高等数学上册教案
高等数学教案word版
![高等数学教案word版](https://img.taocdn.com/s3/m/394fd42730126edb6f1aff00bed5b9f3f90f720d.png)
高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。
(2)值域:函数值的集合,即{yy?f(x),x?D}。
例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。
高等数学教案(含)
![高等数学教案(含)](https://img.taocdn.com/s3/m/3ed56df3f021dd36a32d7375a417866fb94ac06f.png)
高等数学教案一、教学目标1.知识与技能:(1)理解极限、导数、积分等基本概念,掌握它们的计算方法。
(2)熟练运用导数和积分解决实际问题,如最值问题、曲线拟合等。
(3)了解多元函数的极限、连续性、可导性,掌握偏导数、全微分、方向导数等概念。
(4)掌握多元函数的极值问题,了解条件极值和拉格朗日乘数法。
2.过程与方法:(1)通过实际问题,培养学生运用数学知识解决实际问题的能力。
(2)通过探究式学习,培养学生的创新精神和合作意识。
(3)通过数学软件的应用,提高学生的数学建模和计算能力。
3.情感、态度与价值观:(1)培养学生对数学的兴趣和热情,增强学生的自信心。
(2)培养学生严谨、求实的科学态度,提高学生的逻辑思维能力。
(3)培养学生团结协作的精神,增强学生的集体荣誉感。
二、教学内容1.极限与连续(1)数列极限的定义及性质(2)函数极限的定义及性质(3)无穷小量与无穷大量(4)极限的运算法则(5)夹逼定理与单调有界定理(6)连续函数的定义及性质2.导数与微分(1)导数的定义及几何意义(2)导数的运算法则(3)高阶导数(4)隐函数及参数方程求导(5)微分中值定理(6)泰勒公式3.不定积分与定积分(1)不定积分的概念及性质(2)基本积分公式(3)换元积分法与分部积分法(4)定积分的概念及性质(5)定积分的计算(6)定积分的应用4.多元函数微分学(1)多元函数的极限与连续(2)偏导数与全微分(3)复合函数求导法则(4)隐函数求导法则(5)方向导数与梯度(6)多元函数的极值问题5.多元函数积分学(1)二重积分的概念及性质(2)二重积分的计算(3)三重积分的概念及性质(4)三重积分的计算(5)线积分与面积分三、教学安排1.总学时:64学时2.教学进度安排:(1)极限与连续:12学时(2)导数与微分:18学时(3)不定积分与定积分:18学时(4)多元函数微分学:8学时(5)多元函数积分学:8学时四、教学方法1.讲授法:讲解基本概念、性质、定理等。
高三数学上册教案范例五篇
![高三数学上册教案范例五篇](https://img.taocdn.com/s3/m/67949068b207e87101f69e3143323968011cf4b3.png)
高三数学上册教案范例五篇1.高三数学上册教案范例一、复习内容平面向量的概念及运算法则二、复习重点向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。
三、具体教学过程1.学生准备课前预习回家做作业。
其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。
学生的准备可以从中选择一项,学有余力的同学可以多选。
2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。
出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。
答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。
归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。
并以书面的形式给出,可充分利用投影的方式展示给学生。
3.教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。
4.教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。
5.在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。
6.课尾教师进行点评、归纳、小结(由学生自己完成),并评选本课“主讲明星”与“评议”。
四、案例分析及其反思1.让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。
2.由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。
高数教学设计(共8篇)
![高数教学设计(共8篇)](https://img.taocdn.com/s3/m/1777b6e44128915f804d2b160b4e767f5acf8025.png)
高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。
一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。
第一学时:自变量趋于有限值时函数的极限。
第二学时:自变量趋于无穷大时函数的极限。
〔本次教案主要说明第一学时的内容。
〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。
来扩展同学们的知识面,并易于承受新内容。
三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。
让你给同学们积极考虑、敢于提出自己的想法。
2、让同学们掌握一些本节教学中所涉及的技能技巧。
3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。
传达出数学的人文价值。
四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。
2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。
五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。
然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。
最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。
2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。
〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。
〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。
如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。
解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。
高等数学(上册)教案11 高阶导数、微分及其应用
![高等数学(上册)教案11 高阶导数、微分及其应用](https://img.taocdn.com/s3/m/9d9f821502020740be1e9bd7.png)
第2章 导数与微分高阶导数 微分及其应用【教学目的】:1. 理解高阶导数的概念,会求函数的二阶高阶导数。
2. 理解微分的概念,了解微分的几何意义;3. 明确函数可微、可导、连续和有极限之间的关系;4. 了解微分公式和微分法则及微分形式的不变性;5. 掌握函数的微分运算。
【教学重点】:1. 微分的概念2. 函数的微分运算【教学难点】:1. 微分的概念;2. (一介)微分形式的不变性。
3. 函数的微分运算【教学时数】:2学时【教学过程】:2.4.1 高阶导数的定义2.4.2 高阶导数的求法注意 从理论上讲,求高阶导数时,只需要将函数()y f x =对x 逐次求导,并不需要新的方法与技巧.但在实际计算时,特别是在求n 阶导数时,每一次求导前后都需要整理式子,以便寻找规律,写出n 阶导数()n y .引例2.5.1 设一正方形的金属薄片受温度变化的影响,其边长从0x 变化到0x x +∆该薄片的面积改变了多少?(如图2-2).0x x ∆x ∆0x 20S x =0x x ∆2()x ∆图2-2分析 此薄片在温度变化前后的面积分别为200()S x x =,200()()S x x x x +∆=+∆,所以,受温度变化的影响,薄片面积的改变量为S ∆=0()S x x +∆0()S x -20()x x =+∆20x -202()x x x =∆+∆S ∆由两部分构成:第一部分02x x ∆是x ∆的线性函数(图中斜线部分的面积);第二部分是2()x ∆(图中有交叉斜线的小正方形的面积).当0x ∆→时,第二部分是一个比x ∆高阶的无穷小,即()2()(0)x o x x ∆=∆∆→.由此可见,如果边长的改变很微小,即x ∆很小时,面积的改变量S ∆可近似地用第一部分02x x ∆来代替,而且x ∆越小,近似程度也越好,即S ∆≈02x x ∆2.5.1函数的微分1.微分的定义定义 设函数)(x f y =在点0x 的某邻域0()U x 内有定义,x x ∆+00()U x ∈,如果函数在点0x 处的增量)()(00x f x x f y -∆+=∆可表示为),(x x A y ∆+∆=∆ (1)其中A 是不依赖于x ∆的常数,当0x ∆→时, )(x o ∆是比x ∆高阶的无穷小,则称函数)(x f y =在点0x 处是可微的,并称x A ∆为函数)(x f y =在点0x 处相应于自变量增量x ∆的微分,记作,dy 即x x dy A x ==∆. 2.可微与可导的关系定理1 函数)(x f y =在点0x 处可微的充分必要条件是函数)(x f y =在点0x 处可导,并且当函数)(x f y =在点0x 处可微时,有x x f dy ∆=)(0'.注意:(ⅰ)可导⇔可微⇒连续⇒极限存在.(ⅱ)求微分公式:.)(0'x x f dy ∆=微分有两个特性:(ⅰ)当0()0f x '≠时,点0x 处的微分00()x x dy f x x ='=∆是x ∆的线性函数. (ⅱ)当0()0f x '≠时, y dy ∆≈.3.函数的微分函数)(x f y =在区间(,)a b 内每一点处都可微,则称函数()f x 是(,)a b 内的可微函数.函数()f x 在(,)a b 内任意一点x 处的微分就称为函数的微分,记作)(x df dy 或,即有x x f dy ∆=)(' (4)通常把自变量x 的增量称为自变量的微分,记为dx ,即dx x =∆.于是,函数的微分又可以记为'()dy f x dx = (5) 从而有 ()dy f x dx'=, 即函数的微分dy 与自变量的微分dx 之商就等于函数的导数,因此,导数也称为“微商”.以前我们把dy dx看作是导数的整体记号,现在也可以把它分离或看作一个分式.4.微分的几何意义对于可微函数)(x f y =而言,当y ∆是曲线)(x f y =上的点的纵坐标的增量时,dy 就是曲线的切线上点的纵坐标的相应增量.当||x ∆很小时,||||x dy y ∆-∆比小得多.因此在点),(00y x M 的邻近,可以用切线段来近似代替曲线段(即以直代曲).2.5.2 微分的运算法则根据微分的表达式'()dy f x dx =、导数基本公式和导数运算法则,可以相应地建立一套微分基本公式和微分运算法则.1.微分基本公式2.微分运算法则设)(),(x v v x u u ==都可微,则(1)dv du v u d ±=±)(;(2)vdu udv uv d +=)(;(3))(;)(为常数C Cdu Cu d =;(4)2v udv vdu v u d -=⎪⎭⎫ ⎝⎛. 注意 法则(1)和(2)可以推广到有限个函数的情形.3.复合函数的微分法则设)()(x u u f y ϕ==及都可导,则复合函数)]([x f y ϕ=的导数为()()()dy f x x dxϕϕ''=⋅, 所以复合函数的微分为 ()()()dy f x x dx dx ϕϕ''=⋅ 由于()()()f x f u ϕ''=,'(),x dx du ϕ=所以复合函数)]([x f y ϕ=的微分也可以写成du u f dy )('=.由此可见,无论u 是自变量还是另一个变量的可微函数,微分形式du u f dy )('=保持不变.这一性质称为(一阶)微分形式的不变性.这个性质扩充了微分基本公式的运用范围,特别是在积分法中有很重要的应用. 例3 求函数)1ln(x e y +=的微分.dy解 解法一 由微分的定义得:='=dx x f dy )(dx ee dx e e x xx x +='++1)1(11. 解法二 由一阶微分形式的不变性得:dx e e e d e e d dy x xx x x+=++=+=1)1(11)]1[ln(.【教学小节】:通过本节的学习,了解高阶导数概念和几个简单的n 介导数递推公式,掌握求函数二阶导数的方法。
高等数学上册教案
![高等数学上册教案](https://img.taocdn.com/s3/m/9ebad19dab00b52acfc789eb172ded630b1c9881.png)
高等数学上册教案一、引言1.1 课程背景高等数学是工科、理科以及部分经济管理科学专业的一门基础课程,它为学生提供了分析、解决实际问题的方法和工具,对于培养学生的逻辑思维能力、创新能力和实际应用能力具有重要意义。
1.2 课程目标通过本课程的学习,使学生掌握极限、导数、积分、级数等基本概念、性质和计算方法,学会运用这些知识解决实际问题,培养学生分析问题和解决问题的能力。
二、极限2.1 极限的概念2.1.1 极限的定义2.1.2 极限的基本性质2.1.3 极限的存在性定理2.2 极限的计算2.2.1 函数的极限2.2.2 无穷小与无穷大2.2.3 极限的运算法则2.2.4 极限的夹逼定理与单调有界定理2.3 无穷小比较2.3.1 无穷小的大小比较2.3.2 无穷小比较的应用3.1 导数的概念3.1.1 导数的定义3.1.2 导数的几何意义3.1.3 导数的物理意义3.2 导数的计算3.2.1 基本导数公式3.2.2 导数的运算法则3.2.3 高阶导数3.2.4 隐函数求导与参数方程求导3.3 导数的应用3.3.1 函数的单调性3.3.2 函数的极值3.3.3 函数的最大值与最小值3.3.4 曲线的凹凸性与拐点四、微分4.1 微分的概念4.1.1 微分的定义4.1.2 微分的运算法则4.2 微分在近似计算中的应用4.2.1 微分法的原理4.2.2 微分法在近似计算中的应用5.1 积分的基本概念5.1.1 积分的定义5.1.2 积分的性质5.2 积分的计算5.2.1 基本积分公式5.2.2 换元积分法5.2.3 分部积分法5.2.4 反常积分5.3 积分的应用5.3.1 面积的计算5.3.2 体积的计算5.3.3 质心、转动惯量等问题的求解六、级数6.1 级数的基本概念6.1.1 级数的定义6.1.2 级数收敛的定义6.1.3 级数收敛性的判断方法6.2 幂级数6.2.1 幂级数的概念6.2.2 幂级数的收敛半径6.2.3 幂级数的展开与应用6.3 泰勒级数与泰勒公式6.3.1 泰勒级数的概念6.3.2 泰勒公式的定义与性质6.3.3 泰勒公式在实际问题中的应用七、常微分方程7.1 微分方程的基本概念7.1.1 微分方程的定义7.1.2 微分方程的解法7.1.3 微分方程的解的存在性定理7.2 一阶微分方程7.2.1 线性一阶微分方程7.2.2 非线性一阶微分方程7.2.3 一阶微分方程的解法与应用7.3 高阶微分方程7.3.1 线性高阶微分方程7.3.2 非线性高阶微分方程7.3.3 高阶微分方程的解法与应用八、线性代数8.1 矩阵的基本概念8.1.1 矩阵的定义与运算8.1.2 矩阵的性质与分类8.1.3 矩阵的特殊矩阵与矩阵运算8.2 线性方程组8.2.1 线性方程组的定义8.2.2 高斯消元法8.2.3 克莱姆法则8.3 向量空间与线性变换8.3.1 向量空间的基本概念8.3.2 线性变换的定义与性质8.3.3 线性变换的应用九、概率论与数理统计9.1 概率论基本概念9.1.1 随机试验与样本空间9.1.2 事件与概率9.1.3 条件概率与独立性9.2 离散型随机变量9.2.1 离散型随机变量的定义9.2.2 离散型随机变量的分布律9.2.3 离散型随机变量的期望与方差9.3 连续型随机变量9.3.1 连续型随机变量的定义9.3.2 连续型随机变量的概率密度9.3.3 连续型随机变量的期望与方差9.4 数理统计基本概念9.4.1 统计量与抽样分布9.4.2 估计理论9.4.3 假设检验十、复变函数10.1 复数的基本概念10.1.1 复数的定义与运算10.1.2 复数的性质与分类10.2 复变函数的基本概念10.2.1 复变函数的定义与运算10.2.2 复变函数的性质与分类10.3 复变函数的积分10.3.1 复变函数积分的定义10.3.2 复变函数积分的计算方法10.3.3 复变函数积分的应用10.4 复变函数的级数10.4.1 复变函数级数的基本概念10.4.2 复变函数级数的收敛性10.4.3 复变函数级数的应用重点解析一、极限:重点在于理解极限的概念、极限的性质和极限的存在性定理。
《高等数学》标准教案
![《高等数学》标准教案](https://img.taocdn.com/s3/m/3a89453cae1ffc4ffe4733687e21af45b207fe58.png)
《高等数学》标准教案第一章:函数与极限1.1 函数的概念与性质教学目标:了解函数的定义,掌握函数的性质及常见函数类型。
教学内容:函数的定义,函数的单调性、奇偶性、周期性。
教学方法:通过实例讲解,引导学生理解函数的概念,运用性质进行分析。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质及求解方法。
教学内容:极限的定义,极限的性质,无穷小与无穷大,极限的求解方法。
教学方法:通过具体例子,引导学生理解极限的概念,运用性质及方法求解极限。
第二章:微积分基本概念2.1 导数与微分教学目标:理解导数的定义,掌握基本导数公式及微分方法。
教学内容:导数的定义,基本导数公式,微分的方法及应用。
教学方法:通过实际例子,引导学生理解导数的概念,运用公式及方法进行微分。
2.2 积分与微分方程教学目标:理解积分的概念,掌握基本积分公式及解微分方程的方法。
教学内容:积分的定义,基本积分公式,微分方程的解法。
教学方法:通过具体例子,引导学生理解积分的概念,运用公式及方法解微分方程。
第三章:多元函数微分学3.1 多元函数的概念与性质教学目标:了解多元函数的定义,掌握多元函数的性质及常见类型。
教学内容:多元函数的定义,多元函数的性质,常见多元函数类型。
教学方法:通过实例讲解,引导学生理解多元函数的概念,运用性质进行分析。
3.2 多元函数的求导法则教学目标:理解多元函数求导法则,掌握多元函数的求导方法。
教学内容:多元函数的求导法则,多元函数的求导方法。
教学方法:通过具体例子,引导学生理解多元函数求导法则,运用方法进行求导。
第四章:重积分与曲线积分4.1 二重积分及其应用教学目标:理解二重积分的定义,掌握二重积分的计算方法及应用。
教学内容:二重积分的定义,二重积分的计算方法,二重积分在几何及物理中的应用。
教学方法:通过具体例子,引导学生理解二重积分的概念,运用计算方法进行计算。
4.2 曲线积分的概念与应用教学目标:理解曲线积分的定义,掌握曲线积分的计算方法及应用。
《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)
![《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)](https://img.taocdn.com/s3/m/1b76586a69eae009581becad.png)
《高等数学(上)》(higher mathematics(1))教学大纲(《高等数学(上)》(高等数学(1))教学大纲)《高等数学(上)》(高等数学(1))教学大纲一课程编号::040401。
二课程类型:必修课。
课程学时:80 / 5学分学时适用专业:除信科、强化班外的理、工科各专业先修课程:初等数学三。
课程性质与任务高等数学是我校理工科各专业的一门重要基础课理论课程,是各专业学生一门必修的重要课程。
通过本课程的学习,使学生系统地获得一元函数微积分等基本知识和基本理论;重点介绍极限、导数、积分(不定积分、定积分),并注重培养学生熟练的运算能力和较强的抽象思维能力﹑逻辑推理能力﹑几何直观和空间想象能力,从而使学生学会利用数学知识去分析和解决一些几何﹑力学和物理等方面的实际问题,为学习后续课程和进一步扩大数学知识奠定必要的数学基础。
四。
教学主要内容及学时分配序号主要内容学时一函数、极限与连续十八二导数与微分十五三中值定理及导数的应用十五四不定积分十二五定积分十六定积分的应用八五。
基本要求和基本内容(一)函数与极限1、理解一元函数、反函数、复合函数的定义;2、了解函数的表示和函数的简单性态--有界性、单调性、奇偶性、周期性;3、熟悉基本初等函数与初等函数(包含其定义区间、简单性态和图形);4、理解数列极限的概念(对定义不作过高要求);5、熟悉收敛数列的性质-有界性、唯一性;6、了解数列极限的存在准则-单调有界准则、夹逼准则;7、理解函数的极限的定义(包括当和时,函数极限的定义及左、右极限的定义)8、了解函数极限的性质--唯一性、保号性、局部有界性;9、熟练掌握极限的四则运算法则(包括数列极限与函数极限)10、掌握两个重要极限:11、熟悉无穷小量的概念及其运算性质、无穷小量的比较;12、了解无穷大量的概念及其与无穷小量的关系;13、函数极限与无穷小量的关系;14、理解函数的连续性的概念、了解函数的间断点的分类;15、熟悉连续函数的和、差、积、商及复合函数的连续性;16、了解初等函数的连续性,掌握闭区间上连续函数的性质。
高三数学上册教案5篇
![高三数学上册教案5篇](https://img.taocdn.com/s3/m/3bdf771a492fb4daa58da0116c175f0e7cd119ee.png)
高三数学上册教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高三数学上册教案5篇本店铺整理的《高三数学上册教案5篇》希望能够帮助到大家。
大学高数第一章教案
![大学高数第一章教案](https://img.taocdn.com/s3/m/fce936d9e43a580216fc700abb68a98270feac1c.png)
一、教学目标1. 知识目标:(1)掌握函数、极限与连续的基本概念;(2)熟悉一元函数微分学的相关概念和计算方法;(3)了解一元函数积分学的基本概念和计算方法。
2. 能力目标:(1)培养学生运用数学知识解决实际问题的能力;(2)提高学生的逻辑思维和抽象思维能力;(3)培养学生严谨的数学素养。
3. 情感目标:(1)激发学生对数学学习的兴趣和热情;(2)培养学生的团队合作精神;(3)树立学生克服困难的信心。
二、教学内容1. 函数、极限与连续(1)函数的定义、性质和图像;(2)极限的概念和运算法则;(3)连续函数的定义和性质。
2. 一元函数微分学(1)导数的定义、性质和运算法则;(2)求导法则的应用;(3)微分的应用。
3. 一元函数积分学(1)定积分的定义、性质和计算方法;(2)不定积分的定义、性质和计算方法;(3)积分的应用。
三、教学过程1. 导入新课(1)通过实际例子,引导学生回顾函数、极限与连续的相关知识;(2)介绍本章学习的重要性和必要性。
2. 讲授新课(1)函数、极限与连续- 讲解函数的定义、性质和图像,结合实例进行说明;- 介绍极限的概念和运算法则,通过实例让学生理解极限的求法;- 讲解连续函数的定义和性质,让学生了解连续函数的特点。
(2)一元函数微分学- 讲解导数的定义、性质和运算法则,通过实例让学生掌握求导方法;- 介绍求导法则的应用,让学生能够灵活运用求导法则;- 讲解微分的应用,让学生了解微分在实际问题中的应用。
(3)一元函数积分学- 讲解定积分的定义、性质和计算方法,通过实例让学生掌握定积分的计算;- 介绍不定积分的定义、性质和计算方法,让学生能够求出不定积分;- 讲解积分的应用,让学生了解积分在实际问题中的应用。
3. 课堂练习(1)布置课堂练习题,让学生巩固所学知识;(2)指导学生解题,及时解答学生提出的问题。
4. 课堂小结(1)总结本章所学内容,让学生回顾重点知识;(2)强调学习方法,提高学生的自学能力。
(完整word版)高等数学教案
![(完整word版)高等数学教案](https://img.taocdn.com/s3/m/fde75a4f5fbfc77da269b197.png)
高等数学教案教 学 过 程§3 函数的极限一、函数的极限1.自变量趋于有限值时函数的极限定义:如果当x 无限接近于xo , 函数f(x)的值无限接近于常数A , 则称当x 趋于x0 时, f(x)以A 为极限. 记作 0lim x x →f(x)A 或f(x)→A(当x →0x ).定义的简单表述:A x f x x =→)(lim 0⇔∀ε>0, ∃δ>0, 当0<|x -x0|<δ时, |f(x)-A|<ε .2. 单侧极限:若当x →x0- 时, f(x)无限接近于某常数A , 则常数A 叫做函数f(x)当x →x0时的左极限, 记为A x f x x =-→)(lim 0或f(0x -)=A ;若当x →x0+ 时, f(x)无限接近于某常数A , 则常数A 叫做函数f(x)当x →x0时的右极限, 记为A x f x x =+→)(lim 0或f(0x +)=A .3.自变量趋于无穷大时函数的极限设f(x)当|x|大于某一正数时有定义. 如果存在常数A , 对于任意给定的正数ε, 总存在着正数X , 使得当x 满足不等式|x|>X 时, 对应的函数数值f(x)都满足不等式|f(x)-A|<ε,则常数A 叫做函数f(x)当x →∞时的极限, 记为A x f x =∞→)(lim 或f(x)→A(x →∞). A x f x =∞→)(lim ⇔∀ε >0, ∃X >0, 当|x|>X 时, 有|f(x)-A|<ε .类似地可定义A x f x =-∞→)(lim 和A x f x =+∞→)(lim .结论:A x f x =∞→)(lim ⇔A x f x =-∞→)(lim 且A x f x =+∞→)(lim .y y =x -1 -1 1 y =x +1 xO教 学 过 程§4 无穷大与无穷小.无穷大与无穷小1. 无穷小定义:如果函数f(x)当x →x0(或x →∞)时的极限为零, 那么称函数f(x)为当x →x0(或x →∞)时的无穷小.特别地, 以零为极限的数列{xn}称为n →∞时的无穷小.例如,因为01lim =∞→x x , 所以函数x 1为当x →∞时的无穷小.因为0)1(lim 1=-→x x , 所以函数为x -1当x →1时的无穷小.因为011lim =+∞→n n , 所以数列{11+n }为当n →∞时的无穷小.讨论: 很小很小的数是否是无穷小?0是否为无穷小?提示: 无穷小是这样的函数, 在x →x0(或x →∞)的过程中, 极限为零. 很小很小的数只要它不是零, 作为常数函数在自变量的任何变化过程中, 其极限就是这个常数本身, 不会为零.无穷小与函数极限的关系:定理1 在自变量的同一变化过程x →x0(或x →∞)中, 函数f(x)具有极限A 的充分必要条件是f(x)=A +α, 其中α是无穷小.证明: 设Ax f x x =→)(lim 0, ∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ时, 有|f(x)-A|< .令α=f(x)-A , 则α是x →x0时的无穷小, 且f(x)=A +α .这就证明了f(x)等于它的极限A 与一个无穷小α之和.反之, 设f(x)=A +α , 其中A 是常数, α是x →x0时的无穷小, 于是|f(x)-A|=|α|.因α是x →x0时的无穷小, ∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有|α|< 或|f(x)-A|这就证明了A 是f(x) 当 x →x0时的极限.简要证明: 令α=f(x)-A , 则|f(x)-A|=|α|.如果∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有f(x)-A|,就有|α|< ; 反之如果∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有|α|<,就有f(x)-A| .这就证明了如果A 是f(x) 当 x →x0时的极限, 则α是x →x0时的无穷小; 如果α是x →x0时的无穷小, 则A 是f(x) 当 x →x0时的极限.类似地可证明x →∞时的情形. 例如, 因为333212121x x x +=+, 而021lim 3=∞→x x , 所以2121lim 33=+∞→x x x . 定理2 有限个无穷小的和也是无穷小定理3 有界函数与无穷小的乘积是无穷小 2. 无穷大定义:如果当x →x0(或x →∞)时, 对应的函数值的绝对值|f(x)|无限增大, 就称函数 f(x)为当x →x0(或x →∞)时的无穷大. 记为∞=→)(lim 0x f x x(或∞=∞→)(lim x f x ).应注意的问题: 当x →x0(或x →∞)时为无穷大的函数f(x), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ).定理2 (无穷大与无穷小之间的关系):在自变量的同一变化过程中, 如果f(x)为无穷大, 则)(1x f 为无穷小; 反之, 如果f(x)为无穷小, 且f(x)≠0, 则)(1x f 为无穷大.简要证明: 如果0)(lim 0=→x f x x , 且f(x)≠0, 那么对于M 1=ε, ∃δ>0, 当0<|x -0x |<δ时,有M x f 1|)(|=<ε, 由于当0<|x -0x |<δ时, f(x)≠0, 从而M x f >|)(1|, 所以)(1x f 为x →x0时的无穷大.如果∞=→)(lim 0x f x x , 那么对于ε1=M , ∃δ>0,当0<|x -0x |<δ时,有ε1|)(|=>M x f , 即ε<|)(1|x f , 所以为x →x 时的无穷小.简要证明:如果f(x)→0(x →x0)且f(x)≠0, 则∀ε >0, ∃δ>0,当0<|x - x0|<δ时, 有|f(x)|<ε , 即, 所以f(x)→∞(x →x0). 如果f(x)→∞(x →x0), 则∀M >0, ∃δ>0,当0<|x - x0|<δ时, 有|f(x)|>M , 即, 所以f(x)→0(x →x0).教 学 过 程§5 极限运算法则一、极限运算法则定理1 如果lim f (x)=A , lim g (x)=B , 那么(1) lim [f (x)±g(x)] = lim f (x) ±lim g (x) =A ± B ; (2) lim f (x)⋅g(x) = lim f (x) ⋅ lim g (x) =A ⋅B ;(3)B Ax g x f x g x f ==)(lim )(lim )()(lim(B ≠0).证明(1): 因为lim f (x)=A , lim g (x)=B , 根据极限与无穷小的关系, 有f (x)=A +α,g (x)=B +β,其中α及β 为无穷小. 于是f (x) ±g (x)=(A +α) ± (B +β) =(A ± B) +(α± β),即f (x) ± g (x)可表示为常数(A ± B)与无穷小(α± β)之和. 因此lim [f (x) ± g (x)] =lim f (x) ± lim g (x) = A ± B .定理2 如果(x)≥(x), 而lim (x)=a , lim ψ(x)=b , 那么a ≥b . 推论1 如果lim f (x)存在, 而c 为常数, 则lim [c f (x)]=c lim f (x).推论2 如果lim f (x)存在, 而n 是正整数, 则lim [f (x)]n =[lim f (x)]n .例3. 求93lim 2 3--→x x x .教 学 过 程§6 极限存在准则·两个重要极限极限存在准则·两个重要极限 1. 夹逼准则准则I 如果数列{xn }、{yn}及{zn}满足下列条件:(1)yn ≤xn ≤zn(n 1, 2, 3, ⋅ ⋅ ⋅), (2)ay n n =∞→lim ,az n n =∞→lim ,那么数列{xn }的极限存在, 且ax n n =∞→lim .证明:因为a y n n =∞→lim , a z n n =∞→lim , 以根据数列极限的定义, ∀ε >0, ∃N 1>0, 当n >N 1时,有|y n -a |<ε ; 又∃N 2>0, 当n >N 2时, 有|z n -a |<ε . 现取N =max{N 1, N 2}, 则当 n >N 时, 有|y n -a |<ε , |z n -a |<ε同时成立, 即a -ε<y n <a +ε , a -ε<z n <a +ε ,同时成立. 又因yn ≤xn ≤zn , 所以当 n >N 时, 有a -ε<y n ≤x n ≤z n <a +ε ,即 |x n -a |<ε . 这就证明了ax n n =∞→lim .简要证明: 由条件(2), ∀ε >0, ∃N >0, 当n >N 时,有 |y n -a |<ε 及|z n -a |<ε , 即有 a -ε<y n <a +ε , a -ε<z n <a +ε , 由条件(1), 有a -ε<y n ≤x n ≤z n <a +ε , 即 |x n -a |<ε . 这就证明了a x n n =∞→lim .准则I '如果函数f(x)、g(x)及h(x)满足下列条件:(1) g(x)≤f(x)≤h(x);(2) lim g(x)=A , lim h(x)=A ; 那么lim f(x)存在, 且lim f(x)=A .第一重要极限:1sin lim 0=→xx x证明 首先注意到, 函数x xsin 对于一切x ≠0都有定义. 参看附图: 图中的圆为单位圆,BC ⊥OA , DA ⊥OA . 圆心角∠AOB x (0<x <2 π). 显然 sin x CB , x ⋂AB , tan x AD .因为S ∆AOB <S 扇形AOB <S ∆AOD ,所以21sin x <21x <21tan x ,即 sin x <x <tan x . 不等号各边都除以sin x , 就有x x x cos 1sin 1<<, 或 1sin cos <<x x x .注意此不等式当2 π<x <0时也成立. 而1cos lim 0=→x x , 根据准则I ', 1sin lim 0=→x x x .简要证明: 参看附图, 设圆心角∠AOBx (2 0π<<x ). 显然 BC < AB <AD , 因此 sin x < x < tan x ,从而 1sin cos <<x x x (此不等式当x <0时也成立).因为1cos lim 0=→x x , 根据准则I ', 1sin lim 0=→x x x .应注意的问题: 在极限)()(sin limx x αα中, 只要(x)是无穷小, 就有1)()(sin lim =x x αα.这是因为, 令u(x), 则u →0, 于是)()(sin limx x αα1sin lim 0==→u u u .1sin lim 0=→xx x1)()(sin lim=x x αα((x)→0)2. 单调有界收敛准则准则II 单调有界数列必有极限.如果数列{x n}满足条件x 1≤x 2≤x 3≤ ⋅ ⋅ ⋅ ≤x n ≤x n 1≤ ⋅ ⋅ ⋅,就称数列{x n}是单调增加的; 如果数列{x n}满足条件x 1≥x 2≥x 3≥ ⋅ ⋅ ⋅ ≥x n ≥x n 1≥ ⋅ ⋅ ⋅,就称数列{x n}是单调减少的. 单调增加和单调减少数列统称为单调数列. 如果数列{x n}满足条件x n ≤x n 1, n ∈N +,在第三节中曾证明: 收敛的数列一定有界. 但那时也曾指出: 有界的数列不一定收敛. 现在准则II 表明: 如果数列不仅有界, 并且是单调的, 那么这数列的极限必定存在, 也就是这数列一定收敛.O CADB 1 x准则II 的几何解释:单调增加数列的点只可能向右一个方向移动, 或者无限向右移动, 或者无限趋近于某一定点A , 而对有界数列只可能后者情况发生.根据准则II , 可以证明极限nn n )11(lim +∞→存在.设nn n x )11(+= 现证明数列{xn}是单调有界的.按牛顿二项公式, 有nn n n n n n n n n n n n n n n n n n x 1!)1( )1( 1!3)2)(1(1!2)1(1!11)11(32⋅+-⋅⋅⋅-+⋅⋅⋅+⋅--+⋅-+⋅+=+= )11( )21)(11(!1 )21)(11(!31)11(!2111n n n n n n n n --⋅⋅⋅--+⋅⋅⋅+--+-++=,)111( )121)(111(!1 )121)(111(!31)111(!21111+--⋅⋅⋅+-+-+⋅⋅⋅++-+-++-++=+n n n n n n n n x n )11( )121)(111()!1(1+-⋅⋅⋅+-+-++n n n n n .比较x n , x n +1的展开式, 可以看出除前两项外, x n 的每一项都小于x n +1的对应项, 并且x n +1还多了最后一项, 其值大于0, 因此 x n < x n +1 ,这就是说数列{xn}是单调有界的.这个数列同时还是有界的. 因为xn 的展开式中各项括号内的数用较大的数1代替, 得3213211211121 212111!1 !31!2111112<-=--+=+⋅⋅⋅++++<⋅⋅⋅++++<--n nn n n x第二重要极限:根据准则II , 数列{xn}必有极限. 这个极限我们用e 来表示. 即en n n =+∞→)11(lim .我们还可以证明ex x x =+∞→)11(lim . e 是个无理数, 它的值是e 2. 718281828459045⋅ ⋅ ⋅.指数函数y e x 以及对数函数y ln x 中的底e 就是这个常数. 在极限)(1)](1lim[x x αα+中, 只要(x)是无穷小, 就有e x x =+)(1)](1lim[αα.这是因为, 令)(1x u α=, 则u →∞, 于是)(1)](1lim[x x αα+e u u u =+=∞→)11(lim .e x x x =+∞→)11(lim , ex x =+)(1)](1lim[αα((x)→0).例3. 求xx x )11(lim -∞→.解: 令t x , 则x →∞时, t →∞. 于是x x x)11(lim -∞→tt t -∞→+=)11(lim e t t t 1)11(1lim=+=∞→.教 学 过 程§8 函数的连续性函数的连续性 1. 变量的增量:设变量u 从它的一个初值u1变到终值u2, 终值与初值的差u2u1就叫做变量u 的增量, 记作u , 即u u2u1.设函数y f(x)在点x0的某一个邻域内是有定义的. 当自变量x 在这邻域内从x0变到x0x 时, 函数y 相应地从f(x0)变到f(x0x), 因此函数y 的对应增量为y f(x0x) f(x0).2. 函数连续的定义设函数y f(x)在点x0 的某一个邻域内有定义, 如果当自变量的增量x x x0趋于零时, 对应的函数的增量y f(x0x) f(x0 )也趋于零, 即 0lim 0=∆→∆y x , 或)()(lim 00x f x f x x =→,那么就称函数y f(x)在点x0 处连续.注: ①0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x②设xx0+x , 则当x →0时, x →x0, 因此0lim 0=∆→∆y x ⇔0)]()([lim 00=-→x f x f x x ⇔)()(lim 00x f x f x x =→.函数连续的等价定义2:设函数y f(x)在点x0的某一个邻域内有定义, 如果对于任意给定义的正数 , 总存在着正数 , 使得对于适合不等式|x x0|< 的一切x , 对应的函数值f(x)都满足不等式|f(x)f(x0)|< ,那么就称函数y f(x)在点x0处连续.3. 左右连续性:如果)()(lim 00x f x f x x =-→, 则称y f(x)在点0x 处左连续.如果)()(lim 00x f x f x x =+→, 则称y f(x)在点0x 处右连续. 左右连续与连续的关系:函数y f(x)在点x0处连续⇔函数y f(x)在点x0处左连续且右连续. 函数在区间上的连续性:在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续.4. 连续函数举例:1. 如果f(x)是多项式函数, 则函数f(x)在区间(∞, ∞)内是连续的. 这是因为, f(x)在(∞, ∞)内任意一点x0处有定义, 且)()(lim 00x P x P x x =→2. 函数x x f =)(在区间[0, ∞)内是连续的.3. 函数y sin x 在区间(∞, ∞)内是连续的. 证明: 设x 为区间(∞, ∞)内任意一点. 则有y =sin(x +x)-sin x)2cos(2sin2x x x ∆+∆=,因为当x →0时,y 是无穷小与有界函数的乘积,所以lim 0=∆→∆y x .这就证明了函数y sin x 在区间(∞, ∞)内任意一点x 都是连续的.4. 函数y cos x 在区间(∞, ∞)内是连续的.函数的间断点 1. 间断定义:设函数f(x)在点x0的某去心邻域内有定义. 在此前提下, 如果函数f(x)有下列三种情形之一:(1)在x0没有定义; (2)虽然在x0有定义, 但limx x →f(x)不存在;(3)虽然在x0有定义且0lim x x →f(x)存在, 但0limx x →f(x)≠f(x0);则函数f(x)在点x0为不连续, 而点x0称为函数f(x)的不连续点或间断点.例1. 正切函数ytan x 在2 π=x 处没有定义, 所以点2 π=x 是函数tan x 的间断点.因为∞=→x x tan lim 2π, 故称2 π=x 为函数tan x 的无穷间断点. 例2.函数x y 1sin =在点x 0没有定义, 所以点x 0是函数x 1sin 的间断点. 当x →0时, 函数值在1与1之间变动无限多次, 所以点x0称为函数x 1sin 的振荡间断点. 例3. 函数112--=x x y 在x1没有定义, 所以点x 1是函数的间断点. 因为11lim 21--→x x x 2)1(lim 1=+=→x x , 如果补充定义: 令x1时y 2, 则所给函数在x1成为连续. 所以x 1称为该函数的可去间断点.例4.设函数⎪⎩⎪⎨⎧=≠==1 211)(x x x x f y .因为1lim )(lim 11==→→x x f x x ,21)1(=f , )1()(lim 1f x f x ≠→, 所以x1是函数f(x)的间断点.如果改变函数f(x)在x 1处的定义:令f(1)1, 则函数f(x)在x 1 成为连续, 所以x 1也称为该函数的可去间断点.例5.设函数⎪⎩⎪⎨⎧>+=<-=0 1000 1)(x x x x x x f . 因为1)1(lim )(lim 00-=-=--→→x x f x x , 1)1(lim )(lim 00=+=++→→x x f x x)(lim )(lim 00x f x f x x ++→→≠,所以极限)(lim 0x f x →不存在, x =0是函数f(x)的间断点. 因函数f(x)的图形在x0处产生跳跃现象, 我们称x 0为函数f(x)的跳跃间断点.2. 间断点的分类:通常把间断点分成两类:如果x0是函数f(x)的间断点, 但左极限f(x00)及右极限f(x00)都存在, 那么x0称为函数f(x)的第一类间断点. 不是第一类间断点的任何间断点, 称为第二类间断点. 在第一类间断点中, 左、右极限相等者称为可去间断点, 不相等者称为跳跃间断点. 无穷间断点和振荡间断点显然是第二间断点.初等函数的连续性1. 连续函数的和、积及商的连续性 定理1设函数f(x)和g(x)在点x0连续, 则函数f(x)±g(x), f(x)⋅g(x),)()(x g x f (当0)(0≠x g 时)在点x0也连续.f(x)±g(x)连续性的证明:因为f(x)和g(x)在点x0连续, 所以它们在点x0有定义, 从而f(x)±g(x)在点x0也有定义, 再由连续性和极限运算法则, 有)()()(lim )(lim )]()([lim 000x g x f x g x f x g x f x x x x x x ±=±=±→→→.根据连续性的定义, f(x)±g(x)在点x0连续.例1. sin x 和cos x 都在区间(-∞, +∞)内连续,故由定理3知tan x 和cot x 在它们的定义域内是连续的.三角函数sin x , cos x , sec x , csc x , tan x , cot x 在其有定义的区间内都是连续的. 二、反函数与复合函数的连续性定理2 如果函数f(x)在区间Ix 上单调增加(或单调减少)且连续, 那么它的反函数x =f -1(y)也在对应的区间Iy ={y|y =f(x),x ∈Ix}上单调增加(或单调减少)且连续. 证明(略).例2. 由于y =sin x 在区间]2 ,2[ππ-上单调增加且连续, 所以它的反函数y =arcsin x在区间[-1, 1]上也是单调增加且连续的.同样,y =arccos x 在区间[-1, 1]上也是单调减少且连续; y =arctan x 在区间(-∞, +∞)内单调增加且连续;y =arccot x 在区间(-∞, +∞)内单调减少且连续.总之, 反三角函数arcsin x 、arccos x 、arctan x 、arccot x 在它们的定义域内都是连续的. 定理3 设函数y =f[g(x)]由函数y =f(u)与函数u =g(x)复合而成,gf D x U⊂)(0. 若)lim 0u x g x x =(→, 而函数y =f(u)在0u 连续, 则)()(lim )][lim 00u f u f x g f u u x x ==(→→.简要证明 要证∀ε >0, ∃δ>0, 当0<|x -x0|<δ 时, 有|f[g(x)]-f(u0)|<ε .因为f(u)在0u 连续, 所以∀ε >0, ∃η>0, 当|u -u0|<η 时, 有|f(u)-f(u0)|<ε .又g(x)→u0(x →x0), 所以对上述η>0, ∃δ>0, 当0<|x -x0|<δ 时, 有|g(x)-u0|<η. 从而 |f[g(x)]-f(u0)|<ε . (2)定理的结论也可写成)](lim [)]([lim 0x g f x g f x x x x →→=. 求复合函数f[g(x)]的极限时, 函数符号f 与极限号可以交换次序.)(lim )]([lim 0u f x u f u u x x →→=表明,在定理3的条件下, 如果作代换u =g(x),那么求)]([lim 0x g f x x →就转化为求)(lim 0u f u u →, 这里)(lim 00x g u x x →=.把定理5 中的x →x0换成x →∞, 可得类似的定理.例3. 求93lim23--→x x x .解93lim23--→x x x 93lim 23--=→x x x 61=.提示:932--=x x y 是由u y =与932--=x x u 复合而成的. 93lim 23--→x x x 61=, 函数u y =在点61=u 连续 =g(x0)定理4 设函数y =f[g(x)]由函数y =f(u)与函数u =g(x)复合而成, U(x0)⊂Df og . 若函数u =g(x)在点x0连续, 函数y =f(u)在点u0=g(x0)连续, 则复合函数y =f[(x)]在点x0也连续. 证明: 因为(x)在点x0连续, 所以limx x →(x)=(x0)=u0.又y =f(u)在点u =u0连续, 所以 0limx x →f[(x)]=f(u0)=f[(x0)].这就证明了复合函数f[(x)]在点x0连续.例4. 讨论函数x y 1sin =的连续性. 解: 函数x y 1sin =是由y =sin u 及x u 1=复合而成的. sin u 当-∞<u<+∞时是连续的,x 1当-∞<x<0和0<x<+∞时是连续的,根据定理4, 函数x 1sin 在无限区间(-∞, 0)和(0, +∞)内是连续的.2、初等函数的连续性在基本初等函数中, 我们已经证明了三角函数及反三角函数的它们的定义域内是连续的.我们指出, 指数函数ax (a>0, a ≠1)对于一切实数x 都有定义,且在区间(-∞, +∞)内是单调的和连续的, 它的值域为(0, +∞).由定理4, 对数函数log ax (a>0, a ≠1)作为指数函数ax 的反函数在区间(0, +∞)内单调且连续.幂函数y =x 的定义域随的值而异, 但无论为何值, 在区间(0, +∞)内幂函数总是有定义的.可以证明, 在区间(0, +∞)内幂函数是连续的. 事实上, 设x>0, 则y =x =xa a log μ, 因此, 幂函数x 可看作是由y =au , u =logax 复合而成的, 由此, 根据定理6, 它在(0, +∞)内是连续的.如果对于取各种不同值加以分别讨论, 可以证明幂函数在它的定义域内是连续的.结论: 基本初等函数在它们的定义域内都是连续的.最后, 根据初等函数的定义, 由基本初等函数的连续性以及本节有关定理可得下列重要结论:一切初等函数在其定义区间内都是连续的. 所谓定义区间, 就是包含在定义域内的区间.初等函数的连续性在求函数极限中的应用:如果f(x)是初等函数, 且x0是f(x)的定义区间内的点, 则limx x →f(x)=f(x0).例5求21lim x x -→解 初等函数f(x)=21x -在点00=x 是有定义的,所以 111lim 20==-→x x .例6求xx sin ln lim 2π→解 初等函数f(x)=ln sin x 在点2 0π=x 是有定义的, 所以 02 sin ln sin ln lim 2==→ππx x .例7. 求x x x 11lim 20-+→.解: x x x 11lim 20-+→)11()11)(11(lim 2220++++-+=→x x x x x02011lim 20==++=→x x x .例8. 求x x a x )1(log lim0+→.教 学 过 程§1 导数概念一、 导数概念 1. 引例直线运动的速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: S =f (t ),求动点在时刻t 0的速度. 考虑比值000)()(t t t f t f t t s s --=--,这个比值可认为是动点在时间间隔t =t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样:令t =t 0→0, 取比值0)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 00)()(lim 0t t t f t f v t t --=→,这时就把这个极限值v 称为动点在时刻t 0的速度.2.切线问题设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线.设曲线C 就是函数y f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000)()(tan x x x f x f x x y y --=--=ϕ, 其中为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存在, 设为k , 即 00)()(limx x x f x f k x x --=→存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k tan ,其中是切线MT 的倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线.二、导数的定义1. 函数在一点处的导数与导函数从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00)()(lim 0x x x f x f x x --→.令△x =x -x 0, 则△y =f (x 0+△x )-f (x 0)=f (x )-f (x 0), x →x 0相当于△x →0, 于是0)()(limx x x f x f x x --→成为xyx ∆∆→∆0lim 或xx f x x f x ∆-∆+→∆)()(lim 000.定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量△x (点x 0+△x 仍在该邻域内)时, 相应地函数y 取得增量△y =f (x 0+△x )-f (x 0); 如果△y 与△x 之比当△x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即xx f x x f xyx f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(0000,也可记为0|x x y =',0 x x dx dy =或0)(x x dx x df =. 函数f (x )在点x 0处可导有时也说成f (x )在点x 0具有导数或导数存在.导数的定义式也可取不同的形式, 常见的有hx f h x f x f h )()(lim )(0000-+='→, 000)()(lim )(0x x x f x f x f x x --='→.在实际中, 需要讨论各种具有不同意义的变量的变化“快慢”问题, 在数学上就是所谓函数的变化率问题. 导数概念就是函数变化率这一概念的精确描述.如果极限xx f x x f x ∆-∆+→∆)()(lim000不存在, 就说函数y =f (x )在点x 0处不可导.如果不可导的原因是由于∞=∆-∆+→∆xx f x x f x )()(lim000, 也往往说函数y =f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导, 这时, 对于任一x ∈I , 都对应着f (x )的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作 y ',)(x f ',dx dy , 或dxx df )(. 2. 导函数的定义式:xx f x x f y x ∆-∆+='→∆)()(limhx f h x f h )()(lim-+→. f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值. 左右导数: 所列极限存在, 则定义f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-;f (x )在0x 的右导数:hx f h x f x f h )()(lim )(0000-+='+→+.如果极限hx f h x f h )()(lim 000-+-→存在,则称此极限值为函数在x 0的左导数.如果极限hx f h x f h )()(lim 000-++→存在,则称此极限值为函数在x 0的右导数.导数与左右导数的关系:A x f =')(0⇔A x f x f ='='+-)()(00.三、求导数举例例1.求函数f (x )C (C 为常数)的导数.解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→hC C h . 即(C ) '=0.例2 求xx f 1)(=的导数解 hxh x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→2001)(1lim )(limx x h x x h x h h h h -=+-=+-=→→例3求x x f =)(的导数解 hx h x h x f h x f x f h h -+=-+='→→00lim )()(lim)( xx h x x h x h h h h 211lim )(lim 00=++=++=→→ 例4.求函数f (x )x n (n 为正整数)在x a 处的导数.解: f '(a )a x a f x f ax --=→)()(lima x a x n n a x --=→lim ax →=lim (x n1ax n2⋅ ⋅ ⋅a n 1)=na n 1.把以上结果中的a 换成x 得 f '(x )=nx n 1, 即 (x n )'=nx n 1. (C )'=0, 21)1(xx-=', xx 21)(=', 1)(-⋅='μμμx x .例5.求函数f (x )sin x 的导数.解: f '(x )hx f h x f h )()(lim-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0h h x h h +⋅=→ x h hh x h cos 22sin )2cos(lim 0=⋅+=→.即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x . 例6.求函数f (x )a x (a >0, a ≠1) 的导数.解: f '(x )h x f h x f h )()(lim0-+=→h a a x h x h -=+→0limh a a h h x 1lim 0-=→t a h =-1令)1(log lim 0t t a a t x +→ a a ea x a x ln log 1==.特别地有(e x )′=e x .例7.求函数f (x )log a x (a >0, a ≠1) 的导数.解: hx h x hx f h x f x f a a h h log )(log lim )()(lim )(0-+=-+='→→h xa h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ a x e x a ln 1log 1==.解:h xh x x f a ah log )(log lim )(0-+='→)1(log 1lim 0xh h a h +=→ h xa h x h x )1(log lim 10+=→ax e x a ln 1log 1==.即 ax x a ln 1)(log ='. :特殊地 xx 1)(ln ='.ax x a ln 1)(log ='xx 1)(ln ='.1.单侧导数:极限h x f h x f h )()(lim0-+→存在的充分必要条件是hx f h x f h )()(lim 0-+-→及h x f h x f h )()(lim 0-++→都存在且相等.f (x )在0x 处的左导数:hx f h x f x f h )()(lim )(00-+='-→-, f (x )在0x 处的右导数:hx f h x f x f h )()(lim )(00-+='+→+.2.导数与左右导数的关系:函数f (x )在点x 0处可导的充分必要条件是左导数左导数f '(x 0) 和右导数f '(x 0)都存在且相等.如果函数f (x )在开区间(a , b )内可导, 且右导数f '(a ) 和左导数f '(b )都存在, 就说f (x )有闭区间[a , b ]上可导. 例8.求函数f (x )x |在x 0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h hf h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h hf h f f h h ,因为f '(0)≠ f '(0), 所以函数f (x )|x |在x 0处不可导.四、导数的几何意义函数y =f (x )在点x 0处的导数f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即f '(x 0)=tan , 其中是切线的倾角.如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0. : 由直线的点斜式方程, 可知曲线y f (x )在点M (x 0, y 0)处的切线方程为 y -y 0=f '(x 0)(x -x 0).过切点M (x 0, y 0)且与切线垂直的直线叫做曲线y =f (x )在点M 处的法线如果f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为)()(1000x x x f y y -'-=-.例9. 求等边双曲线x y 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程.解: 21xy -=', 所求切线及法线的斜率分别为 4)1(2121-=-==x xk , 41112=-=k k .所求切线方程为)21(42--=-x y , 即4xy 40. 所求法线方程为)21(412-=-x y , 即2x8y150.例10. 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为 0212302323)()(0x x x x f x x =='='=. 于是所求切线的方程可设为 )(230000x x x x x y -=-.根据题目要求, 点(0, -4)在切线上, 因此 )0(2340000x x x x -=--,解之得x 0=4. 于是所求切线的方程为 )4(42344-=-x y , 即3x -y -4=0.五、函数的可导性与连续性的关系设函数yf (x )在点x 0 处可导, 即)(lim 00x f xy x '=∆∆→∆存在. 则00)(lim lim lim lim 00000=⋅'=∆⋅∆∆=∆⋅∆∆=∆→∆→∆→∆→∆x f x x yx xy y x x x x .这就是说, 函数y f (x )在点x 0 处是连续的. 所以, 如果函数y =f (x )在点x 处可导, 则函数在该点必连续.另一方面, 一个函数在某点连续却不一定在该点处可导.例7. 函数3)(x x f =在区间(∞, ∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大hf h f h )0()0(lim0-+→+∞=-=→h h h 0lim 30.x(u +v -w )'=u '+v '-w '.(uvw )'=[(uv )w]'=(uv )'w +(uv )w '=(u 'v +uv ')w +uvw '=u 'vw +uv 'w +uvw '.即 (uvw )'=u 'vw +uv 'w +uvw '.在法则(2)中, 如果v =C (C 为常数), 则有 (Cu )'=Cu '.例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-5x 2)'+3x )'-7)'= 2(x 3)'- 5x 2)'+ 3x )' =2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2.2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2(πf '.解: x x x x x f sin 43)2(sin )cos 4()()(23-='-'+'='π,443)2 (2-='ππf .例3.y =e x (sin x +cos x ), 求y '.解: y '=e x )'(sin x +cos x )+ e x (sin x +cos x )' = e x (sin x +cos x )+ e x (cos x -sin x ) =2e x cos x . 例4.y =tan x , 求y '.解: xx x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='='x xx x x 22222sec cos 1cos sin cos ==+=.即 (tan x )'=sec 2x . 例5.y =sec x , 求y '.解: xx x xx y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='xx2cos sin ==sec x tan x . 即 (sec x )'=sec x tan x .用类似方法, 还可求得余切函数及余割函数的导数公式: (cot x )'=-csc 2x ,(csc x )'=-csc x cot x .例8设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且 (a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有 ax aa a x y ya ln 1ln 1)(1)(log =='='.到目前为止, 所基本初等函数的导数我们都求出来了, 那么由基本初等函数构成的较复杂的初等函数的导数如可求呢?如函数lntan x 、3x e 、的导数怎样求?复合函数的求导法则定理3 如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为)()(x g u f dxdy'⋅'=或dx du du dy dx dy ⋅=.证明: 当u =g (x )在x 的某邻域内为常数时, y =f [(x )]也是常数, 此时导数为零,结论自然成立.当u =g (x )在x 的某邻域内不等于常数时, u ≠0, 此时有 xx g x x g x g x x g x g f x x g f x x g f x x g f xy ∆-∆+⋅-∆+-∆+=∆-∆+=∆∆)()()()()]([)]([)]([)]([xx g x x g u u f u u f ∆-∆+⋅∆-∆+=)()()()(,xx g x x g u u f u u f x y dx dy x u x ∆-∆+⋅∆-∆+=∆∆=→∆→∆→∆)()(lim )()(lim lim 000= f '(u )⋅g '(x ).简要证明x u u y x y dx dy x x ∆∆⋅∆∆=∆∆=→∆→∆00lim lim )()(lim lim 00x g u f xu u yx u ''=∆∆⋅∆∆=→∆→∆. 例9 3x e y =, 求dxdy.解 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdu du dy dx dy =⋅=⋅=. 例10 212sin xx y +=, 求dx dy.解 函数212sin x x y +=是由y =sin u , 212xx u +=复合而成的,因此 2222222212cos )1()1(2)1()2()1(2cos xx x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量, 例11.lnsin x , 求dxdy .解:)(sin sin 1)sin (ln '⋅='=x x x dx dyx x xcot cos sin 1=⋅=. 例12.3221x y -=, 求dxdy.解: )21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=.复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ),v =ψ(x ), 则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=. 例13.y =lncos(e x ), 求dxdy.解: ])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy)tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=.例14.x e y 1sin =, 求dxdy.解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=x x e x e e dx dy x x xxe x x 1cos 11sin2⋅⋅-=. 例15设x >0, 证明幂函数的导数公式 (x μ)'=μ x μ-1.解 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1.基本求导法则与导数公式 1.基本初等函数的导数:(1)(C )'=0,(2)(x )'= x -1, (3)(sin x )'=cos x , (4)(cos x )'=-sin x , (5)(tan x )'=sec 2x , (6)(cot x )'=-csc 2x ,(7)(sec x )'=sec x ⋅tan x , (8)(csc x )'=-csc x ⋅cot x , (9)(a x )'=a x ln a , (10)(e x )'=e x , (11) ax x a ln 1)(log =',(12) xx 1)(ln =',(13) 211)(arcsin x x -=', (14) 211)(arccos xx --='.(15) 211)(arctan xx +=',(16) 211)cot arc (xx +-='.2.函数的和、差、积、商的求导法则 设u =u (x ), v =v (x )都可导, 则 (1)(u ±v )'=u '±v ',(2)(C u )'=C u ', (3)(u v )'=u '⋅v +u ⋅v ',(4)2)(vv u v u vu '-'='. 反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f '='-. 或dydx dxdy1=.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为 dxdudu dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ). 例16. 求双曲正弦sh x 的导数.解因为)(21sh x x e e x --=, 所以x e e e e x x x x x ch )(21)(21)sh (=+='-='--,即 (sh x )'=ch x . 类似地, 有(ch x )'=sh x . 例17. 求双曲正切th x 的导数解因为x x x ch sh th =, 所以xx x x 222ch sh ch )(th -='x 2ch 1=.例18. 求反双曲正弦arsh x 的导数解 因为)1ln(arsh 2x x x ++=, 所以 22211)11(11)arsh (x x x x x x +=++⋅++='. 由)1ln(arch 2-+=x x x , 可得11)arch (2-='x x .由x x x -+=11ln 21arth , 可得211)arth (xx -='.类似地可得11)arch (2-='x x 211)arth (x x -='例19.y =sin nx ⋅sin n x (n 为常数), 求y '.解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .教 学 过 程§4 高阶导数一般地, 函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 我们把y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作 y ''、f ''(x )或22dxyd ,即 y ''=(y ')', f ''(x )=[f '(x )]',)(22dxdydx d dx y d =.相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , nn dxyd . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 如果函数f (x )在点x处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内必定具有一切低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数.y '称为一阶导数 y '' y ''' y (4) ⋅ ⋅ ⋅ y (n )都称为高阶导数例1.y ax +b , 求y ''. 解: y '=a , y ''=0.例2.s =sin t , 求s ''.解: s '=cos t , s ''=-sin t . 例3.证明: 函数22x x y -=满足关系式y3y ''+1=0.证明: 因为22212222x x xxx x y --=--=',22222222)1(2x x x x xx x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1yx x -=--=所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数. 解; y '=e x , y ''=e x , y '''=e x , y ( 4)=e x , 一般地, 可得y ( n )=e x , 即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数. 解: y =sin x ,)2sin(cos π+=='x x y ,)22sin()2 2sin()2cos(ππππ⋅+=++=+=''x x x y ,)23sin()2 2 2sin()2 2cos(ππππ⋅+=+⋅+=⋅+='''x x x y ,)24sin()2 3cos()4(ππ⋅+=⋅+=x x y ,一般地, 可得)2sin()(π⋅+=n x y n , 即)2sin()(sin )(π⋅+=n x x n .用类似方法, 可得)2cos()(cos )(π⋅+=n x x n .例6.求对函数ln(1+x )的n 阶导数解: y =ln(1+x ), y '=(1+x )1, y ''=-(1+x )2,y '''(-1)(-)(1-x )3, y (4)=(-1)(-2)(-3)(1+x )4, 一般地, 可得y (n )=(-1)(-2)⋅ ⋅ ⋅(n -1)(1-x )n nn x n )1()!1()1(1+--=-, 即 nn n x n x )1()!1()1()]1[ln(1)(+--=+-. 例7.求幂函数y =x (是任意常数)的n 阶导数公式.解: : y '=μx μ-1,y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4, 一般地, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n , 即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n . 当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! . 而 (x n )( n +1)=0 .如果函数u =u (x )及v =v (x )都在点x 处具有n 阶导数, 那么显然函数u (x )±v (x )也在点x 处具有n 阶导数, 且(u ±v )(n )=u (n )+v (n ) .教 学 过 程§5 隐函数的导数以及由参数方程所确定的函数的导数 一、隐函数的导数显函数: 形如y =f (x )的函数称为显函数. 例如y sin x , y =ln x ++e x .隐函数: 由方程F (x , y )=0所确定的函数称为隐函数. 例如, 方程x +y 3 -1=0确定的隐函数为y 31x y -=. 如果在方程F (x , y )=0中, 当x 取某区间内的任一值时, 相应地总有满足这方程的唯一的y 值存在, 那么就说方程F (x , y )=0在该区间内确定了一个隐函数.把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法, 不管隐函数能否显化, 都能直接由方程算出它所确定的隐函数的导数来.例1.求由方程e y +xy -e =0 所确定的隐函数y 的导数. 解: 把方程两边的每一项对x 求导数得 (e y )'+(xy )'-(e )'=(0)', 即 e y ⋅ y '+y +xy '=0,从而 y e x yy +-='(x +e y ≠0). 例2.求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0.解: 把方程两边分别对x 求导数得 5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y . 因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y .例3.求椭圆191622=+y x 在)323 ,2(处的切线方程.解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x .从而 yx y 169-='.当x =2时, 323=y , 代入上式得所求切线的斜率43|2-='==x y k .所求的切线方程为)2(43323--=-x y , 即03843=-+y x .例4.求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数.解: 方程两边对x 求导, 得。
高等数学上课教案
![高等数学上课教案](https://img.taocdn.com/s3/m/9316cb496fdb6f1aff00bed5b9f3f90f76c64dd1.png)
高等数学上课教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、原理和方法,培养学生运用数学知识解决实际问题的能力。
2. 过程与方法:通过教师的引导和学生的自主学习,培养学生分析问题、解决问题的能力。
3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生的耐心和毅力,提高学生自我探究的学习习惯。
二、教学内容1. 第一章:极限与连续教学重点:极限的定义、性质,函数的连续性,无穷小比较。
教学难点:极限的计算,无穷小比较,函数的连续性证明。
2. 第二章:导数与微分教学重点:导数的定义,基本导数公式,微分法则。
教学难点:导数的计算,隐函数求导,高阶导数。
3. 第三章:积分与累积教学重点:积分的定义,基本积分公式,积分法则。
教学难点:积分的计算,换元积分,分部积分。
4. 第四章:微分方程教学重点:微分方程的定义,一阶微分方程的解法。
教学难点:一阶线性微分方程,伯努利方程,可分离变量的微分方程。
5. 第五章:级数教学重点:级数的定义,收敛性判断,常见级数求和。
教学难点:级数收敛性证明,比较判别法,积分判别法。
三、教学方法1. 采用讲授法,系统地传授高等数学的基本概念、原理和方法。
2. 运用案例分析法,通过具体例子引导学生掌握数学知识的应用。
3. 鼓励学生参与讨论和思考,采用问题驱动法激发学生的学习兴趣。
4. 利用多媒体教学,直观地展示数学概念和运算过程。
四、教学评价1. 平时作业:检查学生对基础知识的掌握程度。
2. 章节测试:评估学生对章节知识的综合运用能力。
3. 课堂表现:评价学生的参与度、思考能力和团队合作精神。
4. 期末考试:全面考核学生的知识掌握和应用能力。
五、教学资源1. 教材:选用权威、适合学生水平的教材。
2. 辅导资料:提供丰富的习题和案例,帮助学生巩固知识。
3. 多媒体课件:制作直观、易懂的教学课件。
4. 在线资源:推荐相关的在线课程、论坛和学习资源,方便学生自主学习。
六、第六章:多变量微积分教学重点:多元函数的极限与连续性,偏导数,全微分,多元函数的极值。
高数复旦大学上册教案
![高数复旦大学上册教案](https://img.taocdn.com/s3/m/ad9a3ffbb1717fd5360cba1aa8114431b90d8eee.png)
课程名称:高等数学(上册)授课班级:XX级XX班授课教师:XXX授课时间:XX周XX节教学目标:1. 让学生掌握高等数学的基本概念、基本理论和基本方法。
2. 培养学生的逻辑思维能力、抽象思维能力和空间想象力。
3. 提高学生的计算能力和解决实际问题的能力。
教学内容:一、极限与连续1. 极限的定义与性质2. 无穷小与无穷大的概念3. 极限的运算法则4. 连续的定义与性质5. 连续函数的性质二、导数与微分1. 导数的定义与性质2. 导数的运算法则3. 高阶导数4. 微分中值定理5. 导数的应用三、导数的应用1. 函数的单调性2. 函数的极值3. 函数的最大值与最小值4. 曲线的凹凸性与拐点5. 曲线的渐近线教学过程:一、导入1. 回顾初等数学中的极限概念,引导学生理解高等数学中极限的定义。
2. 通过实例,让学生感受无穷小与无穷大的概念。
二、讲解1. 详细讲解极限的定义、性质、运算法则等基本概念。
2. 通过实例,让学生掌握极限的求法。
3. 讲解连续的定义、性质和连续函数的性质,并举例说明。
三、练习1. 让学生独立完成教材中的例题,巩固所学知识。
2. 教师巡视指导,解答学生在练习中遇到的问题。
四、讲解导数与微分1. 详细讲解导数的定义、性质、运算法则等基本概念。
2. 讲解高阶导数的概念和求法。
3. 讲解微分中值定理,并举例说明。
五、讲解导数的应用1. 讲解函数的单调性、极值、最大值与最小值等概念。
2. 讲解曲线的凹凸性、拐点、渐近线等概念。
3. 通过实例,让学生掌握导数的应用。
六、总结1. 总结本节课所学内容,强调重点和难点。
2. 布置课后作业,要求学生巩固所学知识。
教学评价:1. 通过课堂提问、作业完成情况等,了解学生对本节课内容的掌握程度。
2. 根据学生的反馈,调整教学策略,提高教学效果。
教学资源:1. 教材:《高等数学(上册)》2. 课件:根据教学内容制作的PPT3. 辅助教材:《高等数学学习指导》4. 网络资源:相关教学视频、习题库等教学反思:1. 在教学过程中,注重引导学生主动思考,提高学生的自主学习能力。
高等数学上册教案
![高等数学上册教案](https://img.taocdn.com/s3/m/8d77da265bcfa1c7aa00b52acfc789eb172d9ec2.png)
高等数学上册教案一、第一章:函数与极限1.1 函数定义:函数是一种关系,使一个集合(称为定义域)中的每个元素对应到另一个集合(称为值域)中的唯一元素。
性质:单调性、连续性、奇偶性、周期性等。
1.2 极限极限的定义:当自变量x趋近于某一值a时,函数f(x)趋近于某一值L,即lim(x →a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理、单调有界定理等。
1.3 无穷小与无穷大无穷小的定义:当自变量x趋近于0时,函数f(x)趋近于0。
无穷大的定义:当自变量x趋近于某一正无穷大值时,函数f(x)趋近于正无穷大或负无穷大。
1.4 极限运算法则极限的四则运算法则:lim(x→a)(f(x)+g(x))=lim(x→a)f(x)+lim(x→a)g(x),lim(x →a)(f(x)g(x))=lim(x→a)f(x)lim(x→a)g(x),lim(x→a)(f(x)/g(x))=lim(x→a)f(x)lim(x→a)(1/g(x))。
极限的复合运算法则:lim(x→a)(f(g(x)))=lim(x→a)g(x)lim(x→a)f(g(x))。
1.5 极限存在的条件介值定理:如果函数f(x)在区间[a,b]上连续,且f(a)=L1,f(b)=L2,对于任何介于L1和L2之间的实数L,都存在c∈(a,b),使得f(c)=L。
单调有界定理:如果函数f(x)在区间[a,b]上单调且有界,lim(x→a)f(x)和lim(x →b)f(x)都存在且相等。
二、第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在x=a处的导数定义为lim(h→0)(f(a+h)-f(a))/h。
导数的几何意义:函数在某一点的导数等于该点处的切线斜率。
2.2 导数的计算法则基本导数公式:常数c的导数为0,x的导数为1,常数倍函数的导数等于常数乘以原函数的导数,幂函数的导数等。
和差、积、商的导数法则:和差函数的导数等于各函数导数的和差,积函数的导数等于原函数的导数乘以另一函数,除函数的导数等于除函数的导数乘以被除函数减去除函数,再除以被除函数的平方。
高等数学上册教案
![高等数学上册教案](https://img.taocdn.com/s3/m/59a217e668dc5022aaea998fcc22bcd126ff42ff.png)
高等数学上册教案一、前言1. 教材版本:同济大学数学系编《高等数学》(第七版)2. 教学目标:通过本课程的学习,使学生掌握高等数学的基本概念、理论和方法,培养学生的数学思维能力和解决问题的能力。
3. 适用对象:本科一年级学生二、教学内容1. 第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限的计算2. 第二章:导数与微分2.1 导数的定义与计算2.2 微分的概念与计算2.3 微分在实际问题中的应用3. 第三章:积分及其应用3.1 不定积分的概念与计算3.2 定积分的概念与计算3.3 积分的应用4. 第四章:级数4.1 数项级数的概念与性质4.2 幂级数的概念与计算4.3 傅里叶级数5. 第五章:常微分方程5.1 微分方程的基本概念5.2 线性微分方程的解法5.3 非线性微分方程的解法三、教学方法1. 讲授法:通过讲解高等数学的基本概念、理论和方法,使学生掌握相关知识。
2. 案例分析法:通过分析实际问题,引导学生将数学知识应用到实际中。
3. 练习法:通过布置课后习题,巩固所学知识,提高学生的解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业和课堂表现。
2. 期中考试:检验学生对高等数学知识的掌握程度。
3. 期末考试:全面评估学生的学习成果。
五、教学计划1. 课时安排:共计32周,每周2课时。
2. 教学进度:按照教材的章节顺序进行教学,每个章节安排2-4周课时。
六、第六章:多元函数微分学6.1 多元函数的概念与性质6.2 多元函数的偏导数6.3 全微分6.4 多元函数的极值七、第七章:重积分7.1 二重积分的概念与计算7.2 三重积分的概念与计算7.3 重积分的应用八、第八章:向量代数与空间解析几何8.1 向量的概念与运算8.2 空间解析几何的基本概念8.3 线性方程组与矩阵九、第九章:常微分方程续9.1 线性微分方程组9.2 常系数线性微分方程的解法9.3 非线性微分方程简介十、第十章:数值计算方法简介10.1 数值计算的基本概念10.2 插值法与函数逼近10.3 数值积分与数值解微分方程十一、教学方法与评价(续)六、七、八、九、十章的教学方法与评价可参照第一至五章的做法,根据各章节的特点进行适当调整。
高等数学(上册) 第一章教案
![高等数学(上册) 第一章教案](https://img.taocdn.com/s3/m/c20b5c98f7ec4afe05a1dfa1.png)
第一章:函数、极限与连续教学目的与要求1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2.解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
所需学时:18学时(包括:6学时讲授与2学时习题)第一节:集合与函数一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学教案一、课程的性质与任务高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。
要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。
在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。
第一章:函数与极限教学目的与要求18学时1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2.解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第一节:映射与函数一、集合1、集合概念wordword 具有某种特定性质的事物的总体叫做集合。
组成这个集合的事物称为该集合的元素表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素1)},,,{321 a a a A = 2)}{P x x A 的性质=元素与集合的关系:A a ∉ A a ∈一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
常见的数集:N ,Z ,Q ,R ,N +元素与集合的关系: A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊂。
如果集合A 与集合B 互为子集,则称A 与B 相等,记作B A = 若作B A ⊂且B A ≠则称A 是B 的真子集。
空集φ: A ⊂φ2、 集合的运算并集B A ⋃ :}A x |{x B A B x ∈∈=⋃或交集B A ⋂ :}A x |{x B A B x ∈∈=⋂且差集 B A \:}|{\B x A x x B A ∉∈=且全集I 、E 补集C A :集合的并、交、余运算满足下列法则:word 交换律、A B B A ⋃=⋃ A B B A ⋂=⋂结合律、)()(C B A C B A ⋃⋃=⋃⋃)()(C B A C B A ⋂⋂=⋂⋂分配律 )()()(C B C A C B A ⋂⋃⋂=⋂⋃)()()(C B C A C B A ⋃⋂⋃=⋃⋂对偶律 (c c c B A B A =⋃) c c c B A B A ⋃=⋂)(笛卡儿积A ×B }|),{(B y A x y x ∈∈=且3、 区间和邻域开区间 ),(b a闭区间 []b a ,半开半闭区间 ]()[b a b a ,, 有限、无限区间邻域:)(a U }{),(δδδ+-=a x a x a Ua 邻域的中心δ邻域的半径去心邻域 ),(δa U左、右邻域二、映射1. 映射概念定义 设X ,Y 是两个非空集合,如果存在一个法则f ,使得对X 中的每一个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,word 则称f 为从X 到Y 的映射,记作Y X f →:其中y 称为元素x 的像,并记作)(x f ,即 )(x f y = 注意:1)集合X ;集合Y ;对应法则f2)每个X 有唯一的像;每个Y 的原像不唯一3) 单射、满射、双射2、 映射、复合映射三、函数1、 函数的概念:定义:设数集R D ⊂,则称映射R D f →:为定义在D 上的函数 记为 D x x f y ∈=)(自变量、因变量、定义域、值域、函数值用f 、g 、ϕ函数相等:定义域、对应法则相等自然定义函数;单值函数;多值函数、单值分枝.例:1) y=22) y=x3) 符号函数4) 取整函数 []x y = (阶梯曲线)⎪⎩⎪⎨⎧-==010001 x x x yword 5) 分段函数 ⎩⎨⎧+≤≤=11102 x x x x y2、 函数的几种特性 1) 函数的有界性 (上界、下界;有界、无界)有界的充要条件:既有上界又有下界。
注:不同函数、不同定义域,有界性变化。
2) 函数的单调性 (单增、单减)在x 1、x 2点比较函数值)(1x f 与)(2x f 的大小(注:与区间有关)3) 函数的奇偶性(定义域对称、)(x f 与)(x f -关系决定)图形特点 (关于原点、Y 轴对称)4)函数的周期性(定义域中成立:)()(x f l x f =+)3、 反函数与复合函数反函数:函数)(:D f D f →是单射,则有逆映射x y f=-)(1,称此映射1-f 为f 函数的反函数函数与反函数的图像关x y =于对称复合函数:函数)(y g u =定义域为D 1,函数)(x f y =在D 上有定义、且1)(D D f ⊂。
则)())((x f g x f g u ==为复合函数。
(注意:构成条件)4、 函数的运算和、差、积、商(注:只有定义域相同的函数才能运算)5、 初等函数:word 1) 幂函数:a x y = 2)指数函数:x a y =3) 对数函数 )(log x y a =4)三角函数)cot(),tan(),cos(),sin(x y x y x y x y ====5) 反三角函数)arcsin(x y =, )arccos(x y =)cot()arctan(x arc y x y ==以上五种函数为基本初等函数6) 双曲函数2xx e e shx --= 2x x e e chx -+= x x xx e e e e chx shx thx --+-==注:双曲函数的单调性、奇偶性。
双曲函数公式shyshx chy chx y x ch shy shx chy chx y x ch shychx chy shx y x sh shychx chy shx y x sh ⋅-⋅=-⋅+⋅=+⋅-⋅=-⋅+⋅=+)()()()(反双曲函数:arthxy archx y arshxy ===作业: 同步练习册练习一word第二节:数列的极限一、数列数列就是由数组成的序列。
1)这个序列中的每个数都编了号。
2)序列中有无限多个成员。
一般写成: n a a a a a 4321缩写为{}n u例 1 数列⎭⎬⎫⎩⎨⎧n 1是这样一个数列{}n x ,其中nx n 1=, 5,4,3,2,1=n 也可写为: 514131211 可发现:这个数列有个趋势,数值越来越小,无限接近0,记为01lim=∞→nn 1、 极限的N -ε定义:εε a x N n Nn -∀∃∀0则称数列{}n x 的极限为a ,记成 a x n n =∞→lim也可等价表述:1)ερε<>∀∃>∀)(0a x N n N nword 2))(0εεa O x N n N n ∈>∀∃>∀极限是数列中数的变化总趋势,因此与数列中某个、前几个的值没有关系。
二、收敛数列的性质定理1:如果数列{}n x 收敛,那么它的极限是唯一定理2 如果数列{}n x 收敛,那么数列{}n x 一定有界定理3:如果a x n x =∞→lim 且a>0(a<0)那么存在正整数N>0,当n>N 时,)0(0<>n n x x定理4、如果数列}{n x 收敛于a 那么它的任一子 数列也收敛,且收敛于a 。
第三节:函数的极限一、极限的定义1、在0x 点的极限1)0x 可在函数的定义域内,也可不在,不涉及f 在0x 有没有定义,以及函数值)(0x f 的大小。
只要满足:存在某个0>ρ使:D x x x x ⊂+⋃-),(),(0000ρρ。
2)如果自变量x 趋于0x 时,相应的函数值 )(x f 有一个总趋势-----以某个实数A 为极限 ,则记为 :A x f x x =→)(lim 0。
形式定义为:word εδδε<-<-<∀⋅∃⋅>∀A x f x x x )()0(00注:左、右极限。
单侧极限、极限的关系2、∞→x 的极限设:),()(+∞-∞∈=x x f y 如果当时函数值 有一个总趋势------该曲线有一条水平渐近线A y =-----则称函数在无限远点∞有极限。
记为:A x f x =∞→)(lim 在无穷远点∞的左右极限:)(lim )(x f f x +∞→=+∞ )(lim )(x f f x -∞→=-∞ 关系为:)(lim )(lim )(lim x f A x f A x f x x x -∞→+∞→∞→==⇔= 二、函数极限的性质1、 极限的唯一性2、 函数极限的局部有界性3、 函数极限的局部保号性4、 函数极限与数列极限的关系第四节:无穷小与无穷大一、无穷小定义定义:对一个数列{}n x ,如果成立如下的命题: εε<⋅>∀⋅∃⋅>∀n x N n N 0 则称它为无穷小量,即word 0lim =∞→n x x 注: 1、ε∃∀的意义;2、ε<n x 可写成ε<-0n x ;ερ<),0(n x3、上述命题可翻译成:对于任意小的正数ε,存在一个号码N ,使在这个号码以后的所有的号码n ,相应的n x 与极限0的距离比这个给定的ε还小。
它是我们在直观上对于一个数列趋于0的认识。
定理1 在自变量的同一变化过程0x x →(或)∞→x 中,函数()x f 具有极限A 的充分必要条件是α+=A x f )(,其中α是无穷小。
二、无穷大定义一个数列{}n x ,如果成立:G x N n N G n >⋅>∀⋅∃⋅>∀0那么称它为无穷大量。
记成:∞=∞→n x x lim 。
特别地,如果G x N n N G n >⋅>∀⋅∃⋅>∀0,则称为正无穷大,记成+∞=∞→n x x lim 特别地,如果G x N n N G n -<⋅>∀⋅∃⋅>∀0,则称为负无穷大,记成-∞=∞→n x x lim注:无法区分正负无穷大时就笼统地称之为无穷大量。
三、无穷小和无穷大的关系word定理2 在自变量的同一变化过程中,如果)(x f 为无穷大,则)(1x f 为无穷小;反之,如果)(x f 为无穷小,且0)(≠x f 则)(1x f 为无穷大 即:非零的无穷小量与无穷大量是倒数关系:当0≠n x 时:有∞=⇒=∞→∞←nx x x 1lim 0lim 01lim lim =⇒∞=∞→∞←nx x x 注意是在自变量的同一个变化过程中第五节:极限运算法则1、无穷小的性质设{}n x 和{}n y 是无穷小量于是:(1)两个无穷小量的和差也是无穷小量:0)(lim 0lim 0lim =±⇒==∞←∞→∞→n n x n x n x y x y x (2)对于任意常数C ,数列{}n x c ⋅也是无穷小量:0)(lim 0lim =⋅⇒=∞←∞→n x n x x c x (3){}n y x n ⋅也是无穷小量,两个无穷小量的积是一个无穷小量。