化反硝化研究进展摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。
本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。
关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化Study Progress on Simultaneous Nitrificationand DenitrificationAbstract:Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND.Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal;Aerobic denitrification前言:根据传统生物脱氮理论,脱氮途径一般包括硝化和反硝化2个过程,硝化过程是氨通过亚硝酸盐向硝酸盐的自养型转换,主要是由化能无机营养菌—硝化细菌完成的,反硝化过呈程则被认为是在严格的厌氧条件下完成的。
同步硝化反硝化技术的提出及其影响因素分析
现状 , 并从微 环境 理论和微生物 理论 两个 方 面阐述 了同步 硝化反 硝化 作用 的机理 。论文 结合 目前 的研究 成 果综述 了同步硝化反硝 化影 响因素 的研究 。同时结 合 同步硝化 反硝 化技术 在实 际 中的应用 情况 , 出 目前 提
同步硝 化反硝化 尚待研究解 决的 问题 。 关键词 : 同步硝化 反硝化 ; 氮 ; 脱 机理 ; 影响 因素
n tiia in nd d nir fc to ir fc to a e t i a i n i
M A i 。 PENG i e g Ka j— n F
( p rme to vr n e t lEn ie rn De a t n fEn io m n a gn e ig,Anh ui Uniest fA rht cu e,Hee ,2 0 2 ) v r i o c ie t r y fi 3 0 2
微环 境理 论从 物理 学角度 解 释 同步 硝化 反硝
化, 这是 目前 被 普遍 接 受 的一 种 观点 。在活 性 污
泥 和生物 膜 内部 的微 环境 中存 在着 多种 物质传 递
的变 化 , 于 同步硝 化反 硝化来 说 , 对 主要 是 由于溶
解氧 的扩 散作 用 受 到 限制 , 而 在 微 生 物 絮体 内 从
Ab ta tTh a e n r d c san w fiin e h o o yo i u tn o sntiia in a dd ntiia sr c : ep p rito u e e efce tt c n lg fsm la e u i fc to n e irf — r c
中 图分 类 号 : 0 X7 3 文献标识码 : A 文 章 编 号 :0 64 4 (0 0 0 —6—5 1 0 —50 2 1 )40 70
同步硝化反硝化
LOGO
同步硝化反硝化
引言
氮是造成水体富营养化和环境污染的重要污染物 质,控制排放污水中的氮、磷越来越受到重视,研 究具有高效脱氮除磷功能的工艺越来越重要。 硝化两个独立过程实现的,由于对环境的要求不同, 两过程不能同时发生。 现行的生物脱氮工艺是把硝化和反硝化作为两个 独立的阶段分别安排在不同的反应器中(空间上) 或者利用间歇的好氧和厌氧条件(时间上)实现氮 的去除,往往造成系统复杂,能耗较大,且运行管理 不便。
具有一定大小尺寸(大于100μm)的颗粒污泥,特别是好氧 颗粒污泥,由于氧扩散的限制,其内部也能形成缺氧或厌氧 区,同样具有实现同步硝化反硝化的微观环境。 利用好氧颗粒污泥进行生物脱氮的优势在于:颗粒污泥具 有的良好活性以及沉降性能,可维持生物反应器内较高的 生物相浓度,从而提高生物脱氮的效率;与利用载体固定微 生物方法比较,好氧颗粒污泥天然的生物层分布确保了最 佳的生物反应效率,保证了高效的生物脱氮。近几年,借鉴 厌氧颗粒污泥培养的成功经验,利用水力筛分的方法,国内 外均有在SBR中培养出好氧颗粒污泥的报道。研究结果表 明:在SBR反应器中,NH3N、TN的去除率高达95%和60%,氨氮 负荷约18kgNH3N(m3·d)。但是,研究好氧颗粒污泥实现同 步硝化反硝化的报道还很少,目前尚处于探索阶段。
好氧反硝化细菌和异养硝化细菌的发现,打破了传统理论 认为的硝化反应只能由自养细菌完成和反硝化只能在厌氧 条件下进行的观点。Robertson还提出了好氧反硝化和异 养硝化的工作模型。同时,指出好氧反硝化和异养硝化的 反应速率随溶解氧浓度的增加而减小。
污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略
污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略引言:近年来,随着全球人口数量的不断增加和城市化进程的加速,污水处理厂的建设和运营成为了保障城市环境卫生的重要组成部分。
然而,污水处理过程中产生的氧化亚氮(N2O)作为一种强效温室气体,严重影响着大气环境质量和气候变化。
污水处理厂中,生物脱氮是一种常见的途径,通过提高污水中硝酸盐的浓度,利用硝化菌和反硝化菌将氮化合物转化为氮气(N2)从而减少有害氮元素的排放。
然而,生物脱氮过程中产生的N2O却会被释放到大气中,成为气候变化的重要驱动因素。
本文将探讨污水处理厂中两种生物脱氮方式(短程硝化反硝化和同步硝化反硝化)中N2O的释放量及控制策略。
一、污水短程硝化反硝化生物脱氮中N2O释放量及控制策略1. N2O的产生机理短程硝化反硝化是指在同一污水处理单元中,通过适当调控氧气和底物质量浓度,使硝化和反硝化反应在同一生物体系中进行。
在短程硝化反硝化过程中,硝酸盐通过硫酸盐处于氧化态和还原态之间的转化,从而先后氧化和反硝化的反应发生在同一个微环境中。
然而,短程硝化反硝化过程中的氧化底物和反硝化底物的不完全利用会导致N2O的产生。
2. N2O的释放量评估目前,常用的评估N2O释放量的方法有:质量平衡法、荧光光谱法和模型模拟法等。
质量平衡法通过测量进入和离开系统的N2O质量,计算N2O的释放量。
荧光光谱法则是通过N2O分子在特定波长下的荧光强度与其浓度之间的关系,来测定N2O的释放量。
模型模拟法则是通过建立硝化反硝化反应的动力学模型,考虑不同因素对N2O释放的影响,来预测N2O的释放量。
3. 控制策略研究控制N2O的释放量是实现生物脱氮效果和环境保护的重要方面。
目前,已有一些控制策略被提出,如调控DO(溶解氧)浓度、限制氧供、减少有机负荷等。
研究表明,通过适当调节DO浓度,可以达到降低N2O释放量的效果。
同步硝化-反硝化生物脱氮工艺研究进展1
同步硝化-反硝化生物脱氮工艺研究进展一、绪论随着氮素污染的加剧,除氮技术的研究和应用引起了人们的广泛关注。
废水脱氮技术可以分为物理化学方法和生物方法两大类。
物理化学方法通常只能去除氨氮,常用的物化脱氮方法包括折点加氮法、选择性离子交换法、空气吹脱法和催化氧化法等。
生物脱氮技术由于其投资及运转成本低,操作简单且无二次污染,废水达标排放可靠性强等优点,因此成为脱氮的最佳处理方式。
传统的生物脱氮处理过程,是首先在好氧条件下,亚硝酸菌将氨氮氧化为亚硝酸氮,而后硝酸菌将亚硝酸氮进一步氧化为硝酸氮。
随后在缺氧条件下,反硝化菌将硝酸氮或亚硝酸氮还原成气态氮或N2O。
虽然传统废水生物脱氮工艺在消除氮素污染方面起到了一定作用,但仍存在如下问题:(1)自养硝化菌在大量有机物存在的条件下,对氧气和营养物质的竞争不如好氧异养菌,从而导致异养菌占优势;反硝化菌以有机物作为电子供体,而有机物的存在影响硝化反应的速度;硝化反应与反硝化反应对DO浓度需要差别很大。
上述硝化菌和反硝化菌的不同要求导致了硝化和反硝化两个两个过程在时间和空间上难以统一。
(2)硝化菌群增殖速度慢且难以维持较高的生物浓度,特别是在低温冬季。
因此造成系统总水力停留时间较长,有机负荷较低,增加了基建投资和运行费用;(3)为维持较高生物浓度及获得良好的脱氮效果,必须同事进行污泥回流和硝化液回流,增加了动力消耗及运行费用;(4)硝化过程中产生的酸度需要投加碱中和,不仅增加了处理费用,而且还可能造成二次污染。
同步硝化反硝化(SND)生物脱氮技术的出现为在同一反应器内同时实现硝化、反硝化和除碳提供了可能,这一方法不仅可以克服传统生物脱氮存在的问题,而且还具有下列优点:能缩短脱氮历程;节省碳源;降低动力消耗;提高处理能力;简化系统的设计和操作等。
因而具有很大的潜力。
近年来国内外的不少实验和报道均证实在污水处理中可能存在许多以前未曾注意到的微生物过程,如厌氧氨氧化、好氧反硝化、异氧硝化及自养硝化细菌的反硝化等,为生物脱氮提供了全新的途径,也奠定了同步硝化反硝化(SND)生物脱氮技术的理论基础。
短程硝化反硝化与同步硝化反硝化
《短程硝化反硝化与同步硝化反硝化探究》1. 简介在生物地球化学循环中,氮的转化一直是一个备受关注的话题。
而氮的硝化和反硝化过程在土壤中起着非常重要的作用。
其中,短程硝化反硝化和同步硝化反硝化是两种不同的氮代谢过程,它们在土壤氮素循环中具有重要意义,对于提高农作物产量和减少氮素污染具有重要意义。
2. 短程硝化反硝化的概念和作用短程硝化反硝化是指在土壤中氮素的硝化和还原反应发生在短程内的过程。
这种过程对氮素的循环和转化有着重要影响。
在土壤中,当氨和铵等氮化合物被微生物氧化为亚硝酸盐和硝酸盐时,就发生了硝化过程。
而硝酸盐在一定的环境条件下会被还原为氮气放出,这就是反硝化过程。
短程硝化反硝化过程的存在,有助于减少土壤中氮素的损失,从而提高土壤的氮素利用效率。
3. 同步硝化反硝化的概念和作用同步硝化反硝化是指在土壤中氮素的硝化和还原反应同时进行的过程。
在这种氮素转化过程中,硝化和反硝化同时进行,能够更高效地利用土壤中的氮素,并且可以减少硝酸盐在土壤中积累的速度。
这种氮素转化方式对于农作物生长和土壤健康具有积极的意义。
4. 对短程硝化反硝化与同步硝化反硝化的理解和观点短程硝化反硝化和同步硝化反硝化是两种不同的氮素转化方式,它们对土壤氮素的循环和植物的氮素利用具有重要的影响。
短程硝化反硝化可以减少氮素的损失,提高土壤氮素的利用效率,但在一些情况下也可能导致硝酸盐在土壤中的积累。
而同步硝化反硝化则能够更加高效地利用土壤中的氮素,并且减少硝酸盐的积累。
在不同环境条件下,两种氮素转化方式都有其独特的作用和意义。
总结短程硝化反硝化和同步硝化反硝化是两种重要的氮素转化方式,它们对土壤氮素循环和植物生长具有重要的影响。
合理利用这些氮素转化方式,能够提高农作物的产量,减少氮素的损失,并且有利于保护土壤和环境。
加强对于这些氮素转化方式的研究和应用,对于推动可持续农业和环境保护具有深远的意义。
个人观点和理解就我个人的观点来看,在未来的农业生产中,需要更加重视土壤中的氮素管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步硝化反硝化的出路,究竟在何方?
古语云:殊途同归。
对于污水脱氮来说,亦是如此。
处理方法并不是只有一种。
方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。
生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。
反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。
方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。
同步硝化反硝化又称短程硝化反硝化。
是指在同一反应器内同步进行硝化反应和反硝化反应。
这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。
条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢?
根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势:
1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就
是减少能耗;
2.在反硝化阶段减少了40%的有机碳源,降低了运行费用;
3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右;
4.减少50%左右污泥;
5.反应器容积可以减少30%-40%左右;
6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持
反应容器内的PH。
(以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》)
既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。
也就是说,有利就有弊。
同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。
同步硝化反硝化的影响因素总结如下:
1.溶解氧(DO)
控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。
对于实现同步硝化反硝化来说,DO浓度不宜太高,一方面,过高的溶解氧具有较强的穿透力,就无法在污泥絮体以及生物膜内部形成缺氧区,第二方面,会使异养好氧菌活性提高,从而加速对有机物的消耗,最终造成反硝化因营养源不足而无法完成。
研究表明,溶解氧浓度在0.5mg/L时,硝化速率等于反硝化速率,
2.温度
生物硝化适宜的温度在20到35℃,一般温度低于15℃硝化反应速度降低,但低温对硝化产物以及两种硝酸菌的影响不同,12到14℃活性污泥中硝酸菌的活性受到严重抑制,出现NO2-N的积累。
当温度超
过30℃,又会出现NO2-N积累。
由此得到,硝酸菌和亚硝酸菌最适温度不同,可以通过控制温度,达到抑制硝化菌的目的。
但是众多研究得到的最适温度,却并不相同。
3.絮体结构
絮体结构是指活性污泥颗粒大小、密实程度、颗粒浓度等方面的特征,这些特征直接影响污泥内部好氧区以及厌氧区的比例大小,进而影响絮体内部物质的传递效果和维生物对溶解氧及底物获取的难易程度。
只有活性污泥颗粒大小,密实程度,和浓度大小适中时,才能保证溶解氧和有机碳源在絮体内部分布均匀,有利于实现同步硝化反硝化。
4.污泥龄
亚硝酸菌的世代时间比硝酸菌的世代时间短,而且增长速率更快。
氨氮的硝化速率比NO2-N的氧化速率快,因此,为了获得更好的NO2-N 的积累,有利于同步硝化反硝化的进行,可以缩短污泥停留时间。
控制SRT在硝酸菌和亚硝酸菌最小世代时间之间,可以提高同步硝化反硝化的可能性。
5.有机碳源
由于缺氧好氧环境一体化以及硝化反硝化同步进行,因此,有机碳源的量对反应来说至关重要。
碳氮比低,无法满足反硝化的需要,碳氮比过高,又会影响硝化作用,不利于硝化作用的进行。
研究表明:在同步硝化反硝化中,C:N:P最佳比例范围是(60-140):5:1。
使得氨氮降解率在99.5%的有机碳源浓度区间是400mg/L-1000mg/L。
6.PH值
硝化菌对PH很敏感,最适的PH范围是8.0-8.4,对反硝化最适的PH 是6.5-7.5,考虑硝化反硝化碱度消耗和产生的互补性,同步硝化反硝化的最适PH值应该在7.5附近。
此外,同步硝化反硝化还有以下方面需要做进一步的探究:
1、由于同步硝化反硝化形成原因复杂,需要对其机理进一步研究,尤其是微生物学研究。
另外,最好建立一个同步硝化反硝化的硝化和反硝化动力学模型。
2、由于絮凝体微氧区的形成往往会出现不稳定的现象,导致同步硝化反硝化处理效果出现波动。
应进一步研究污泥的培养方法,完善控制手段,提供工厂化生产方法。
3、结合以上影响因素,建立合适的工艺模型。