(完整)北师大版初一数学下册期末考试试卷及答案,推荐文档

合集下载

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。

新北师大版七年级数学下册期末试卷及答案【完美版】

新北师大版七年级数学下册期末试卷及答案【完美版】

新北师大版七年级数学下册期末试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱 B.赚了10钱C.赚了20元钱 D.亏了20元钱5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°6.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<9.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.如果a的平方根是3±,则a=_________。

北师大版七年级数学下册期末试卷及答案

北师大版七年级数学下册期末试卷及答案

北师大版七年级数学下册期末试卷及答案数学七年级(下)期末考试题时间:120分钟满分:100分基础知识卷(100分)一、填空题(1×28=28)1、下列代数式中:①3x+5y ②x 2+2x+y 2③0 ④-xy 2⑤3x=0 ⑥a1单项式有 _____个,多项式有_____ 个.2、单项式-7a 2bc 的系数是______, 次数是______.3、多项式3a 2b 2-5ab 2+a 2-6是_____次_____项式,其中常数项是_______. 4、 3b 2m(_______)=3b4m+1-(x-y)5(x-y)4=________ (-2a 2b)2÷(_______)=2a5、 (-2m+3)(_________)=4m 2-9 (-2ab+3)2=_____________6、如果∠1与∠2互为补角,∠1=72o,∠2=_____o ,若∠3=∠1 ,则∠3的补角为_______o ,理由是__________________________.7、在左图中,若∠A+∠B=180o,∠C=65o,则∠1=_____o,A 2 D ∠2=______o.B C8、在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).9、在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字. 10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P (小明被选中)= ________ , P (小明未被选中)=________.11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中. ⑴、掷出的点数是偶数⑵、掷出的点数小于7⑶、掷出的点数为两位数⑷、掷出的点数是2的倍数0 1/2 1不可能发生必然发生二、选择题(2×7=14)1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy-21y 2)-(-21x 2+4xy-23y 2)= -21x 2_____+y 2空格的地方被钢笔水弄污了,那么空格中的一项是() A 、-7xy B 、7xy C 、-xy D 、xy 2、下列说法中,正确的是()A 、一个角的补角必是钝角B 、两个锐角一定互为余角C 、直角没有补角D 、如果∠MON=180o,那么M 、O 、N 三点在一条直线上 3、数学课上老师给出下面的数据,()是精确的A 、 2002年美国在阿富汗的战争每月耗费10亿美元B 、地球上煤储量为5万亿吨以上C 、人的大脑有1×1010个细胞 D 、这次半期考试你得了92分4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是() A 、154 B 、31C 、51D 、1525、已知:∣x ∣=1,∣y ∣=21,则(x 20)3-x 3y 2的值等于() A 、-43或-45 B 、43或45 C 、43 D 、-456、下列条件中不能得出a ∥b 的是()A 、∠2=∠6B 、∠3+∠5=180oC 、∠4+∠6=180oD 、∠2=∠7、下面四个图形中∠1与∠2是对顶角的图形有()个A 、0B 、1C 、2D 、3三、计算题(4×8=32)⑴ -3(x2-xy)-x(-2y+2x) ⑵ (-x5)?x3n-1+x3n?(-x)4⑶ (x+2)(y+3)-(x+1)(y-2) ⑷ (-2m2n)3?mn+(-7m7n12)0-2(mn)-4?m11?n8⑸ (5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹ (3mn+1)(3mn-1)-(3mn-2)2用乘法公式计算:⑺ 9992-1 ⑻ 20032四、推理填空(1×7=7)A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2E 求证:CD⊥ABF 证明:∵DG⊥BC,AC⊥BC(___________)D ∴∠DGB=∠ACB=90o(垂直的定义)∴DG∥AC(_____________________)B C ∴∠2=_____(_____________________)∵∠1=∠2(__________________) ∴∠1=∠DCA(等量代换) ∴EF∥CD(______________________) ∴∠AEF=∠ADC(____________________)∵EF ⊥AB ∴∠AEF=90o ∴∠ADC=90o 即CD ⊥AB五、解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)1、小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?2、已知:如图,AB ∥CD ,FG ∥HD ,∠B=100o,FE 为∠CEB 的平分线,求∠EDH 的度数. A F C EB H G D3、下图是明明作的一周的零用钱开支的统计图(单位:元)24681012周一周二周三周四周五周六周日分析上图,试回答以下问题:⑴、周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?⑵、哪几天他花的零用钱是一样的?分别为多少?⑶、你能帮明明算一算他一周平均每天花的零用钱吗?能力测试卷(50分)(B 卷)一、填空题(3×6=18)1、房间里有一个从外表量长a 米、宽b 米、高c 米的长方形木箱子,已知木板的厚度为x 米,那么这个木箱子的容积是________________米3.(不展开) 2、式子4-a 2-2ab-b 2的最大值是_______. 3、若2×8n×16n=222,则n=________. 4、已知,1,511-==-xy y x 则4411yx +=__________. 5、一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________. 6如图,∠ABC=40o,∠ACB=60o,BO 、CO 平分∠ABC 和∠ACB ,过O 点,且DE ∥BC ,则∠BOC=_______o.二、选择题(3×4=12)1、一个角的余角是它的补角的31,则这个角为() A 、60o B 、45o C 、30o D 、90o 2、对于一个六次多项式,它的任何一项的次数()A 、都小于6B 、都等于6C 、都不小于6D 、都不大于6 3、式子-m n与(-m)n的正确判断是()A 、这两个式子互为相反数B 、这两个式子是相等的C 、当n 为奇数时,它们互为相反数;n 为偶数时它们相等D 、当n 为偶数时,它们互为相反数;n 为奇数时它们相等4、已知两个角的对应边互相平行,这两个角的差是40o,则这两个角是() A 、140o和100o B 、110o和70o C 、70o和30o D 、150o和110o三、作图题(不写作法,保留作图痕迹)(6分)利用尺规过A 点作与直线n 平行的直线m (不能用平推的方法作).A ?n四、解答题(7×2=14)1、若多项式x 2+ax+8和多项式x 2-3x+b 相乘的积中不含x 2、x 3项,求(a-b)3-(a 3-b 3)的值.3、如图,已知AB ∥CD ,∠A=36o,∠C=120o,求∠F-∠E 的大小. A B EFC D北师大七年级下学期数学期末试卷班级:_______姓名:_______得分:_______发展性评语:___________一、请准确填空(每小题3分,共24分)1.(-2a 2b )3=________;-3ab 3·(-4a 2b )=________;(31)-1+(3-π)0=________.2.正方形的面积是2a 2+2a +21(a >-21)的一半,则该正方形的边长为________. 3.一种病毒的长度约为0.000 052 mm,用科学记数法表示为________mm.AB C D O201(m i n )图1 图24.如图1所示,AC 、BD 相交于点O ,AB =CD ,要使△AOB ≌△COD,需再补充一个条件:__________.(写出一个你认为正确的即可)5.任意写出一个两位数,个位上的数字恰好是5的概率的是________;写出一个发生概率为0的事件:________.6.等腰三角形的底角是顶角的两倍,则此等腰三角形的顶角为________.7.小刚正面对镜子,从镜子中看他身后的墙上写的一组数据是,请你写出这组数据的真实数:________.8.如图2所示,根据图中提供的信息,请你再写出三条不同的信息:_________________________________________________________________________________ __________.二、相信你的选择(每小题3分,共24分) 9.下列各式中能用平方差公式计算的是A.(a +b )(-a -b )B.(a +b )(-a +b )C.(a +b )(-a -b )D.(a -b )(b -a )10.小亮截了四根长分别为5 cm 、6 cm 、12 cm 、13 cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有A.1个B.2个C.3个D.4个11.在线段、角、圆、直角三角形、等腰三角形、正六边形、正五边形、四边形八个图形中,一定是轴对称图形的个数有A.3 B.4 C.6D.712.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2 h.已知摩托车行驶的路程s (km)与行驶的时间t (h)之间的函数关系如图3所示.若这辆摩托车平均每行驶100 km 的耗油量为2 L,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油34)l 1l 2 A BC E1 2 O 图3 图4A.0.45 LB.0.65 LC.0.9 LD.1 L13.如图4所示,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交于点E ,若∠1=43°,则∠2的度数是A.43° B.47° C.120° D.133°14.从一个箱子中摸出红球的概率为41,已知口袋中红球有4个,则袋中共有球的个数为A.24B.16C.8D.4 15.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B =∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是A.AC =A ′C ′B.BC =B ′C ′C.∠A =∠A ′D.∠C =∠C ′16.如图(1),小明拿一张正方形纸片,沿虚线对折一次得到图(2),再对折一次得到图(3),然后用剪刀沿图(3)中的虚线剪去一个角再打开后的形状是⑵⑶图5ABCD图6三、考查你的基本功(共20分)17.(6分)计算:(1)(3x+2)-2(x 2-x+2); (2)(a+b)2-(a -b)218.(6分)如图7,在△ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下△ABC 是轴对称图形吗?并说明你的理由.ABCD5020o o图719.(8分)如图8所示,△ABC中,BE⊥AD于点E,CF⊥AD于点F,且BE=CF.根据以上信息你能得到哪些正确的结论,选一种加以说明.AFB CDE图8四、生活中的数学(共16分)20.(8 分)声音在空气中的传播速度y(m/s)(秒音速)与气温x(℃)的关系,如下表.(1)(2)当x=150℃时,音速y是多少?当音速为352m/s时,气温x 是多少?21.(8 分)甲、乙两同学做摸球游戏,在口袋中装有标有1~6号数字的球(各球除号码不同外,其余全相同).游戏规定:有放回地摸球,每一轮,两人分别摸出一球,如果两球的数字之和为偶数,那么甲得1 分;如果两球的数字之和为奇数,乙得1 分.谁先达到10分,谁就获胜.你认为这个游戏公平吗?请你给出分析结果.五、探究拓展与应用(共16分)22.(8 分)学校有一块等边三角形花坛,要在花坛中种上四种不同颜色的花,要求四部分的面积相等.请你在下列图中给出四种不同的设计方案.图923.(8 分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出8×9×10×11+1的结果;(2)试猜想n(n+1)(n+2)(n+3)+1 是哪一个数的平方?说明理由,并与同伴交流.。

北师大版七年级下册数学《期末考试卷》(带答案)

北师大版七年级下册数学《期末考试卷》(带答案)
21. 括号内填写理由.
如图,已知∠B+∠BCD=180°,∠B=∠D.
求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD(______________________).
∴∠B=_______(_____________________).
又∵∠B=∠D(已知),
∴∠DCE=∠D(_____________________).
A.AB=DEB.DF∥ACC. ∠E=∠ABCD.AB∥DE
10.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )
A. B. C. D.
11.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为( )
A.15°B.30°C.45°D.60°
∴∠2=90°-34°=56°,
故选C.
【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
7.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )
A.8B.4C.6D. 无法计算
【答案】A
【解析】
利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=8.
6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为( )
A.34°B.54°C.56°D.66°
【答案】C
【解析】
【分析】
先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°-34°=56°.
【详解】如图,
∵a∥b,
∴∠1=∠3=34°,

北师大版初一数学下册期末考试试卷及答案

北师大版初一数学下册期末考试试卷及答案

1 / 4北师大版初一数学下册期末考试试卷及答案1、下列运算正确的是( ).A 、1055a a a =+ B 、2446a a a =⨯ C 、a a a =÷-1D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154B 、31C 、51D 1524、1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是( )A 、6万纳米B 、6×104纳米C 、3×10-6米D 、3×10-5米 5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等 6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟; (2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时; (4)第40分钟时,汽车停下来了. A 、1个 B 、2个 C 、3个 D 、4个 7.下列图形中,不一定是轴对称图形的是( )A .等腰三角形B .线段C .钝角D .直角三角形8. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4 9. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若 △ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30°10.下列关系式中,正确的是( )A .()222b a b a -=- B.()()22b a b a b a -=-+ C .()222b a b a +=+ D.()22b 2ab a b a +-=+11.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个 12.下列乘法中,不能运用平方差公式进行运算的是( )A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b ) 二、填空题(每空4分,共20分)13、单项式313xy -的次数是 .14、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角形.A BC D 20408060510152025303540速度时间ODCBA第9题 E DC B A2 / 415、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .16、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 17、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= . 三、计算题(15分)18、(7分)计算:302112(20053)()33--++--19、化简求值:(8分)22(2)()(3)5x y x y x y y +-+--,其中2x =-,12y =20、(10分)已知:如图,∆ABC 中,AB=AC ,BD 和CE 为∆ABC 的高,BD 和CE 相交于点O.求证:OB=OC.21、(15分)一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,结合图像回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜? (4)请问这个水果贩子一共赚了多少钱?22、(10分)如图,AP ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的延长线交AP 于D ,求证:(1)AB=AD+BC;(2)若BE=3,AE=4,求四边形ABCD 的面积?23.如图,DE 是△ABC 的边AB 的垂直平分线,分别交AB 、BC 于D ,E ,AE 平分∠BAC ,若∠B=30°, 求∠C 的度数._ E_ D_ C _ B _ A_ O30︒ED CBAP ED C B A3 / 424.如图,点D 、E 在△ADC 的边BC 上,AD=AE ,BD =EC ,求证:AB=AC .25.如图,AB =AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点,(1)求证:AF 垂直于CD .(2)连接BE ,求证::AF 垂直于BE .26.已知:如图PB ⊥AB ,PC ⊥AC ,且PB=PC ,D 是AP 上一点.求证:∠BDP=∠CDP.27.已知:如图,在四边形ABCD 中,BC>BA ,, 求证:∠A+∠C=180〇28.已知:如图,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF平分∠ADC 交于AC 于F.求证:BE+CF>EF.29.已知:如图,P 、Q是△ABC 边BC BAC 的度数.30.已知:如图,在△ABC 中,AB=AC ,E是AB 的中点,以点E 为圆心,EB 为半径画弧,交BC 于点D ,连结ED ,并延长ED 到点F ,使DF=DE ,连结FC.求证:∠F=∠A.EC B AB4 / 431.已知:如图,△ABC 中,AB=AC ,E 在CA 的延长线上,∠AEF=∠AFE. 求证:EF ⊥BC.32.已知:如图,AB=AC ,DB=DC ,P 是AD 上一点求证:∠ABP=∠ACP.33.已知:如图,AB=AC ,DE 垂直平分AB 交AB于D 的周长为28,BC=8,求△BCE 的周长.34.已知:如图,△ABC 中,AB=AC ,∠BAC=120〇 ,EF EF 交BC 于F ,交AB 于E. 求证: .40.已知:如图,AB ⊥BC ,CD ⊥BC ,∠求证:AB=BC.B B。

2022年北师大版数学七年级下册期末测试题(附答案解析)

2022年北师大版数学七年级下册期末测试题(附答案解析)

2022年北师大版数学七年级下册期末测试题(附答案解析)北师大版数学七年级下学期期末测试卷(时间:120总分:120分)学校________班级________姓名________座号________一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列计算中,正确的是()A.(3a)2=6a2B.(a3)4=a12C.a2•a5=某10D.a6÷a3=a22.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件属于随机事件的是()A.掷一次,骰子向上的一面点数大于0B.掷一次,骰子向上的一面点数是7C.掷两次,骰子向上的一面点数之和是13D.掷三次,骰子向上的一面点数之和是偶数3.下列图形中,是轴对称图形且只有一条对称轴的是()A.B.C.D.4.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所已研制出直径小于0.5nm的碳纳米管,已知lnm=0.000000001m,则将0.5nm这个数据用科学记数法表示为()A.5某10﹣10B.0.5某10﹣9C.5某10﹣8D.5某10﹣95.下表列出了一项实验的统计数据,表示皮球从高处自由落下时,弹跳高度b(cm)与下落时的高度d(cm)之间的关系,那么下面的式子能表示这种关系的是()d(cm)5080100150b(cm)25405075A.b=d2B.b=2dC.b=12dD.b=d+256.如图,下列四个条件中,能判断DE∥BC的是()A.∠A=∠BDFB.∠l=∠3C.∠2=∠4D.∠A+∠ADF=180°7.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=56°,∠C=42°,则∠DAE的度数为()A.3°B.7°C.11°D.15°8.如图,在Rt△ABC中,∠C=90°,D是AB的中点,E在边AC上,若D与C关于BE成轴对称,则下列结论:①∠A=30°;②△ABE是等腰三角形;③点B到∠CED的两边距离相等.其中正确的有()A.0个B.1个C.2个D.3个二、填空题:(本题满分24分,共有8道小题,每小题3分)请把正确答案填写在答题卡相应位置的横线上.9.计算:221(2)32abababg=_____.10.用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是_____.11.若一个三角形的两边长为3和5,且周长为偶数,则这个三角形的第三边长为_____.12.将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a,b上,若a∥b,∠1=16°,则∠2的度数为_____.13.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片_____张.14.如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=_____°.15.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是_____.16.如图①,△ABC中,AD为BC边上的中线,则有S△ABD=S△ACD,许多面积问题可以转化为这个基本模型解答.如图②,已知△ABC的面积为1,把△ABC各边均顺次延长一倍,连结所得端点,得到△A1B1C1,即将△ABC向外扩展了一次,则扩展一次后的△A1B1C1的面积是_____,如图③,将△ABC向外扩展了两次得到△A2B2C2,……,若将△ABC向外扩展了n次得到△AnBn∁n,则扩展n次后得到的△AnBn∁n面积是_____.三、作图题:(本题满分4分)用圆规和直尺作图,不写作法,保留作图痕迹.17.已知:线段a,∠α,∠β.求作:△ABC,使BC=a,∠B=∠α,∠C=∠β.四、解答题:(本题满分68分,共8道小题)18.计算:(1)(13a2b)2•(﹣9ab)÷(-2a3b2);(2)(某+2y)(某﹣2y)﹣(某+y)(某﹣y);(3)[(2a+b)2﹣(a﹣b)(3a﹣b)﹣a]÷(﹣12a),其中a=﹣1,b=2.19.七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形,请你根据下列要求拼图:(画出示意图并标明每块板的标号,在拼图时应注意:相邻的两块板之间无空隙、无重叠)(1)用七巧板中标号为①②③的三块板拼成一个等腰直角三角形;(2)选择七巧板中的三块板拼成一个正方形.20.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.21.如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠l=∠2,根据,所以∥.又因为AB∥CD,根据:,所以EF∥AB.22.如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE全等吗?请说明理由.23.已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:摸球总次数50100150200250300350400450500摸到红球的频数1732446478103122136148摸到红球的频率0.340.320.2930.320.3120.320.2940.302(1)请将表格中的数据补齐;(2)根据上表,完成折线统计图;(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近(精确到0.1).24.A,B两地相距100千米,甲,乙两人骑车同时分别从A、B两地相向而行,假设他们都保持匀速行驶,直线l1,l2分别表示甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间关系的图象.根据图象提供的信息,解答下列问题:(1)甲、乙两人的速度分别是多少?(2)经过多长时间,两人相遇?(3)分别写出甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间的关系式.25.(1)操作发现:如图①,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接AE,则AE与BD有怎样的数量关系?说明理由.(2)类比猜想:如图②,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边△CDE,连接AE,请直接写出AE与BD满足的数量关系,不必说明理由;(3)深入探究:如图③,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边分别在CD上方、下方作等边△CDE和等边△CDF,连接AE,BF则AE,BF与AB有怎样的数量关系?说明理由.答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列计算中,正确的是()A.(3a)2=6a2B.(a3)4=a12C.a2•a5=某10D.a6÷a3=a2【答案】B【解析】【分析】根据幂的乘方以及同底数幂的乘法和除法进行计算即可【详解】A.(3a)2=9a2,故本选项错误B.(a3)4=a12,故本选项正确;C.a2,某10不是同类型故本选项错误D.a6÷a3=a3,故本选项错误;故选B【点睛】此题考查完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题关键2.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件属于随机事件的是()A.掷一次,骰子向上的一面点数大于0B.掷一次,骰子向上的一面点数是7C.掷两次,骰子向上的一面点数之和是13D.掷三次,骰子向上的一面点数之和是偶数【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】A.掷一次骰子,在骰子向上的一面上的点数大于0是必然事件,不合题意;B.掷一次骰子,在骰子向上的一面上的点数为7是不可能事件,不合题意;C.掷两次骰子,在骰子向上的一面上的点数之积刚好是13是不可能事件,不合题意D.掷三次骰子,在骰子向上的一面上的点数之和刚好为偶数是随机事件,符合题意故选D【点睛】此题考查随机事件,难度不大3.下列图形中,是轴对称图形且只有一条对称轴的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形的意义判定图形由几条对称轴即可解答【详解】A是对称图形且只有一条对称轴;B是对称图形,有两条对称轴;C不是对称图形D.是对称图形,有三条对称轴故选A【点睛】此题考查轴对称图形,难度不大4.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所已研制出直径小于0.5nm的碳纳米管,已知lnm=0.000000001m,则将0.5nm这个数据用科学记数法表示为()A.5某10﹣10B.0.5某10﹣9C.5某10﹣8D.5某10﹣9【答案】A【解析】【分析】0.5纳米=0.5某0.000000001米=0.0000000005米小于1的正数也可以利用科学记数法表示,一般形式为a某10-n,在本题中a为5,n为5前面0的个数【详解】0.5纳米=0.5某0.0000000米故选D=0.000000米=5某10﹣10米故选A【点睛】此题考查科学记数法,难度不大5.下表列出了一项实验的统计数据,表示皮球从高处自由落下时,弹跳高度b(cm)与下落时的高度d(cm)之间的关系,那么下面的式子能表示这种关系的是()d(cm)5080100150b(cm)25405075A.b=d2B.b=2dC.b=12dD.b=d+25【答案】C【解析】【分析】这是一个用图表表示的函数,可以看出d是b的2倍,即可得关系式.【详解】解:由统计数据可知:d是b的2倍,所以,b=12d.故选C.6.如图,下列四个条件中,能判断DE∥BC的是()A.∠A=∠BDFB.∠l=∠3C.∠2=∠4D.∠A+∠ADF=180°【答案】C【解析】【分析】根据选项中角的关系,结合平行线的判定,进行判断【详解】内错角相等,两直线平行∠A=∠BDF是两直线被第三条直线所截得到的同位角,因而能判定DF∥AC但不能判定DE∥BC,故错误∠l=∠3是DF和AC被DC所截得到的内错角,因而可以判定DF∥AC,但不能判定DE∥BC,故错误∠2=∠4这两个角是BC与DE被DC所截得到的内错角,可以判定DE∥AC∠A+∠ADF=180°,是DF和AC被DC所截得到的同旁内角,因而可以判定DF∥AC,但不能判定DE∥BC,故错误故选C【点睛】此题考查平行线的判定,难度不大7.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=56°,∠C=42°,则∠DAE的度数为()A.3°B.7°C.11°D.15°【答案】B【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=34°,所以∠DAE=∠BAE-∠BAD=7°【详解】在△ABC中,∵∠BAC=180°-∠B-∠C=82°AE是∠BAC的平分线,∠BAE=∠CAE=41°又∵AD是BC边上的高,∴.∠ADB=90°在△ABD中∠BAD=90°-∠B=34°∴.∠DAE=∠BAE-∠BAD=7°故选B【点睛】此题考查三角形内角和定理,掌握运算法则是解题关键8.如图,在Rt△ABC中,∠C=90°,D是AB的中点,E在边AC上,若D与C关于BE成轴对称,则下列结论:①∠A=30°;②△ABE是等腰三角形;③点B到∠CED的两边距离相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】根据题意需要证明Rt△BCE≌Rt△BDE,Rt△EDA≌Rt△EDB,即可解答【详解】∵D与C关于BE成轴对称∴Rt△BCE≌Rt△BDE(SSS)∵△BCE≌△BDE∴∠EDB=∠EDA=90°,BD=BC又∵D是AB的中点∴AD=DB∴Rt△EDA≌Rt△EDB(HL)∴∠A=30°(直角三角形含30°角,BC=12AB)∴△ABE是等腰三角形∴点B到∠CED的两边距离相等故选D【点睛】此题考查全等三角形的判定和直角三角形的性质,解题关键在于利用全等三角形的判定求解二、填空题:(本题满分24分,共有8道小题,每小题3分)请把正确答案填写在答题卡相应位置的横线上. 9.计算:22(2)32abababg=_____.【答案】13a2b3﹣a2b2【解析】【分析】利用单项式乘多项式的计算方法直接计算出结果即可【详解】221232ababab⎛⎛-⋅⎪⎪⎪=22322211123223abababababab⋅-⋅=-故答案为13a2b3﹣a2b2【点睛】此题考查单项式乘多项式,掌握运算法则是解题关键10.用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是_____.【答案】13【解析】【分析】根据题意可用概率公式事件A可能出现的次数除以所有可能出现的次数进行计算.【详解】234、243、324、342、423、432一共有6种情况是奇数的可能为243、423两种,因此概率=21=63【点睛】此题考查简单的排列,概率公式,难度不大11.若一个三角形的两边长为3和5,且周长为偶数,则这个三角形的第三边长为_____.【答案】4或6【解析】【分析】根据三角形三边关系定理可得第三边的范围是:大于已知的两边的差,而小于两边的和.再根据范围确定a的值【详解】第三边a的取值范围为2周长为偶数第三边的长为4或6【点睛】此题考查三角形三边关系,难度不大12.将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a,b上,若a∥b,∠1=16°,则∠2的度数为_____.【答案】29°.【解析】【分析】由两直线平行,同旁内角互补,可得180ABCBCD∠+∠=°,进而求出∠2的度数.【详解】解:由题意可知,∠EBC=90°,∠BCE=45°,又∠1=16°,∴∠ABC=∠EBC+∠1=106°,∵a∥b,∴180ABCBCD∠+∠=°,∴∠BCD=180°-∠ABC=180°-106°=74°,∴∠2=∠BCD-∠BCE=74°-45°=29°.故答案为29°.【点睛】本题考查了平行线的性质,熟练掌握相关性质是解题关键.13.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片_____张.【答案】5.【解析】【分析】因为大长方形的面积为(3a+2b)(a+b)=22352aabb++,B类长方形的面积为ab,分析可得B类长方形卡片的张数.【详解】解:(3a+2b)(a+b),=223322aababb+++,=22352aabb++,∵一张B类长方形卡片的面积为:ab,∴需要B类长方形卡片5张.故答案为5.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解题关键.14.如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=_____°.【答案】40°【解析】【分析】先利用三角形的内角和求出∠OBC+∠OCB,再用角平分线的意义,整体代换求出∠ABC+∠ACB,最后再用三角形的内角和即可.【详解】在△BOC中,∠OBC+∠OCB=180°−∠BOC=180°−110°=70°∵点O是△ABC的两条角平分线的交点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=2某70°=140°,在△ABC中,∠A=180°−(∠ABC+∠ACB)=180°−140°=40°故答案为40°【点睛】此题考查三角形内角和定理,解题关键在于求出∠OBC+∠OCB15.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是_____.【答案】36【解析】【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解【详解】如图,过点O作OB⊥AB于E作OF⊥AC于F,∵OB、OC分別平分∠ABC和∠ACB,OD⊥BC∴OE=OD=OF=4△ABC的面积=12某18某4=36故答案为36【点睛】此题考查角平分线的性质,解题关键在于做辅助线16.如图①,△ABC中,AD为BC边上的中线,则有S△ABD=S△ACD,许多面积问题可以转化为这个基本模型解答.如图②,已知△ABC的面积为1,把△ABC各边均顺次延长一倍,连结所得端点,得到△A1B1C1,即将△ABC向外扩展了一次,则扩展一次后的△A1B1C1的面积是_____,如图③,将△ABC向外扩展了两次得到△A2B2C2,……,若将△ABC向外扩展了n次得到△AnBn∁n,则扩展n次后得到的△AnBn∁n面积是_____.【答案】(1).7,(2).7n【解析】【分析】(1)利用三角形的中线将三角形分成面积相等的两个三角形,得出S△ACC1=S△ABC,进而得出S△A1CC1=2S△ACC1=S△ABC,同理:S△A1AB1=2S△ABC=2,S△B1BC1=2S△ABC=2,求和即可得出结论(2)同(1)的方法即可得出结论【详解】(1)∵△ABC各边均顺序延长一倍,∴BC=CC1∴1ACCSV=ABCSV=1∴11ACCSV=21ACCSV=ABCSV=2同理:S11AABSV=2ABCSV=2,11BBCSV=2ABCSV=2∴111ABCSV=ABCSV+11ACC SV+11AABSV+11BBCSV=ABCSV+2ABCSV+2ABCSV+2ABCSV=7ABCSV=7(2)由(1)的方法可得222ABCSV=7111ABCSV=49;333ABCSV=7222ABCSV=7某72ABCSV=343,…以此类推得出规律nnnABCSV=7nABCSV=7n【点睛】此题考查四边形综合题,解题关键在于找出规律三、作图题:(本题满分4分)用圆规和直尺作图,不写作法,保留作图痕迹.17.已知:线段a,∠α,∠β.求作:△ABC,使BC=a,∠B=∠α,∠C=∠β.【答案】详见解析【解析】【分析】运用基本的尺规作图,即可解答【详解】解:如图所示,△ABC即为所求.【点睛】此题考查作图-复制作图,解题关键在于掌握作图法则四、解答题:(本题满分68分,共8道小题)18.计算:(1)(13a2b)2•(﹣9ab)÷(-12a3b2);(2)(某+2y)(某﹣2y)﹣(某+y)(某﹣y);(3)[(2a+b)2﹣(a﹣b)(3a﹣b)﹣a]÷(﹣12a),其中a=﹣1,b=12.【答案】(1)2a2b;(2)﹣3y2;(3)﹣4【解析】【分析】(1)先算积的乘方,再算多项式乘多项式,最后把除法转化为乘法进行计算即可(2)利用平方差公式化简,再合并同类项即可(3)第一项利用完全平方公式展开,第二项用平方差公式化简,再去括号合并同类项,最后把除法转化为乘法,把a,b的值代入即可【详解】解:(1)原式=﹣a5b3÷(﹣12a3b2)=2a2b;(2)原式=某2﹣4y2﹣某2+y2=﹣3y2;(3)原式=(4a2+4ab+b2﹣3a2+4ab﹣b2﹣a)÷(﹣12a)=(a2+8ab﹣a)÷(﹣2a)=﹣2a﹣16b+2,当a=﹣1,b=12时,原式=2﹣8+2=﹣4.【点睛】此题考查整式的混合运算,掌握运算法则是解题关键19.七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形,请你根据下列要求拼图:(画出示意图并标明每块板的标号,在拼图时应注意:相邻的两块板之间无空隙、无重叠)(1)用七巧板中标号为①②③的三块板拼成一个等腰直角三角形;(2)选择七巧板中的三块板拼成一个正方形.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)根据七巧板中有两个较小的等腰直角三角形,且小正方形的边长与等腰三角形的腰长相等进行拼(2)根据七巧板中有两个较小的等腰直角三角形,且大等腰三角形的斜边长等于2倍小等腰三角形的腰长相等进行拼【详解】解:(1)等腰直角三角形如图所示;(2)正方形如图所示;【点睛】此题考查作图一应用与设计作图,掌握等腰三角形的性质和正方形的性质是解题关键20.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【答案】(1)310;(2)2【解析】【分析】(1)利用概率公式进行计算即可(2)利用概率公式计算出当有10个阴影时指针落在阴影部分的概率变为12,即可解答【详解】解:(1)指针落在阴影部分的概率是63=2022;(2)当转盘停止时,指针落在阴影部分的概率变为12.如图所示:【点睛】此题考查概率公式,难度不大21.如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠l=∠2,根据,所以∥.又因为AB∥CD,根据:,所以EF∥AB.【答案】内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【解析】【分析】根据平行线的性质,即可解答【详解】解:因为∠l=∠2,根据内错角相等,两直线平行,所以CD∥EF.又因为AB∥CD,根据:平行于同一直线的两条直线平行,所以EF∥AB.故答案为内错角相等,两直线平行、CD、EF、平行于同一直线的两条直线平行.【点睛】此题考查平行线的性质,难度不大22.如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE全等吗?请说明理由.【答案】△BCE≌△BDE【解析】【分析】根据全等三角形的性质与判断进行解答即可,先求出△ACB≌△ADB (SAS),再利用BC=BD,∠ABC=∠ABD,求出△BCE≌△BDE(SAS)【详解】解:△BCE≌△BDE,理由如下:在△ACB与△ADB中ACADCABDABAEAE=⎛⎛=⎛⎛=⎛∠∠,∴△ACB≌△ADB(SAS),∴BC=BD,∠ABC=∠A BD,在△BCE与△BDE中BCBDABCABDABAB=⎛⎛=⎛⎛=⎛∠∠,∴△BCE≌△BDE(SAS).【点睛】此题考查全等三角形的判定与性质,掌握判定法则是解题关键23.已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:摸球总次数50100150200250300350400450500摸到红球的频数1732446478103122136148摸到红球的频率0.340.320.2930.320.3120.320.2940.302(1)请将表格中的数据补齐;(2)根据上表,完成折线统计图;(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近(精确到0.1).【答案】(1)96;0.305;0.296;(2)详见解析;(3)0.3.【解析】【分析】(1)根据频率计算公式解答即可(2)画出折线统计图即可(3)利用频率估计概率可得到摸到红球的概率即可【详解】解:(1)300某0.32=96,122148=0.305=0.296400500,,故答案为96;0.305;0.296;(2)折线统计图如图所示:(3)当摸球次数很大时,摸到红球的频率将会接近0.3,故答案为0.3.【点睛】此题考查折线统计图,概率公式,频率分布表,解题关键在于看懂图中数据24.A,B两地相距100千米,甲,乙两人骑车同时分别从A、B两地相向而行,假设他们都保持匀速行驶,直线l1,l2分别表示甲,乙两人与A地的距离S(单位:km)与行驶时间t(单位:h)之间关系的图象.根据图象提供的信息,解答下列问题:(1)甲、乙两人的速度分别是多少?(2)经过多长时间,两人相遇?(3)分别写出甲,乙两人与A地的距离S(单位:km)与行驶时间t (单位:h)之间的关系式.【答案】(1)甲的速度为:15(km/h),乙的速度为:20(km/h);(2)经过207小时,两人相遇;(3)甲:1=15t;乙:2=﹣20t+100.【解析】【分析】(1)利用图象上点的坐标得出甲、乙的速度即可;(2)利用待定系数法求出直线l1、l2的解析式,利用两函数相等进而求出相遇的时间;(3)由(2)可得结论【详解】解:(1)如图所示:甲的速度为:30÷2=15(km/h),乙的速度为:(100﹣60)÷2=20(km/h);(2)设l1的关系式为:1=kt,则30=k某2,解得:k=15,故1=15t;设2=at+b,将(0,100),(2,60),则100260bab=⎛⎛+=⎛,解得:20100ab=-⎛⎛=⎛,故l2的关系式为2=﹣20t+100;15t=﹣20t+100,t=207,答:经过207小时,两人相遇;(3)由(2)可知:甲:l1的关系式为:1=15t;乙:l2的关系式为:2=﹣20t+100.【点睛】此题考查一次函数的应用,列出方程是解题关键25.(1)操作发现:如图①,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接AE,则AE与BD有怎样的数量关系?说明理由.(2)类比猜想:如图②,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边△CDE,连接AE,请直接写出AE与BD满足的数量关系,不必说明理由;(3)深入探究:如图③,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边分别在CD上方、下方作等边△CDE和等边△CDF,连接AE,BF则AE,BF与AB有怎样的数量关系?说明理由.【答案】(1)AE=BD;(2)AE=BD;(3)AE+BF=AB.【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可以证得△BCD≌△ACE;然后由全等三角形的对应边相等知AE=BD(2)通过证明△BCD≌△ACE,即可证明AE=BD;(3)1.AF+BF=AB;利用全等三角形△BCD≌△AC E(SAS)的对应边BD=AE;同理△BCF≌△DCA(SAS),则BF=AD,所以AE+BF=AB【详解】解:(1)AE=BD,理由如下:∵△ABC和△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,ACBCBCDACECDCE=⎛⎛=⎛⎛=⎛∠∠,∴△BCD≌△ACE(SAS),∴AE=BD;(2)AE=BD.理由如下:∵△ABC和△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,ACBCBCDACECDCE=⎛⎛=⎛⎛=⎛∠∠,∴△BCD≌△ACE(SAS),∴AE=BD;(3)AE+BF=AB.证明如下:由(1)知,△BCD≌△ACE(SAS),∴BD=AE,同理可证,△BCF≌△DCA(SAS),∴BF=AD,∴AB=AD+BD=AE+BF.【点睛】此题考查全等三角形的判定与性质和等边三角形的性质,解题关键在于利用全等三角形的性质进行求证。

【北师大版】初一数学下期末试卷含答案

【北师大版】初一数学下期末试卷含答案

一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( )A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a 3.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( ) A .3 B .4 C .2 D .14.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ) A .1 B .2 C .3 D .45.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折6.解关于,x y 的方程组()()()1328511m x n y n x my ①②⎧+-+=⎪⎨-+=⎪⎩可以用①2+⨯②,消去未知数x ,也可以用①+②5⨯消去未知数y ,则mn 、的值分别为( ) A .23,39-- B .23,40-- C .25,39-- D .25,40--7.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32- B .32 C .2- D .28.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4) 9.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1 10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 2=±D .()515-=- 11.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 12.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b二、填空题13.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为______.14.若12,m m ,…,2019m 是从0,1,2这三个数中取值的一列数,若122019 2019m m m ++⋯+=,()()()22212201911 1 1510m m m -+-+⋯+-=,则在12,m m ,....,2019m 中,取值为0的个数为__________.15.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.16.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.17.2(2)-的平方根是 _______ ;38a 的立方根是 __________.18.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.19.点()1,2P x x -+不可能在第__________象限.20.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 三、解答题21.为了积极争创“天府旅游名县”,鼓励全民参与健身运动,2019年12月29日,广汉市在城北全民健身中心举行了“2019年广汉市三星堆迷你马拉松(10公里)”比赛.组委会为了奖励活动中取得了好成绩的参赛选手,计划购买一批纪念品发放.已知甲、乙两商场以同样价格出售同样的纪念品,并且又各自推出不同的优惠方案:在甲商场累计购买该纪念品超过1000元后,超出1000元的部分按90%收费;在乙商场累计购买该纪念品超过500元后,超出500元的部分按95%收费,组委会到哪家商场购买花费少?22.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.价格/类型 A 型 B 型 进价(元/只)30 70 标价(元/只) 50 100(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售?23.若方程组 4x y a x y a+=⎧⎨-=⎩的解是二元一次方程35900x y --=的一个解,求a 的值. 24.已知点(24,1)P m m +-,请分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 在过点(2,4)A -且与y 轴平行的直线上.25.计算:(1)﹣12+327-﹣(﹣2)×9(2)3(3+1)+|3﹣2|26.如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答:(1)连接PA ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ;(2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a 、b 的不等式,再根据不等式的性质,可得B 点的坐标符号.【详解】解:∵点P(a,b)在第二象限,∴a<0,b>0,∴-a>0,b+1>0,∴点B(﹣a,b+1)在第一象限.故选A.【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.C解析:C【分析】根据不等式a+b>0得a>-b,-a<b,再根据b<0得b<-b,再比较大小关系即可.【详解】解:∵a+b>0,∴a>-b,-a<b.∵b<0,∴b<-b,∴-a<b<-b<a.故选C.【点睛】本题考查了不等式的性质与有理数的知识点,解题的关键是熟练的掌握有理数与不等式的性质.3.A解析:A【分析】两个方程相加即可求出a+b的值.【详解】解:a2b43a2b8+=⎧⎨+=⎩①②①+②得,4a+4b=12∴a+b=3故选:A.【点睛】此题主要考查了解二元一次方程组,熟练、灵活运用解题方法是解答此题的关键.4.A解析:A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x 、y 的正负分4种情况讨论:①当x >0,y >0时,方程组变形得:2824x y x y +=⎧⎨+=⎩,无解; ②当x >0,y <0时,方程组变形得:2824x y x y +=⎧⎨-=⎩, 解得x =3,y =2>0,则方程组无解;③当x <0,y >0时,方程组变形得:2824x y x y -+=⎧⎨+=⎩, 此时方程组的解为16x y =-⎧⎨=⎩; ④当x <0,y <0时,方程组变形得:2824x y x y -+=⎧⎨-=⎩,无解, 综上所述,方程组的解个数是1.故选:A .【点睛】 本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.5.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 6.A解析:A【分析】根据已知得出关于m 、n 的方程组,求出方程组的解即可.【详解】解:∵解关于x ,y 方程组()()()m 1x 3n 2y 85n x my 11⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x ;也可以用①+②×5消去未知数y ,2(1)(5)0(32)50m n n m ++-=⎧∴⎨-++=⎩∴27532m n m n -=-⎧⎨-=⎩解得:2339m n =-⎧⎨=-⎩, 故答案为:A .【点睛】本题考查了解二元一次方程组,能得出关于m 、n 的方程组是解此题的关键.7.A解析:A【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得.【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A .【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键. 8.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.9.B解析:B【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【详解】解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.10.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.11.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.二、填空题13.【分析】设该种饮料中纯净水的质量为果汁的质量为蔬菜汁的质量为纯净水的原来的价格为从而可得果汁的原来的价格为蔬菜汁的原来的价格为再根据价格变化前后该饮料的成本不变建立方程求解即可得【详解】设该种饮料中解析:4:5【分析】设该种饮料中纯净水的质量为a、果汁的质量为b、蔬菜汁的质量为c,纯净水的原来的价格为x ,从而可得果汁的原来的价格为2x ,蔬菜汁的原来的价格为2x ,再根据价格变化前后该饮料的成本不变建立方程求解即可得.【详解】设该种饮料中纯净水的质量为a 、果汁的质量为b 、蔬菜汁的质量为c ,纯净水的原来的价格为x ,则果汁的原来的价格为2x ,蔬菜汁的原来的价格为2x ,由题意得:22(120%)2(112.5%)2(112.5%)ax bx cx ax bx cx ++=-+⨯++⨯+, 整理得:45()a b c =+,则():4:5b c a +=,即该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为4:5,故答案为:4:5.【点睛】本题考查了三元一次方程的应用,依据题意,正确建立方程是解题关键.14.755【分析】解决此题可以先设0有a 个1有b 个2有c 个根据据题意列出方程组求解即可【详解】设0有a 个1有b 个2有c 个由题意得列出方程组解得故取值为0的个数为755个故答案为:755【点睛】此题主要考解析:755【分析】解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可【详解】设0有a 个,1有b 个,2有c 个,由题意得,列出方程组2019220191510a b c b c a c ++=⎧⎪+=⎨⎪+=⎩解得755509755a b c =⎧⎪=⎨⎪=⎩,故取值为0的个数为755个,故答案为:755.【点睛】此题主要考查列方程组解决问题,会根据题意设未知数列方程并正确求解是解题的关键. 15.(-32)【分析】设点P 的坐标为(xy )由点到轴的距离为2到轴的距离为3得出再根据点P 所在的象限得出答案【详解】设点P 的坐标为(xy )∵点到轴的距离为2到轴的距离为3∴∴∵点在第二象限∴x=-3y=解析:(-3, 2).【分析】设点P 的坐标为(x ,y ),由点P 到x 轴的距离为2,到y 轴的距离为3,得出3,2x y =±=±,再根据点P 所在的象限得出答案.【详解】设点P 的坐标为(x ,y ),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴3,2x y ==,∴3,2x y =±=±,∵点P 在第二象限,∴x=-3,y=2,∴点P 的坐标是(-3,2)故答案为:(-3,2).【点睛】此题考查直角坐标系中点的坐标,点到坐标轴的距离,根据点所在的象限确定点的坐标,掌握点到坐标轴的距离与点的横纵坐标的关系是解题的关键.16.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.2a 【分析】根据平方根的定义及立方根的定义解答【详解】的平方根是的立方根是2a 故答案为:2a 【点睛】此题考查平方根及立方根的定义利用定义求一个数的平方根及立方根解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a 的立方根是2a ,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.18.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.19.四【分析】去掉坐标轴上点的情况可分x<﹣2﹣2<x<1与x>1三种情况逐一判断x-1与x+2的正负进而可得答案【详解】解:当x<﹣2时x-1<0x+2<0此时点P在第三象限;当﹣2<x<1时x-1<解析:四【分析】去掉坐标轴上点的情况,可分x<﹣2、﹣2<x<1与x>1三种情况,逐一判断x-1与x+2的正负,进而可得答案.【详解】解:当x<﹣2时,x-1<0,x+2<0,此时点P在第三象限;当﹣2<x<1时,x-1<0,x+2>0,此时点P在第二象限;当x>1时,x-1>0,x+2>0,此时点P在第一象限;综上,点P不可能在第四象限.故答案为:四.【点睛】本题考查了平面直角坐标系的基本知识和一元一次不等式的内容,属于基本题型,正确分类、掌握解答的方法是解题关键.20.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键解析:12 2x<<【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 三、解答题21.见解析【分析】设顾客累计花费x 元,然后根据x 的不同取值范围分类讨论哪家的花费更少,利用不等式列式求解.【详解】解:设顾客累计花费x 元,根据题意得:(1)当x ≤500时,两家商场都不优惠,则花费一样;(2)若500<x ≤1000,去乙商场花费少;(3)若x >1000,在甲商场花费1000+(x -1000)×90%=0.9x +100(元),在乙商场花费500+(x -500)×95%=0.95x +25(元),①到甲商场花费少,则0.9x +100<0.95x +25,解得x >1500;∴x >1500到甲商场花费少②到乙商场花费少,则0.9x +100>0.95x +25,解得x <1500;∴1000<x <1500时,去乙商场购物花费少③到两家商场花费一样多,则0.9x +100=0.95x +25,解得x =1500,∴x =1500时,到两家商场花费一样多.【点睛】本题考查不等式的应用,解题的关键是根据题意列出不等式进行求解,需要注意进行分类讨论.22.(1)A 型计算机进购40只,B 形计算机进购80只;(2)B 型计算器最多打八折出售【分析】(1)设A 型计算器进购x 只,B 形计算器进购y 只,列二元一次方程组求解;(2)设B 型计算器打m 折,先算出A 型计算器和B 形计算器的单个利润,然后列不等式求解.【详解】解:(1)设A 型计算器购进x 只,B 形计算器购进y 只,列式:12030706800x y x y +=⎧⎨+=⎩,解得4080x y =⎧⎨=⎩, 答:A 型计算器购进40只,B 形计算器购进80只;(2)设B 型计算器打m 折,A 型计算器的单个利润是500.93015⨯-=(元),B 型计算器的单个利润是()10070107010m m ⎛⎫⨯-=- ⎪⎝⎭元, 列式:()15408010701400m ⨯+-≥60080056001400m +-≥8006400m ≥8m ≥,答:B 型计算器最多打八折出售.【点睛】本题考查二元一次方程组的应用和不等式的应用,解题的关键是根据题意列出方程组或不等式进行求解.23.6a =【分析】求出方程组 4x y a x y a+=⎧⎨-=⎩的解,代入35900x y --=即可求出a 的值. 【详解】解:4x y a x y a +=⎧⎨-=⎩①②, ①+②得:25x a =,即25x a =.,把25x a =.代入①得:15y a =-., 把25x a =.,15y a =-.代入方程, 得:7575900a a +-=..,解得:6a =.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.24.(1)(6,0)P ;(2)(2,2)P -.【分析】(1)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让横坐标为2求得m 的值,代入点P 的坐标即可求解.【详解】(1)由题意得:10m -=,解得:1m =,∴24246m +=+=,∴(6,0)P ;(2)由题意得:242m +=,解得:1m =-,∴12m -=-,(2,2)P -.【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.25.(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.26.(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)PD .【详解】试题分析:(1)、用量角器量出∠APB 的度数,然后求出一半的度数得出答案;(2)、根据垂线的作法得出答案;(3)、用刻度尺量出AB 的长度,然后找出中点,从而得出答案;(4)、点到直线的距离是指点到直线垂线段的长度.试题(1)、如图所示;(2)、如图所示;(3)、如图所示;(4)、PD.。

北师大版七年级下册数学《期末考试卷》(带答案)

北师大版七年级下册数学《期末考试卷》(带答案)

北师大版数学七年级下学期期末测试卷时间:120分钟总分:120分一、选择题(本大题共12个小题,每小题4分,共48分)1.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.182.下列计算正确的是( )A. a5+a5=a10B. a7÷a=a6C. a3·a2=a6D. (2x)3=2x3<3.下列图形是轴对称图形的是( )A. B. C. D.4.数据用科学记数法表示应为( )A. ×10-5B. ×10-4C. ×10-4D. 63×10-55.已知一个等腰三角形的一个底角为30°,则它的顶角等于( )A. 30°B. 40°C. 75°D. 120°6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为( )*A. 34°B. 54°C. 56°D. 66°△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ) A.8 B. 4 C. 6 D. 无法计算8.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=4,则点D到AB的距离是( )A. 4B. 3C. 2D. 59.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()\A. AB=DEB. DF∥ACC. ∠E=∠ABCD. AB∥DE10.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A. 14B.34C.12D.3811.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A. 15°B. 30°C. 45°D. 60°12.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( ))A. B. C. D.二、填空题(本大题共6个小题,每题4分,共24分)13.计算4a2b÷2ab=________;14.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为_________;15.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠ADE=________;&16.等腰三角形的腰长为13cm,底边长为10cm,则其面积为________;17.如图,在△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是________cm.18.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是________;三、解答题:(本大题共9个小题,共78分)19.计算:(1)312⎛⎫⎪⎝⎭-20190-│-5│ ;(2)(a+2)2-(a+1)(a-1).、20.先化简,再求值:[(x+y)2-y(2x+y)-8xy ]÷(2x),其中x=2,y=1 2 .21.括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(______________________).∴∠B=_______(_____________________). ;又∵∠B=∠D(已知),∴∠DCE=∠D(_____________________).∴AD∥BE(_____________________).∴∠E=∠DFE(_____________________).22.如图,点E、F在线段AB上,且AD=BC,∠A=∠B,AE=BF.求证:DF=CE.23.如图所示的一块草地,已知AD=4m,CD=3m,AB=12m,BC=13m,且∠CDA=90°,求这块草地的面积. "24.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在格点上,完成下列要求:(1)画出△ABC关于直线l对称的△A1B1C1;(2)求出△A1B1C1的面积;(3)求AC边上的高.25.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按相同路线从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S和时间t的关系.象回答下列问题:(1)甲和乙哪一个出发的更早早出发多长时间[(2)甲和乙哪一个早到达B城早多长时间(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少(4)请你根据图象上的数据,求出乙出发后多长时间追上甲26.已知:CD是经过∠BCA顶点C的一条直线,CA=、F分别是直线CD上两点,且∠BEC=∠CFA=∠α. (1)若直线CD经过∠BCA内部,且E,F在射线CD上,如图1,若∠BCA=90°,∠α=90°,则BE______CF;并说明理由.(2)如图2,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:__________.并说明理由./27.如图,已知在△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点,点P在线段BC上以3厘米每秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经一秒后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度是多少时,能够使△BPD与△CQP全等答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.)1.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.18【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=1 10.故选B.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.2.下列计算正确的是( )A. a5+a5=a10B. a7÷a=a6C. a3·a2=a6D. (2x)3=2x3【答案】B【解析】【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【详解】:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(2x)3=8x3,所以此选项错误;故选B.【点睛】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.3.下列图形是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A、B、D都不是轴对称图形,C是轴对称图形,故选C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.4.数据用科学记数法表示应为( )A. ×10-5B. ×10-4C. ×10-4D. 63×10-5【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】=×10-5,故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.已知一个等腰三角形的一个底角为30°,则它的顶角等于( )A. 30°B. 40°C. 75°D. 120°【答案】D【解析】【分析】根据已知可得到另一底角度数,根据三角形内角和定理即可求得顶角的度数.【详解】因为等腰三角形的两个底角相等,已知一个底角是30°,所以它的顶角是180°-30°-30°=120°.故选D.【点睛】此题考查等腰三角形的性质及三角形内角和定理的运用.本题给出了底角是30°,问题就变得比较简单,属于基础题.6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为( )A. 34°B. 54°C. 56°D. 66°【答案】C【解析】【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°-34°=56°.【详解】如图,∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°-34°=56°,故选C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A. 8B. 4C. 6D. 无法计算【答案】A【解析】利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=8.故选A.8.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=4,则点D到AB的距离是( )A. 4B. 3C. 2D. 5【答案】A【解析】【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【详解】如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选A.【点睛】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.9.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A. AB=DEB. DF∥ACC. ∠E=∠ABCD. AB∥DE【答案】A【解析】【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A. 14B.34C.12D.38【答案】D【解析】【分析】此概率为黑色的面积除以总方格的面积,即可得出答案.【详解】解:黑色面积=×4=6,格子总数为16,所以概率为63168 ,故选:D.【点睛】本题考查了题意的理解以及概率的使用,熟悉运用是解决本题的关键.11.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A. 15°B. 30°C. 45°D. 60°【答案】D【解析】因为△ABC是等边三角形,所以∠ABD=∠BCE=60°,AB=BC.因为BD=CE,所以△ABD≌△BCE,所以∠1=∠CBE.因为∠CBE+∠ABE=60°,所以∠1+∠ABE=60°.因为∠2=∠1+∠ABE,所以∠2=60°.故选D.12.如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B -C -D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P 点在BC 上运动,与P 点在CD 上运动,得到关系,选出图象即可【详解】由题意可知,P 从B 开始出发,沿B —C —D 向终点D 匀速运动,则当0<x≤2,s=12x 当2<x≤3,s=1 所以刚开始的时候为正比例函数s=12x 图像,后面为水平直线,故选C 【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P 的运动状态二、填空题(本大题共6个小题,每题4分,共24分)13.计算4a 2b ÷2ab =________;【答案】2a【解析】【分析】根据单项式除以单项式法则进行计算即可.【详解】24a b 2ab=(4÷2)(a 2÷a)(b÷b)=2a ,故答案为2a.【点睛】本题考查了单项式除以单项式,熟记运算法则是解题的关键.14.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x (千克)表示,售价用y (元)表示,则y 与x 的关系式为_________;【答案】y=3x【解析】观察表中数据可知y 与x 之间是一次函数关系,设y=kx+b(k≠0)将x=,y=和x=1,y=3代入y=kx+b(k≠0)中,得1.50.5{3k b k b=+=+, 解得=3{=0k b故y 与x 的关系式为y=3x;点睛:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象再判断时一次函数还是其他函数,再利用待定系数法求解相关的问题.15.如图,已知AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠ADE =________;【答案】60°【解析】【分析】直接利用平行线的性质以及角平分线的性质得出∠ADB=∠BDE ,进而得出答案.【详解】∵AD ∥BC ,∴∠ADB=∠DBC ,∵DB 平分∠ADE ,∴∠ADB=∠BDE=12∠ADE ,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠ADE的度数为:60°.故答案为60°.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.16.等腰三角形的腰长为13cm,底边长为10cm,则其面积为________;【答案】60cm2【解析】【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【详解】如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD=2222135AB AD-=-=12cm,∴S△ABC=12BC•AD=12×10×12=60(cm2),故答案为60cm2.【点睛】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,在△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是________cm.【答案】14CM【解析】:∵DE是AB的垂直平分线,∴AB=2AE=2×1=2cm ;DB=DA∴△ABC 的周长为BA+AC+CD+DB=BA+(AC+CD+DA )=2+12=14cm .△ABC 的周长是14cm18.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是________;【答案】245. 【解析】【分析】 过点C 作CM ⊥AB 交AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,根据三角形的等面积法得出CE=245,即PC+PQ 的最小值为245【详解】解:如图,过点C 作CM ⊥AB 交AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,∵AD 是∠BAC 的平分线.∴PQ=PM ,这时PC+PQ 有最小值,即CM 的长度,∵AC=6,BC=8,∠ACB=90°,∴22226810AC BC +=+=∵S △ABC=12AB•CM=12AC•BC , ∴CM=6824105AC BC AB ⋅⨯==即PC+PQ的最小值为245.故选C.三、解答题:(本大题共9个小题,共78分)19.计算:(1)312⎛⎫⎪⎝⎭-20190-│-5│ ;(2)(a+2)2-(a+1)(a-1).【答案】(1)758-;(2)45a+.【解析】【分析】(1)原式利用绝对值的代数意义,零指数幂以及乘方的意义计算即可得到结果;(2)分别运用完全平方公式和平方差公式进行计算即可.【详解】(1)312⎛⎫⎪⎝⎭-20190-│-5│=115 8--=758-;(2)(a+2)2-(a+1)(a-1).=22441a a a++-+=45a+.【点睛】此题考查了整式的混合运算,以及有理数的运算,熟练掌握公式及运算法则是解本题的关键.20.先化简,再求值:[(x+y)2-y(2x+y)-8xy ]÷(2x),其中x=2,y=1 2 .【答案】3【解析】【分析】先根据整式混合运算顺序和运算法则化简原式,再将x、y代入计算可得.【详解】原式=(x2+2xy+y2-2xy-y2-8xy)÷(2x)=(x2-8xy)÷(2x)=12x-4y,当x=2、y=-12时,原式=12×2-4×(-12)=1+2=3.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.21.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(______________________).∴∠B=_______(_____________________).又∵∠B=∠D(已知),∴∠DCE=∠D(_____________________).∴AD∥BE(_____________________).∴∠E=∠DFE(_____________________).【答案】详解见解析.【解析】【分析】根据平行线的判定和平行线的性质填空.【详解】证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等).【点睛】本题利用平行线的判定和平行线的性质填空,主要在于训练证明题的解答过程.22.如图,点E 、F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .【答案】证明见解析【解析】试题分析:由AE =BF 可证得AF =BE ,结合已知条件利用SAS 证明△ADF ≌△BCE ,根据全等三角形的对应边相等的性质即可得结论.试题解析:证明:∵点E ,F 在线段AB 上,AE =BF .∴AE +E F =BF +EF ,即:AF =BE .在△ADF 与△BCE 中, ,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCE (SAS )∴ DF=CE (全等三角形对应边相等)23.如图所示的一块草地,已知AD =4m ,CD =3m ,AB =12m ,BC =13m ,且∠CDA =90°,求这块草地的面积.【答案】24m 2.【解析】【分析】连接AC ,利用勾股定理可以得出三角形ACD 和ABC 是直角三角形,△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】连接AC ,∵∠ADC=90°,AD=4m ,CD=3 m ,∴AC 2=AD 2+CD 2=42+32=25 ,又∵AC >0,∴AC=5 m ,又∵BC=13m ,AB=12m ,∴AC 2+AB 2=52+122=169,又∵BC 2=169,∴AC 2+AB 2=BC 2,∴∠ACB=90°,∴S △ABC =2115123022AC AB m ⨯⨯=⨯⨯= ∴S 四边形ABCD =S △ABC -S △ADC =30-6=24m 2.【点睛】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握定理及逆定理是解本题的关键. 24.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点都在格点上,完成下列要求:(1)画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)求出△A 1B 1C 1的面积;(3)求AC 边上的高.【答案】(1)作图见解析;(2)9;(3)185. 【解析】【分析】(1)分别作出点A 、B 、C 关于直线l 的对称点,再顺次连接可得;(2)利用割补法求解可得;(3)利用等积法求解即可.【详解】(1)如图所示即为所作图形;(2)△A 1B 1C 1的面积=3×6-11234322⨯⨯-⨯⨯=9; (3)AC=224+3=5∴AC 边上的高=9218=55⨯. 【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及割补法解决问题.25.如图所示,A 、B 两地相距50千米,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车按相同路线从A 地出发驶往B 地,如图所示,图中的折线PQR 和线段MN 分别表示甲、乙所行驶的路程S 和时间t 的关系.象回答下列问题:(1)甲和乙哪一个出发的更早早出发多长时间(2)甲和乙哪一个早到达B 城早多长时间(3)乙骑摩托车的速度和甲骑自行车在全程的平均速度分别是多少(4)请你根据图象上的数据,求出乙出发后多长时间追上甲【答案】(1)甲更早,早出发1 h;(2)乙更早,早到2 h;(3)甲的平均速度h, 乙的平均速度是50km/h;(4) 乙出发h就追上甲【解析】分析:(1)(2)读图可知;(3)从图中得:甲和乙所走的路程都是50千米,甲一共用了4小时,乙一共用了1小时,根据速度=路程时间,代入计算得出;(4)从图中得:甲在走完全程时,前1小时速度为20千米/小时,从第2小时开始,速度为502052--=10千米/小时,因此设乙出发x小时就追上甲,则从图中看,是在甲速度为10千米/小时时与乙相遇,所以甲的路程为20+10x,乙的路程为50x,列方程解出即可.详解:(1)甲下午1时出发,乙下午2时出发,所以甲更早,早出发1小时;(2)甲5时到达,乙3时到达,所以乙更早,早到2小时;(3)乙的速度=5032-=50(千米/时),甲的平均速度=5051-=(千米/时);(4)设乙出发x小时就追上甲,根据题意得:50x=20+10x,x=.答:乙出发小时就追上甲.点睛:本题是函数的图象,根据图象信息解决实际问题,存在两个变量:路程和时间;通过此类题目的练习,可以培养学生分析问题和运用所学知识解决问题的能力,同时还能使学生体会到函数知识的实用性.26.已知:CD是经过∠BCA顶点C的一条直线,CA=、F分别是直线CD上两点,且∠BEC=∠CFA=∠α. (1)若直线CD经过∠BCA的内部,且E,F在射线CD上,如图1,若∠BCA=90°,∠α=90°,则BE______CF;并说明理由.(2)如图2,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:__________.并说明理由.【答案】(1)=;(2)EF=BE+AF.【解析】【分析】(1)求出∠BEC=∠AFC=90°,∠CBE=∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE=CF 即可;(2)求出∠BEC=∠AFC ,∠CBE=∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE=CF ,CE=AF 即可.【详解】(1)如图1中,E 点在F 点的左侧,∵BE ⊥CD ,AF ⊥CD ,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF ,在△BCE 和△CAF 中,EBC ACF BEC AFC BC AC ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△BCE ≌△CAF (AAS ),∴BE=CF ,(2)EF=BE+AF .理由是:如图2中,∵∠BEC=∠CFA=∠a ,∠a=∠BCA ,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF ,∴∠EBC=∠ACF ,在△BEC 和△CFA 中,EBC FCA BEC CFA BC CA ∠∠⎧⎪∠∠⎨⎪⎩===,∴△BEC ≌△CFA (AAS ),∴AF=CE ,BE=CF ,∵EF=CE+CF ,∴EF=BE+AF .【点睛】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似.27.如图,已知在△ABC 中,AB =AC =10厘米,BC =8厘米,点D 为AB 的中点,点P 在线段BC 上以3厘米每秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经一秒后,△BPD 与△CQP 是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度是多少时,能够使△BPD 与△CQP 全等【答案】(1)全等,理由见解析;(2)154cm/s 【解析】【分析】 (1)先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明;(2)设当点Q 的运动速度为x 厘米/时,时间是t 小时,能够使△BPD 与△CQP 全等,求出BD=5厘米,BP=3t 厘米,CP=(8-3t )厘米,CQ=xt 厘米,∠B=∠C ,根据全等三角形的性质得出方程,求出方程的解即可.【详解】(1)∵t=1(秒),∴BP=CQ=3(厘米)∵AB=12,D 为AB 中点,∴BD=6(厘米)又∵PC=BC ﹣BP=9﹣3=6(厘米)∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS )(2)设当点Q 的运动速度为x 厘米/时,时间是t 小时,能够使△BPD 与△CQP 全等,∵BD =5厘米,BP =3t 厘米,CP =(8−3t )厘米,CQ =xt 厘米,∠B =∠C ,∴当BP =CQ ,BD =CP 或BP =CP ,BD =CQ 时,△BPD 与△CQP 全等,即①3t =xt ,5=8−3t ,解得:x =3(不合题意,舍去),②3t =8−3t ,5=xt ,解得:x =154, 即当点Q 的运动速度为154厘米/时时,能够使△BPD 与△CQP 全等. 【点睛】本题主要考查了全等三角形的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.·。

北师大版七年级下册数学《期末考试试题》(带答案解析)

北师大版七年级下册数学《期末考试试题》(带答案解析)

2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。

【最新】北师大版数学七年级下册《期末测试卷》附答案解析

【最新】北师大版数学七年级下册《期末测试卷》附答案解析

B. ∠BEA =∠CDAC. BE =CD北师大版七年级下学期期末测试数 学 试 卷学校________班级________姓名________ 成绩________一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列计算正确 是( )A. 3a ·4a =12aB. a 3·a 2=a 12C. (-a 3)4=a 12D. a 6÷a 2=a 3的3.将 0.0000019 用科学计数法表示为()A. 1.9×10-6B. 1.9×10-5C. 19×10-7D. 0.19×10-54.如图,AB ∥CD ,直线 l 交 AB 于点 E ,交 CD 于点 F ,若∠2=80°,则∠1 等于()A. 80°B. 100°C. 110°D. 120°5.点 D 、E 分别在级段 AB 、AC 上,CD 与 BE 相交于点 O ,已知 AB =AC ,添加以下哪一个条件不能判定 △ABE ≌△ACD ()A. ∠B =∠CD. CE =BD△6.如图,把 ABC 纸片沿 DE 折叠,当点 A 落在四边形 BCDE 内部时,如果∠1=40°,∠2=30°,那么∠A =( )则2 D.3 .A.40°B.30°C.70°D.35°7.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为()A.25°B.65°C.70°D.75°8.已知a+b=5,ab=3,则a2+b2的值为()A19 B.25 C.8 D.69.已知a=8131,b=2741,c=961,a、b、cA.a>b>cB.a>c>b大小关系是()C.a<b<cD.b>c>a的10.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.13B.14C.1411.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB 上的高等于DC.其中正确的个数是()A.1B.2C.3D.412.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020n,,,因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1B.52020-1C.52020-14D.52019-14二、填空题(共6小题,每小题4分,满分24分)13.若a m=3,a n=2,则a m+=_______;14.若x2-2mx+9是一个完全平方式,则m的值为______;15.如图:AB∥CD,AE平分∠BAC CE平分∠ACD,则∠1+∠2=_____;16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.17.等腰三角形两边长为4cm、6cm,求等腰三角形的周长.18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O AD与BC交于点P BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP =BQ;④DE=DP;⑤∠AOE=120°,其中正确结论有_____;(填序号).三、解答题(共9小题,满分78分,解答应写出必要的文字说明,证明过程或演算步骤)19.计算(1)(2a4)2÷a3-a2·a3;(2)2a2b(-3b2c)÷(4ab3)20.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=1421.如图,AC和BD相交于点O,OA=OC,OB=OD,则线段AB与CD有什么位置类系?并说明理由.22.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:.解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_____=90°(垂直定义)∴DG∥AC,(____________________)∴∠2=∠_________(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF∥______(同位角相等,两直线平行)∴∠AEF=∠ADC,(________________)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.23.在一个装有2个红球和3个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小刚获胜,这个游戏对双方公平吗?为什么?如何修改可以让游戏公平?24.我县出租车车费标准如下:2千米以内(含2千米)收费4元;超过2千米的部分每千米收费1.5元.(1)写出收费y(元)与出租车行驶路程x(km)(x>2)之间的关系式;(2)小明乘出租车行驶6km,应付多少元?(3)小颖付车费16元,那么出租车行驶了多少千米?25.如图,在方格纸中,每个小正方形的边长为1,其中有两个格点A、B和直线l.(1)在直线l上找一点M,使得MA=MB;(2)找出点A关于直线l的对称点A1;(3)P为直线l上一点,连接BP,△AP,当ABP周长最小时,画出点P的位置,并直接写出△ABP周长的最小值.26.如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示PC的长为_______________;(2)若点Q的运动速度与点p的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?27.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由.(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由.(3)小亮将直线MN绕点C旋转到图2的位置,线段DE、AD、BE之间存在着什么的数量关系,请写出这一关系,并说明理由.答案与解析一、选择题(本大题共12小题,每小题4分,共48分)1.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【此处有视频,请去附件查看】2.下列计算正确的是()A.3a·4a=12aB.a3·a2=a12C.(-a3)4=a12D.a6÷a2=a3【答案】C【解析】【分析】直接利用单项式乘以单项式;同底数幂的乘法运算法则;以及幂的乘法运算法则和同底数幂除法运算法则分别计算得出答案.【详解】A项3a·4a=12a2故A项错误.B项a3·a2=a5故B项错误.C项(-a3)4=a12正确.D项a6÷a2=a4故D项错误.【点睛】此题考查了单项式乘以单项式、同底数幂的乘法运算法则以及幂的乘法运算法则和同底数幂除法运算法则运算法则,熟练掌握运算法则是解题的关键.3.将0.0000019用科学计数法表示为()A.1.9×10-6B.1.9×10-5C.19×10-7D.0.19×10-5【答案】A【解析】【分析】利用科学计数法,表达的形式a×10n,其中0≤|a|<10,n是负整数,其n是原数前面0的个数,包括小数点前面的0.【详解】1.9×10-6【点睛】本题考查:小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.80°B.100°C.110°D.120°【答案】B【解析】【分析】利用AB∥CD,所以∠1=∠CFE,因为∠2+∠CFE=180°,∠2=80°,所以∠CFE=100°,因此∠1=100°【详解】因为AB∥CD,所以∠1=∠CFE,因为∠2+∠CFE=180°,∠2=80°,所以∠CFE=100°,因此∠1=100°.故选B【点睛】本题考查平行线的性质,要熟练掌握内错角相等两直线平行;同旁内角互补两直线平行;同位角相等,两直线平行.5.点D、E分别在级段AB、AC上,CD与BE相交于点O,已知AB=AC,添加以下哪一个条件不能判定△ABE≌△ACD()A.∠B=∠CB.∠BEA=∠CDAC.BE=CDD.CE=BD【答案】C【解析】【分析】把选项代入,可知A、B、D都符合全等三角形的判定,只有C项不符合.【详解】添加A选项中条件可用ASA判定两个三角形全等;添加B选项以后是AAS,判定两个三角形全等;添加C是SSA,无法判定这两个三角形全等;添加D因为AB=AC,CE=BD,所以AD=AE,又因为∠A=∠A,AB=AC所以,这两个三角形全等,SAS.故选C.【点睛】本题考查全等三角形的判定,要掌握ASA,SSS,SAS,AAS是解题的关键.△6.如图,把ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,如果∠1=40°,∠2=30°,那么∠A=()A.40°B.30°C.70°D.35°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠A´ED,∠ADE=∠A´DE,一,再根据平角的性质和三角形内角和定理得出答案.【详解】因为折叠使∠A ED=∠A´ED,∠ADE=∠A´DE,所以∠1+∠AEA´=180°,因为∠1=40°,所以∠AEA´=140°,即∠AED=∠A´ED=70°,同理求出∠ADE=∠A´DE=75°,因为ΔA´DE的内角和180°,所以∠A´=180°-70°-75°=35°,即∠A=35°.则【点睛】本题考查折叠的性质、平角的性质、三角形内角和定理来解,熟练掌握折叠会出现相等的角和线段.7.如图,a ∥b ,点 A 在直线 a 上,点 C 在直线 b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2 的度数为()A. 25°B. 65°C. 70°D. 75°【答案】B.【解析】试题分析:∵∠BAC=90°,AB=AC ,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∵a ∥b ,∴∠2=∠ACE=65°,故选 B .考点: 1.等腰直角三角形;2.平行线的性质.8.已知 a +b =5,ab =3,则 a 2+b 2 的值为()A. 19B. 25C. 8D. 6【答案】A【解析】【分析】先根据完全平方公式得到 a 2+b 2=(a+b )2-2ab ,然后把 a+b=5,ab=3 整体代入计算即可.【详解】因为 a 2+b 2=(a+b )2-2ab ,a+b=5,ab=3,所以 a 2+b 2=(a+b )2-2ab=25-6=19.【点睛】本题考查了完全平方公式:(a ±b )2=a 2±2ab+b 2.也考查了整体代入的思想运用.9.已知 a = 8131,b = 2741,c = 961, a 、b 、c 的大小关系是( ) A. a >b >c【答案】AB. a >c >bC. a <b <cD. b >c >a2 D.33 B.14 C.1.【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:a=8131=3124,b=3123,c=961=3122,a>b>c.故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键10.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A.14【答案】B【解析】【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【详解】从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,其中构成直角三角形的有6,8,10共1种,则P(构成直角三角形)=1 4故选B.【点睛】从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.11.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB 上的高等于DC.其中正确的个数是()A.1B.2C.3D.4【解析】【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB 的中垂线上;④利用角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.12.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1B.52020-1C.52020-14 D.52019-142019【解析】【分析】根据题目信息,设 S=1+5+52+53+…+52019,表示出 5S=5+52+53+…+52020,然后相减求出 S 即可.【详解】根据题意,设 S=1+5+52+53+…52019,则 5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+5 = 52020 1 4故选 C .【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.二、填空题(共 6 小题,每小题 4 分,满分 24 分)13.若 a m =3,a n =2,则 a m +n =_______;【答案】6【解析】【分析】先根据同底数幂的乘法法则把代数式化为已知的形式,再把已知代入求解即可.【详解】∵a m •a n =a m+n ,∴a m+n =a m •a n =3×2=6.【点睛】解答此题的关键是熟知同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即 a m •a n =a m+n .14.若 x 2-2mx +9 是一个完全平方式,则 m 的值为______;【答案】±3【解析】【分析】本题考查完全平方公式的灵活应用,这里首末两项是 x 和 3 的平方,那么中间项为加上或减去 x 和 3 的乘积的 2 倍.【详解】∵x 2-2mx+9 是一个完全平方式,∴-2m=±6,∴∠1=∠BAC,∠2=∠ACD,o.解得:m=±3.故答案为±3.【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.15.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____;【答案】90°【解析】试题解析:AB∥CD,∠BAC+∠ACD=180o,∵AE平分∠BAC,CE平分∠ACD,112211∴∠1+∠2=(∠BAC+∠ACD)=⨯180o=90.22故答案为90o.点睛:两直线平行,同旁内角互补.16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.【答案】10米【解析】【分析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果【详解】解:如图,设大树高为AB=10米,, , 小树高为 CD=4 米,过 C 点作 CE ⊥AB 于 E ,则 EBDC 是矩形,连接 AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6 米,在 △Rt AEC 中,AC= AE 2 + EC 2 =10 米故答案为 10.【点睛】本题考查勾股定理的应用,即 a 2 + b 2 = c 2 .17.等腰三角形两边长为 4cm 、6cm ,求等腰三角形的周长.【答案】14cm 或 16cm【解析】【分析】由于两边的长为 4m 和 6cm ,具体哪边是底,哪边是腰题目没有明确,应分两种情况讨论.【详解】解:当腰长是 6m ,底长是 4cm 时,4+6>6,故能构成三角形,则周长是 4+6+6=16cm ;当腰长是 4m ,底长是 6cm 时,4+4>6,故能构成三角形,则周长是:4+4+6=14cm ;则等腰三角形 周长是 14cm 或 16cm .故答案为 14cm 或 16cm【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边时要分类进行讨论,同时要验证各种情况是否能构成三角形进行解答.18.如图,C 为线段 AE 上一动点(不与点 A ,E 重合),在 AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点 O AD 与 BC 交于点 P BE 与 CD 交于点 Q ,连接 PQ .以下五个结论:①AD =BE ;②PQ ∥AE ;③AP=BQ ;④DE =DP ;⑤∠AOE =120°,其中正确结论有_____;(填序号).【答案】①②③⑤【解析】分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC△,得到CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,即∠AOE=180°-60°=120°可知⑤正确.【详解】∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,(又∵∠PCQ=60°△可知 PCQ 为等边三角形,∴∠PQC=∠DCE=60°,∴PQ ∥AE ②正确,∵△CQB ≌△CPA ,∴AP=BQ ③正确,∵AD=BE ,AP=BQ ,∴AD-AP=BE-BQ ,即 DP=QE ,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ ,∠CDE=60°,∴∠DQE ≠∠CDE ,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE ,∠EDC=60°=∠BCD ,∴BC ∥DE ,∴∠CBE=∠DEO ,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴∠AOE=180°-60°=120°∴⑤正确.故正确的有:①②③⑤.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.三、解答题(共 9 小题,满分 78 分,解答应写出必要的文字说明,证明过程或演算步骤)19.计算(1)(2a 4)2÷a 3-a 2·a 3;(2)2a 2b (-3b 2c )÷(4ab 3)【答案】 1)3a 5 (2)- 3 2ac 【解析】【分析】(1)根据整式混合运算即可求出结果;(2)单项式乘以单项式和单项式除以单项式即可求出答案.【详解】(1)原式=4a 8÷a 3- a 2·a 3=4a 5-a 5=3a 5..(2)原式=-6a2b3c÷(4ab3)=-32ac【点睛】本题考查整式混合运算和单项式乘以单项式、单项式除以单项式,熟练掌握其定义即可20.先化简,再求值,(x+1)(x-1)-(x-2)2,其中x=14【答案】4x﹣5,﹣4【解析】利用平方差公式和完全平方公式进行化简,然后代入求值即可解:(x+1)(x﹣1)﹣(x﹣2)2=x2﹣1﹣x2+4x﹣4=4x﹣5;当x=11时,原式=4×﹣5=﹣4.4421.如图,AC和BD相交于点O,OA=OC,OB=OD,则线段AB与CD有什么位置类系?并说明理由.【答案】AB∥CD,理由看详解.【解析】分析】根据ΔABO≌ΔCDO,求出∠C=∠A,根据内错角相等,两直线平行.【详解】在ΔABO和ΔCDO中,AO=CO,∠AOB=∠COD(对顶角相等),BO=DO.所以ΔABO≌ΔCDO (SAS),所以∠C=∠A,所以AB∥CD(内错角相等,两直线平行).因此AB和CD的位置关系是平行.【点睛】本题考查平行线的判定,内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.22.填空:如图,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系:解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_____=90°(垂直定义)∴DG∥AC,(____________________)∴∠2=∠_________.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠________(等量代换)∴EF∥______(同位角相等,两直线平行)∴∠AEF=∠ADC,(________________)∵EF⊥AB,∴∠AEF=90°∴∠ADC=90°即:CD⊥AB.【答案】∠ACB;同位角相等,两直线平行;∠ACD;∠ACD;CD;两直线平行,同位角相等.【解析】【分析】根据垂直于同一直线的两条直线平行,证出DG∥AC,再根据DG∥AC,∠1=∠2,证出∠1=∠ACD,所以EF∥CD,因此∠AEF=∠ADC=90°,即CD⊥AB.【详解】解:CD⊥AB∵DG⊥BC,BC⊥AC(已知)∴∠DGB=∠_ACB__=90°(垂直定义)∴DG∥AC,(同位角相等,两直线平行_____)∴∠2=∠ACD__.(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD_(等量代换)∴EF∥__CD__(同位角相等,两直线平行)∴∠AEF=∠ADC,(_两直线平行,同位角相等__)∵EF⊥AB,∴∠AEF=90°...∴∠ADC=90°即:CD⊥AB.【点睛】本题考查平行线的判定和平行线的性质的综合运用,要熟练掌握是做题的关键23.在一个装有 2 个红球和 3 个白球(每个球除颜色外完全相同)的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小刚获胜,这个游戏对双方公平吗?为什么?如何修改可以让游戏公平?【答案】不公平;理由看详解;取出一个白球,使红球和白球的个数相等,这样游戏公平【解析】分析】根据红球和白球的个数,以及总个数,求出 P(小明获胜)和 P(小刚获胜),比较大小所以游戏即可.再根据取出一个白球,使红球和白球的个数相等,P(小明获胜)= 1 2 ;P(小刚获胜)= 1 2,获胜的概率相等,游戏公 平.【详解】因为共 5 个球,红球 2 个,白球 3 个,所以 P(小明获胜)= 2 5 ;P(小刚获胜)= 3 5 , 2 3 < ,所以游 5 5 戏不公平.取出一个白球,使红球和白球的个数相等,P(小明获胜)= 1 2 ;P(小刚获胜)= 1 2,获胜的概率相 等,游戏公平.【点睛】本题考查游戏的公平性,即概率的意义:一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 P (A )=m n . 24.我县出租车车费标准如下:2 千米以内(含 2 千米)收费 4 元;超过 2 千米的部分每千米收费 1.5 元.(1)写出收费 y (元)与出租车行驶路程 x (km )(x >2)之间的关系式;(2)小明乘出租车行驶 6km ,应付多少元?(3)小颖付车费 16 元,那么出租车行驶了多少千米?【答案】(1) y=1+1.5x ;(2)10 元;(3)10 千米.【解析】【分析】根据题意列出来表达式,y=1+1.5x ,然后当 x=6 时求出 y 值,最后当 y=16 时,再求出 x 值.【详解】(1) y=4+(x-2)×1.5=4+1.5x-3=1+1.5x ,即 y=1+1.5x .(2)当 x=6km 时,y=1+1.5×6=10 元,即小明乘出租车行驶 6km ,应付 10 元.(3)当 y=16 元时,则 16=1+1.5x ,则 x=10km ,即小颖付车费 16 元,那么出租车行驶了 10 千米.【点睛】本题考查变量之间的关系,根据题意列出表达式是解题的关键25.如图,在方格纸中,每个小正方形的边长为1,其中有两个格点A、B和直线l.(1)在直线l上找一点M,使得MA=MB;(2)找出点A关于直线l的对称点A1;(3)P为直线l上一点,连接BP,△AP,当ABP周长最小时,画出点P的位置,并直接写出△ABP周长的最小值.【答案】答案看详解.【解析】【分析】(1)连接AB,做AB的垂直平分线L1,L1与L相交于点M,连接MA和MB,所以MA=MB.(2)过A点向L做垂线AO,并延长AO,使AO=A1O,即A1即为所求.(3)由(2)知A点关于L的对称点A1连接BA与L相交于P,P点即为所求.1【详解】(1)(2)(3)由图知:△ABP周长=AP+BP+AB=AB+BP+P A1=4+6=10,即△ABP周长的最小为10.【点睛】本题考查垂直平分线上的一点到线段两端点的距离相等,一点关于一条直线对称,轴对称最短线路问题,本题关键是掌握两点间线段最短.26.如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含 t 的式子表示 PC 的长为_______________;(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2 时,三角形 BPD 与三角形 CQP 是否全等,请说明理由;(3)若点 Q 的运动速度与点 P 的运动速度不相等,请求出点 Q 的运动速度是多少时,能够使三角形 BPD 与三角形 CQP 全等?【答案】(1)PC=12-2t ;(2)ΔBPD ≌ΔCQP 理由见详解;(3) 8 3cm/s 【解析】【分析】(1)根据 BC=12cm ,点 P 在线段 BC 上以 2 厘米/秒的速度由 B 点向 C 点运动,所以当 t 秒时,运动 2t ,因此PC=12-2t.(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2s 时,则 CQ=4cm ,BP=4cm ,因为 BC=12cm ,所以 PC=8cm,又因为 BD=8cm ,AB=AC ,所以∠B=∠C,因此求出 ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根据 ΔBPD≌ΔCQP 得出 BP=PC ,进而算出时间 t ,再算出 v 即可.【详解】(1)由题意得出:PC=12-2t(2)若点 Q 的运动速度与点 p 的运动速度相等,当 t =2s 时,则 CQ=4cm ,BP=4cm ,∵ BC=12cm ,∴PC=8cm,又∵BD=8cm,AB=AC ,∴∠B=∠C,在 ΔBPD 和 ΔCQP 中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS ).(3)若点 Q 的运动速度与点 P 的运动速度不相等,∵V p ≠V Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则 BP=PC=6cm,CQ=BD=8cm,∴点 P 、点 Q 运动的时间 t=CQ 8 8 8 ∴V Q == = cm/s ,即 Q 速度为 cm/s. t3 3 3 BP 2=3s , 【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有 SAS ,ASA ,AAS ,SSS ,题目比较好,但是有一定的难度.27.在△ABC 中,∠ACB =90°,AC =BC ,直线 MN 经过点 C ,且 AD ⊥MN 于 D ,BE ⊥MN 于 E .(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由.(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由.(3)小亮将直线MN绕点C旋转到图2的位置,线段DE、AD、BE之间存在着什么的数量关系,请写出这一关系,并说明理由.【答案】(1)△ADC≌△CEB;(2)理由见详解;(3)理由见详解.【解析】【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,(2)由(1)可知△ADC≌△CEB所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(3)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.【详解】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,∠ADC=∠CEB∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS).(2)由(1)可知△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(3)证明:在△ADC和△CEB中,∠ADC=∠CEB=90°∠ACD=∠CBEAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE;【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。

最新北师大版七年级下册数学期末考试试卷以及答案

最新北师大版七年级下册数学期末考试试卷以及答案

七年级下册数学期末考试试卷一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、下列是轴对称图形的是()。

A、B、C、D、2、A、米9107⨯B、米﹣87⨯10C、米﹣97⨯10D、米﹣97.0⨯103、已知三角形的三边长分别是5、a、9,则a可能是()A、4B、6C、14D、154、下列计算正确的是()A、22x3)(x3=B、93a3•a=aC、62x3(﹣=x﹣)D、4-x5=x5、如图,AB∥CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是()。

A、76°B、38°C、19°D、72°6、下列事件中,是随机时间的是()A、经过有交通信号灯的路口,遇到红灯B、实习铁球投入水中会沉入水底C、一滴花生油滴入水中,油会浮在水面D、两个负数的和为正数7、某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是她离家的与时间关系的图象,根据图象信息,下列说法正确的是()A、小王去时的速度大于回家的速度B、小王在朋友家停留了10分钟C、小王去时所花时间小于回家所花时间D、小王去时走上坡路,回家时走下坡路8、若9-(是完全平方式,则m的值是()+)x1mx2+A、7B、﹣6C、±6D、7或﹣59、如图,有一个池塘,要测量两端A、B的距离,可先在平地上取一个不经过池塘可以直接到达点A和点B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,CE=CB,连接ED,若量的DE=58米,则A、B间距离即可求,依据是()。

A、SASB、SSSC、AASD、ASA10、将一幅三角板如图所示的方式放置,下列结论正确的是()。

A、∠1=∠2B、如果∠2=30°,则AC∥DEC、如果∠2==45°,则∠4=∠DD、如果∠2=50°,则BC∥AE11、等腰三角形中,一个角等于40°,它的一条腰上的高和底边的夹角是()A、20°B、50°C、25°或40°D、20°或50°12、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,下列结论中:①AD=CB,②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE,其中正确的有()个。

最新北师大版七年级下册数学期末试卷及答案

最新北师大版七年级下册数学期末试卷及答案

北师大版七年级下册数学期末复习试卷(一)一、耐心填一填( 共15空,每空两分,共30)1、等腰三角形的三边长分别为:x +1、 2x +3 、9 。

则x = 2.计算:x ·x 2·x 3= ; (-x)·(-21x)= ; (-21)0= ; (a +2b)( )=a 2-4b 2; (2x -1)2= 3.若,21,8==nma a 则=-nm a324.已知,如图1,AC ⊥BC ,CD ⊥AB 于D ,则图中有 个直角,它们是 ,点C 到AB 的距离是线段 的长图1 图25.如图2,直线a 、b 被直线c 所截形成了八个角,若a ∥b ,那么这八个角中与∠1相等的角共有 个(不含∠1).6、如果x 、y 互为相反数,满足()095322=++--x y a ,那么a = 。

7.把a 4-16分解因式是8.若x 2+kx +25是一个完全平方式,则k =9七⑴班学生42人去公园划船,共租用10艘船。

大船每艘可坐5人,小船每艘可坐3人,每艘船都坐满。

问大船、小船各租了多少艘?设坐大船的有x 人,坐小船的有y 人,由题意可得方程组为: .二:精心选一选:(只有一个答案正确,每题3分,共30分10.下列命题中的假命题是( ) A .两直线平行,内错角相等 B .两直线平行,同旁内角相等 C .同位角相等,两直线平行D .平行于同一条直线的两直线平行11.在下列多项式的乘法中,可用平方差公式计算的是( ) A .(2+a)(a +2)B .(21a +b)(b -21a) C .(-x +y)(y -x)D .(x 2+y)(x -y 2)A B CD 1a b c12、能把任意三角形分成面积相等的两个三角形的线段是这个三角形的一条( ) A 、角平分线 B 、中线 C 、高线 D 、既垂直又平分的线段13、如右上图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全 一样的玻璃,那么最省事的办法是( )(A )带①去 (B )带②去 (C )带③去 (D )带①和②去图3 图4 14.如图4,AB ∥ED ,则∠A +∠C +∠D =( ) A .180°B .270°C .360°D .540°15.下列方程组中,是二元一次方程组的是( )A 、⎩⎨⎧-=+=z y y x 312B 、⎩⎨⎧=+=712y x xyC 、⎩⎨⎧==43y xD 、⎪⎩⎪⎨⎧=-=+423211y x y x 16.不等式2(x -1)≥3x +4的解集是( )A .x <-6B .x ≤-6C .x >-6D .x ≥-6 17下列事件中,不确定事件是( )A 两直线平行,内错角相等;B 拔苗助长;C 掷一枚硬币,国徽的一面朝上;D 太阳每天早晨从东方升起。

北师大版初一数学下册期末考试试卷及答案.doc

北师大版初一数学下册期末考试试卷及答案.doc

一、选择题1、下列运算正确的是( )。

A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51D 152 4、1纳米相当于1根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径..是( ) A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米 5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟; (2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个 7.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角 D .直角三角形 8. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .49. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若 △ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 10.下列关系式中,正确..的是( ) A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+11.下面有4个汽车标致图案,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个12.下列乘法中,不能运用平方差公式进行运算的是( )A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b ) 二、填空题(每空4分,共20分) 13、单项式313xy -的次数是 . 14、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形. 15、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .16、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .17、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)

2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。

北师大版七年级数学下册期末测试题含答案参考

北师大版七年级数学下册期末测试题含答案参考

北师大版七年级数学下册期末测试题(时间:120分钟满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列成语所描述的事件是必然事件的是()A.拔苗助长B.瓮中捉鳖C.水中捞月D.守株待兔2.下列世界博览会会徽图案中是轴对称图形的是()3.已知一个等腰三角形的一个底角为30°,则它的顶角等于()A.30°B.40°C.75°D.120°4.下列运算正确的是()A.a2+a3=a5B.(a-2)2=a2-4C.2a2-3a2=-a2D.(a+1)(a-1)=a2-25.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 6.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°7.如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2,∠E=∠C,AE=AC,则()A.△ABC≌△AFE B.△AFE≌△ADCC.△AFE≌△DFC D.△ABC≌△ADE8.若a+b=3,ab=2,则a2+b2的值为()A.6B.5C.4D.2 9.如图,线段AD,AE,AF分别是△ABC的高线,角平分线,中线,比较线段AC,AD,AE,AF的长短,其中最短的是()A.AF B.AE C.AD D.AC10.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x 与货车在隧道内的长度y之间的关系用图象描述大致是()11.一枚质地均匀的正方体骰子,其六面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是()A.1 2B.16C.13D.2312.如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是(A)A.∠B=∠C B.AD∥BC C.∠2+∠B=180°D.AB∥CD13.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点14.一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于()A.30°B.45°C.60°D.75°15.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b)(如图1),将余下的部分剪开后拼成一个梯形(如图2),根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为()A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)二、填空题(本大题共5小题,每小题5分,共25分)16.计算(xy)3的结果是.17.空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数据0.001293用科学记数法表示为.18.如图,已知AB∥CD,∠1=120°,则∠C=.19.如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE =50°,则∠BAC=,若△ADE的周长为19cm,则BC=cm.20.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟.其中正确的说法是(把你认为正确说法的序号都填上).三、解答题(本大题共7小题,共80分)21.(8分)先化简,再求值:(a+2)2-(a+1)(a-1),其中a=-3.222.(8分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,请判断AB与CF是否平行?并说明你的理由.23.(10分)如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD∶∠BAD=1∶2,求∠B的度数.24.(12分)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(2)已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.25.(12分)向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是38;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.26.(14分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达);(4)运用你所得到的公式,计算下列各题:①(2m+n-p)(2m-n+p);②10.3×9.7.27.(16分)已知:CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE=CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:解析卷北师大版七年级数学下册期末测试题(时间:120分钟满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)题123456789101112131415号答B B DCD C D B C A C A A D C案1.下列成语所描述的事件是必然事件的是(B)A.拔苗助长B.瓮中捉鳖C.水中捞月D.守株待兔2.下列世界博览会会徽图案中是轴对称图形的是(B)3.已知一个等腰三角形的一个底角为30°,则它的顶角等于(D)A.30°B.40°C.75°D.120°4.下列运算正确的是(C)A.a2+a3=a5B.(a-2)2=a2-4C.2a2-3a2=-a2D.(a+1)(a-1)=a2-25.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是(D)A.5,1,3B.2,4,2C.3,3,7D.2,3,4 6.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为(C)A.35°B.45°C.55°D.65°7.如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2,∠E=∠C,AE=AC,则(D)A.△ABC≌△AFE B.△AFE≌△ADCC.△AFE≌△DFC D.△ABC≌△ADE8.若a+b=3,ab=2,则a2+b2的值为(B)A.6B.5C.4D.2 9.如图,线段AD,AE,AF分别是△ABC的高线,角平分线,中线,比较线段AC,AD,AE,AF的长短,其中最短的是(C)A.AF B.AE C.AD D.AC10.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x 与货车在隧道内的长度y之间的关系用图象描述大致是(A)11.一枚质地均匀的正方体骰子,其六面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是(C)A.1 2B.16C.13D.2312.如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是(A)A.∠B=∠CB.AD∥BCC.∠2+∠B=180°D.AB∥CD13.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(A) A.M点B.N点C.P点D.Q点14.一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于(D) A.30°B.45°C.60°D.75°15.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b)(如图1),将余下的部分剪开后拼成一个梯形(如图2),根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为(C)A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)二、填空题(本大题共5小题,每小题5分,共25分)16.计算(xy)3的结果是x3y3.17.空气就是我们周围的气体.我们看不到它,也品尝不到它的味道,但是在刮风的时候,我们就能够感觉到空气的流动.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数据0.001293用科学记数法表示为1.293×10-3.18.如图,已知AB∥CD,∠1=120°,则∠C=60°.19.如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE =50°,则∠BAC=115°,若△ADE的周长为19cm,则BC=19cm.20.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟.其中正确的说法是①③(把你认为正确说法的序号都填上).三、解答题(本大题共7小题,共80分)21.(8分)先化简,再求值:(a +2)2-(a +1)(a -1),其中a =-32.解:原式=a 2+4a +4-a 2+1=4a +5.当a =-32时,原式=4×(-32)+5=-1.22.(8分)如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,AE =CE ,请判断AB 与CF 是否平行?并说明你的理由.解:AB ∥CF.理由:因为DE =FE ,AE =CE ,∠AED =∠CEF ,所以△AED ≌△CEF(SAS ).所以∠EAD =∠ECF.所以AB ∥CF.23.(10分)如图,将Rt △ABC 沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE.(1)如果AC =6cm ,BC =8cm ,试求△ACD 的周长;(2)如果∠CAD ∶∠BAD =1∶2,求∠B 的度数.解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得DA=DB,所以DA+DC+AC=DB+DC+AC=BC+AC=14(cm).(2)设∠CAD=x,则∠BAD=2x,因为DA=DB,所以∠B=∠BAD=2x.在Rt△ABC中,∠B+∠BAC=90°,即2x+2x+x=90°.解得x=18°.所以∠B=2x=36°.24.(12分)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(2)已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.解:(1)洗衣机的进水时间是4分钟;清洗时洗衣机中水量为40升.).(2)①y=40-19(x-15)=325-19x(15≤x≤32519②当x=17,y=325-19×17=2(升).因此,排水时间为2分钟,排水结束时洗衣机中剩下的水量为2升.25.(12分)向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是38;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:因为图形中有16个小正三角形,要使沙包落在图中阴影区域和空白区域的概率均为12,所以图形中阴影部分的小三角形要达到8个,还需要涂黑2个(只要在图形中与已知阴影不重复即可).画图略.26.(14分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2-b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a-b,长是a+b,面积是(a +b)(a-b)(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式a2-b2=(a+b)(a-b)(用式子表达);(4)运用你所得到的公式,计算下列各题:①(2m+n-p)(2m-n+p);②10.3×9.7.解:①原式=4m2-(n-p)=4m2-n2+2np-p2.②10.3×9.7=(10+0.3)(10-0.3)=102-0.32=99.91.27.(16分)已知:CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,∠α=90°,则BE=CF;②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠BCA=180°-∠α,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想:EF=BE+AF.解:理由:在△BCE中,∠CBE+∠BCE=180°-∠BEC=180°-∠α.因为∠BCA=180°-∠α,所以∠CBE+∠BCE=∠BCA.而∠BCA=∠ACF+∠BCE,所以∠CBE=∠ACF.又因为BC=CA,∠BEC=∠CFA,所以△BCE≌△CAF(AAS).所以BE=CF.。

北师大版七年级数学下册期末试卷及答案

北师大版七年级数学下册期末试卷及答案

北师大七年级下学期数学期末试卷班级:_______姓名:_______得分:_______发展性评语:___________一、请准确填空(每小题3分,共24分)1.(-2a 2b )3=________;-3ab 3·(-4a 2b )=________;(31)-1+(3-π)0=________.2.正方形的面积是2a 2+2a +21(a >-21)的一半,则该正方形的边长为________.3.一种病毒的长度约为0.000 052 mm,用科学记数法表示为________mm.AB C D O21(m i n )图1 图24.如图1所示,AC 、BD 相交于点O ,AB =CD ,要使△AOB ≌△COD,需再补充一个条件:__________.(写出一个你认为正确的即可)5.任意写出一个两位数,个位上的数字恰好是5的概率的是________;写出一个发生概率为0的事件:________.6.等腰三角形的底角是顶角的两倍,则此等腰三角形的顶角为________.7.小刚正面对镜子,从镜子中看他身后的墙上写的一组数据是,请你写出这组数据的真实数:________.8.如图2所示,根据图中提供的信息,请你再写出三条不同的信息:___________________________________________________________________________________________.二、相信你的选择(每小题3分,共24分) 9.下列各式中能用平方差公式计算的是A.(a +b )(-a -b )B.(a +b )(-a +b )C.(a +b )(-a -b )D.(a -b )(b -a )10.小亮截了四根长分别为5 cm 、6 cm 、12 cm 、13 cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有A.1个B.2个C.3个D.4个11.在线段、角、圆、直角三角形、等腰三角形、正六边形、正五边形、四边形八个图形中,一定是轴对称图形的个数有 A.3 B.4 C.6 D.712.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2 h.已知摩托车行驶的路程s (km)与行驶的时间t (h)之间的函数关系如图3所示.若这辆摩托车平均每行驶100 km 的耗油量为2 L,根据图中给出的信息,从甲地到乙地, 这辆摩托车共耗油34)l 1l 2 A BC E1 2 O 图3 图4 A.0.45 L B.0.65 L C.0.9 LD.1 L13.如图4所示,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交于点E ,若∠1=43°,则∠2的度数是 A.43° B.47° C.120° D.133°14.从一个箱子中摸出红球的概率为41,已知口袋中红球有4个,则袋中共有球的个数为A.24B.16C.8D.4 15.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B =∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是A.AC =A ′C ′B.BC =B ′C ′C.∠A =∠A ′D.∠C =∠C ′16.如图(1),小明拿一张正方形纸片,沿虚线对折一次得到图(2),再对折一次得到图(3),然后用剪刀沿图(3)中的虚线剪去一个角再打开后的形状是⑵⑶图5A B C D图6三、考查你的基本功(共20分)17.(6分)计算:(1)(3x+2)-2(x 2-x+2); (2)(a+b)2-(a -b)218.(6分)如图7,在△ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下△ABC 是轴对称图形吗?并说明你的理由.ABCD5020o o图719.(8分)如图8所示,△ABC 中,BE ⊥AD 于点E ,CF ⊥AD 于点F ,且BE =CF .根据以上信息你能得到哪些正确的结论,选一种加以说明.ABCD EF图8四、生活中的数学(共16分)20.(8 分)声音在空气中的传播速度y (m/s)(秒音速)与气温 x (℃)的关系,如下表.(1)(2)当x =150℃时,音速y 是多少?当音速为352m/s 时,气温x 是多少?21.(8 分)甲、乙两同学做摸球游戏,在口袋中装有标有1~6号数字的球(各球除号码不同外,其余全相同).游戏规定:有放回地摸球,每一轮,两人分别摸出一球,如果两球的数字之和为偶数,那么甲得 1 分;如果两球的数字之和为奇数,乙得1 分.谁先达到10分,谁就获胜.你认为这个游戏公平吗?请你给出分析结果.五、探究拓展与应用(共16分)22.(8 分)学校有一块等边三角形花坛,要在花坛中种上四种不同颜色的花,要求四部分的面积相等.请你在下列图中给出四种不同的设计方案.图923.(8 分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出8×9×10×11+1的结果;(2)试猜想n(n+1)(n+2)(n+3)+1 是哪一个数的平方?说明理由,并与同伴交流.答案:一、请准确填空(每小题3分,共24分)1.(-2a 2b )3=________;-3ab 3·(-4a 2b )=________;(31)-1+(3-π)0=________.答案: -8a 6b 3 12a 3b 442.正方形的面积是2a 2+2a +21(a >-21)的一半,则该正方形的边长为________.答案: a +213.一种病毒的长度约为0.000 052 mm,用科学记数法表示为________mm.AB C D O图1答案: 5.2×10-54.如图1所示,AC 、BD 相交于点O ,AB =CD ,要使△AOB ≌△COD ,需再补充一个条件:__________.(写出一个你认为正确的即可) 答案: ∠A =∠C (或∠B =∠D )5.任意写出一个两位数,个位上的数字恰好是5的概率的是________;写出一个发生概率为0的事件:________.答案: 101太阳从西方升起6.等腰三角形的底角是顶角的两倍,则此等腰三角形的顶角为________.答案: 36°7.小刚正面对镜子,从镜子中看他身后的墙上写的一组数据是,请你写出这组数据的真实数:________. 答案: 850128.如图2所示,根据图中提供的信息,请你再写出三条不同的信息________.21m i n )图2答案: ①乙在甲前10 m 与甲同时出发; ②甲的速度比乙的速度大; ③甲跑200 m,用时24 min, 乙跑190 m,用时24 min; ④甲跑24 min 时追上乙; ⑤甲跑200 m 处追上乙; ⑥200 m 之前,乙在甲的前面,200 m 之后,甲在乙的前面.(任选其中三个即可) 二、相信你的选择(每小题3分,共24分)9.下列各式中能用平方差公式计算的是A.(a +b )(-a -b )B.(a +b )(-a +b )C.(a +b )(-a -b )D.(a -b )(b -a ) 答案:B10.小亮截了四根长分别为5 cm 、6 cm 、12 cm 、13 cm 的木条,任选其中三条组成一个三角形,这样拼成的三角形共有A.1个B.2个C.3个D.4个 答案:B11.在线段、角、圆、直角三角形、等腰三角形、正六边形、正五边形、四边形八个图形中,一定是轴对称图形的个数有A.3B.4C.6D.7 答案:C12.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2 h.已知摩托车行驶的路程s (km)与行驶的时间t (h)之间的函数关系如图3所示.若这辆摩托车平均每行驶100 km 的耗油量为2 L,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油4图3A.0.45 LB.0.65 LC.0.9 LD.1 L答案:C 13.如图4所示,直线l 1∥l 2,AB ⊥l 1,垂足为O ,BC 与l 2相交于点E ,若∠1=43°,则∠2的度数是l 1l 2 A BC E1 2 O图4A.43°B.47°C.120°D.133°答案:D14.从一个箱子中摸出红球的概率为41,已知口袋中红球有4个,则袋中共有球的个数为A.24B.16C.8D.4 答案:B15.在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B =∠B ′,补充条件后仍不一定能保证△ABC ≌△A ′B ′C ′,则补充的这个条件是A.AC =A ′C ′B.BC =B ′C ′C.∠A =∠A ′D.∠C =∠C ′答案:A16.如图(1),小明拿一张正方形纸片,沿虚线对折一次得到图(2),再对折一次得到图(3),然后用剪刀沿图(3)中的虚线剪去一个角再打开后的形状是⑵⑶图5ABCD图6答案:A三、考查你的基本功(共20分) 17.(6分)计算:(1)(3x +2)-2(x 2-x +2); (2)(a +b )2-(a -b )2答案: (1)-2x 2+5x -2;(2)4ab .18.(6分)如图7,在△ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下△ABC 是轴对称图形吗?并说明你的理由.ABCD502o o图7答案: 是. 理由:⇒∠B =180°-∠ACB -∠A =70°⇒∠ACB =∠B ⇒△ABC 为等腰三角形⇒△ABC 是轴对称图形.19.(8分)如图8所示,△ABC 中,BE ⊥AD 于点E ,CF ⊥AD 于点F ,且BE =CF .根据以上信息你能得到哪些正确的结论,选一种加以说明.ABCD EF图8答案: BD =DC (或△BDE ≌△CDF ).四、生活中的数学(共16分)20.(8 分)声音在空气中的传播速度y (m/s)(秒音速)与气温 x (℃)的关系,如下(2)当x =150℃时,音速y 是多少?当音速为352m/s 时,气温x 是多少?答案: (1)y =53x +331;(2)当x =150℃时,y =421m/s,当y =352m/s 时,352=53x +331,x =35℃.21.(8 分)甲、乙两同学做摸球游戏,在口袋中装有标有1~6号数字的球(各球除号码不同外,其余全相同).游戏规定:有放回地摸球,每一轮,两人分别摸出一球,如果两球的数字之和为偶数,那么甲得 1 分;如果两球的数字之和为奇数,乙得1 分.谁先达到10分,谁就获胜.你认为这个游戏公平吗?请你给出分析结果.答案: 公平.因为每一轮摸球之后,可能有四种结果:奇数+奇数、偶数+偶数、奇数+偶数、偶数+奇数,两数的和奇、偶各占一半,而从口袋中摸到奇数和偶数球的概率也一样.所以,整个游戏公平. 五、探究拓展与应用(共16分)22.(8 分)学校有一块等边三角形花坛,要在花坛中种上四种不同颜色的花,要求四部分的面积相等.请你在下列图中给出四种不同的设计方案.图9答案: (参考)23.(8 分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出8×9×10×11+1的结果;(2)试猜想n(n+1)(n+2)(n+3)+1 是哪一个数的平方?说明理由,并与同伴交流.答案: (1)8×9×10×11+1=892=(82+3×8+1)2;(2)n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.理由:n(n+1)(n+2)(n+3)+1=(n2+3n+2)(n2+3n)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.初 一 数 学 期 末 考 试 试 卷一、填空题(每题2分,共26分)1. 计算(-2x 2)3=2. 据第四次人口普查统计,我国现有人口约13亿人,用科学记数法表示为人3. 计算48×0.258= 4. (x +1)(x +2)= 5. (4a + )2=16a 2+8a +6. 若92++mx x 是一个完全平方式,则m 的值是7. 若(x +P )与(x +2)的乘积中,不含x 的一次项,则P 的值是 8. 计算 31°29’35’’×4= 9. 如图,直线l 1∥l 2,∠1=105°,∠2=140°,则∠α=10.如图,AD ∥BC ,图中与∠B 相等的角是 11.命题:如果∠1=∠2,∠2=∠3,那么∠1=∠3,则题设是 , 结论是 12.如图,a ∥b ,∠1=46°,则∠2= 度 13.如图,AE ∥BD ,∠1=3∠2,∠2=25°,则∠C= 度二、选择题(每题2分,共18分)14.下列计算正确的是( )A .(-a 3)4= a 12B .a 3·a 4=a 12C .3a ·4a =12aD .(a 3)2=a 9 15.若ab 3<0,则a 与b 的关系是( )A .a 、b 同号B .a 、b 异号C .其中一个为0D .不能确定 16.三个连续奇数,若中间的一个为n ,则它们的积为( ) A .6n 3-6n B .4n 3-n C .n 3-4n D .n 3-n 17.下列多项式乘法中,可以用平方差公式计算的是( )A .(x +1)(1+x )B .(a 21+b )(b -a 21)C .(-a +b )(a -b )D .(x 2-y )(x +y 2) 18.若9a 2+24ab +k 是一个完全平方式,则k =( ) A .2b 2 B .4b 2 C .8b 2 D .16b 2 19.如图,AD ⊥BC ,垂足于D ,DE ∥AB ,则∠B 和∠1的关系是( )A .相等B .互补C .互余D .不能确定 20.如图,直线AB 与CD 相交于点O ,OE ⊥CD ,∠AOC=30°,则∠BOE 的度数为( ) A .30° B .60° C .90° D .45°21.如果两条平行线与第三条直线相交,那么一组同旁内角的平分线互相( ) A .平行 B .重合 C .垂直 D .相交,但不垂直 22.如图,DH ∥EG ∥BC ,且DC ∥EF ,则图中与∠1相等的角(不包括∠1)的个数是( ) A .2 B .4 C .5 D .6三、解答下列各题(每题4分,共24分)23.计算:4x (x -1)2+x (2x +5)(5-2x )24.已知21,2==y x ,求代数式(x + y )(x -y )+(x -y )-(x 2-3xy )的值25.用乘法公式计算(1)2002×1998 (2)199.9226.计算(a +3b -2c )(a -3b -2c )27.计算[(2x +y )2-y (y +4x )-8x ]÷2x28.求不等式的正整数解(2x +3)2-(2x +3)(2x -5)>7x +54四、(每题5分,共10分)29. 乘某城市的一种出租汽车起价是10元(即行驶距离在5km 以内都需付10元车费),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计),现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少km ?30.一个角的余角比它的补角的92多1°,求这个角的度数.五、(每题6分,共18分)31.如图:已知AO ∥CD ,OB ∥DE ,求证:∠AOB=∠CDE32.如图:已知∠1=∠A ,∠C=∠F ,求证:BC ∥EF33.如图,已知BE ⊥AC 于E ,GF ⊥AC 于F ,∠AED=∠C ,求证:∠1=∠2六、(4分)34. (1)已知31=+x x ,求221xx +的值 (2)已知x +y =-5,xy =3,求(x -y )2的值初一数学第二学期期末考拟题班级_________ 姓名___________学号___________ 成绩 一、填空(每题2分,共20分)1、 如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,若∠BOC=120°, 则∠A=________°2、计算()-=2324xy z ;a 3m -2÷a 2m +1= ; 3、在Rt △ABC 中,∠C =90°,∠A 是∠B 的2倍,则∠A =____________。

(完整版)北师大版七年级下册数学期末考试试卷及答案,推荐文档

(完整版)北师大版七年级下册数学期末考试试卷及答案,推荐文档

乙 乙 /乙 乙 30 25 20 15 10 5
0 9 10 11 12 13 14 15 乙 乙 /乙
22、(8 分)超市举行有奖促销活动:凡一次性购物满 300 元者即可获得
一次摇奖机会。摇奖机是一个圆形转盘,被分成 16 等分,摇中 红、黄、蓝色区域,分获一、二、三获奖,奖金依次为 60、50、 40 元。一次性购物满 300 元者,如果不摇奖可返还现金 15 元。 (1)摇奖一次,获一等奖的概率是多少? (2)老李一次性购物满了 300 元,他是参与摇奖划算
该商品的价格的概率是

)ห้องสมุดไป่ตู้
A. 1
1 B.
9
6
1
1
C.
D.
5
3
13、一列火车由甲市驶往相距 600㎞的乙市,火车的速度是 200㎞/时,火车离乙市的距离
s(单位:㎞)随行驶时间 t (单位:小时) 变化的关系用图表示正确的是
s
s
s
s
( 600 )
600
600
600
400
400
400
400
200
200
200
3
建议收藏下载本文,以便随时学习!
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK
4
七年级数学(下)期末考试卷答案
25、(1)12 点,30 千米 (2)10:30 , 30 分钟 (3)13~15 点,
一、

号1
答 x2 1 案
二、
建议收藏下载本文,以便随时学习!
23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

速度
C D
2015 七年级下学期期末数学考试试卷
班级
姓名
分数
一、选择题(每题 5 分,共 60 分) 1、下列运算正确的是(
)。

A 、 a 5 + a 5 = a 10
B 、 a 6 ⨯ a 4 = a 24
C 、 a 0 ÷ a -1 = a
D 、 a 4 - a 4 = a 0
2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长
方形,在这五种图形中是轴对称图形的有( ) A 、1 个
B 、2 个
C 、3 个
D 、4 个
3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )
4
B 、
1 15 3
C 、
1
D
2
5
15
4、1 纳米相当于 1 根头发丝直径的六万分之一。

则利用科学记数法来表示,头发丝的半径是

)A 、6 万纳米
B 、6×104 纳米
C 、3×10-6 米
D 、3×10-5 米
5、下列条件中,能判定两个直角三角形全等的是(

A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D 、两条直角边对应相等
6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为(

(1)汽车行驶时间为 40 分钟;(2)AB 表示汽车匀速行驶;
(3)在第 30 分钟时,汽车的速度是 90 千米/时;(4)第 40 分钟时,汽车停下来了.
A 、
A 、1 个
B 、2 个
C 、3 个
D 、4 个
80
60
7.下列图形中,不一定是轴对称图形的是()
A.等腰三角形
B.线段
C.钝角
D.直角三角形
8.长度分别为3cm,5cm,7cm,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为()
A.1
B.2
C. 3
D.4
9.如图,在△ABC 中,D、E 分别是AC、BC 上的点,若
△ADB≌△EDB≌△EDC,则∠C 的度数是( )
A.15°
B.20°
C.25°
D.30°
10.下列关系式中,正确的是()
B E
A. (a - b)2 = a 2- b2
C. (a + b)2 = a 2+ b2
B. (a + b)(a - b)= a 2 - b2
D. (a+b)2=a2-2ab+b2
第9 题
11.下面有4 个汽车标致图案,其中是轴对称图形的有()
A.1个B.2 个C.3 个D.4 个
12.下列乘法中,不能运用平方差公式进行运算的是()
A.(x+a)(x-a) B.(a+b)(-a-b) C.(-x-b)(x-b) D.(b+m)(m-b)
1 2 3 4 5 6 7 8 9 10 11 12
二、填空题(每空4 分,共20 分)
13、单项式-
1
xy3 的次数是.
3
14、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角
形. A
D
15、如图∠AOB=1250,AO ⊥OC,B0 ⊥0D 则∠COD=
O C
B 2
A
D
)

16、小明同学平时不用功学习,某次数学测验做选择题时,他有 1 道题不会做,于是随意选
了一个答案(每小题 4 个项),他选对的概率是 .
17、观察下列运算并填空:
1×2×3×4+1=25=52;
2×3×4×5+1=121=112:
3×4×5×6+1=361=192;……
根据以上结果,猜想析研究
(n+1)(n+2)(n+3)(n+4)+1= 。

三、计算题(15 分)
18、(7 分)计算: -23 + 1 (2005 + 3)0 - (- 1
-2 3 3
19、化简求值:(8 分) (x + 2 y )2 - (x + y )(3x - y ) - 5 y 2 ,其中 x = -2 , y = 1
2
20、(10 分)已知:如图, ∆ ABC 中,AB=AC ,BD 和 CE 为∆ ABC 的高,BD 和 CE 相交于点 O 。

求证:OB=OC.
E
O D
_
_ C 21、(15 分)一水果贩子在批发市场按每千克1.8 元批发了若干千克的西瓜进城出售,为了方
便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,结合图像回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克西瓜出售的价格是多少?
(3)随后他按每千克下降0.5 元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450
元,问他一共批发了多少千克的西瓜?
(4)请问这个水果贩子一共赚了多少钱?
附加题:
22、(10 分)如图,AP∥BC,∠PAB 的平分线与∠CBA 的平分线相交于E,CE 的延长线交
AP 于D,
求证:(1)AB=AD+BC; (2)若BE=3,AE=4,求四边形ABCD 的面积?
C
A B
P E
D
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档