历年初三数学中考相交线平行线三角形试题及答案
中考数学专题复习——21相交线与平行线常考试题及解析
中考数学专题复习——21相交线与平行线常考试题及解析一、选择题3、(2019·滨州)如图,AB∥CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A、26°B、52°C、54°D、77°【答案】B【解析】∵AB∥CD,∴∠DFG+∠FGB=180°、∵∠FGB=154°,∴∠DFG=26°、∵FG平分∠EFD,∴∠EFD=2∠DFG=2×26°=52°、∵AB∥CD,∴∠AEF=∠EFD=52°、故选B、4、(2019·苏州)如图、已知直线a∥b、直线c与直线a、b分别交于点A,B若∠1=54°,则∠2等于()A. 126°B.134°C、130°D、144°(第4题)【答案】A【解析】本题考查了邻补角的性质以及平行线的性质,如图所示,∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°、故选A、第4题答图5、(2019·山西)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°第5题图 【答案】C【解析】△ABC 中,AB =AC,∠A =30°,∴∠B =75°,∵∠1=145°,∴∠FDB =35°过点B 作BG∥a ∥b,∴∠FDB =∠DBG,∠2=∠CBG,∵∠B =∠ABG+∠CBG,∴∠2=40°,故选C5、(2019·长沙)如图,平行线AB ,CD 被直线AE 所截,∠1=80°,则∠2的度数是【 】A 、80°B 、90°C 、100°D 、110° 【答案】C【解析】∵∠1=80°,∴∠3=100°,∵AB ∥CD ,∴∠2=∠3=100°、故本题选:C 、 6、(2019·衡阳)如图,已知AB ∥CD ,AF 交CD 于点E ,且BE ⊥AF ,∠BED =40°,则∠A 的度数是( ) A. 45° B. 50° C. 80° D. 90°【答案】B 、【解析】∵AB ∥CD ,∴∠B =∠BED =40°,∵BE ⊥AF ,∴∠A =50°,故选B 、 7、(2019·安徽)如图,在Rt △ABC 中,∠ACB=90°,BC=12.点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G ,若EF=EG ,则CD 的长为 A. 3.6 B. 4 C. 4.8D. 5【答案】B 【解析】本题考查了平行线的判定和平行线分线段成比例,解题的关键是作出适当的辅助线和平行线分线段成比例的性质. 过点D 作DH ∥CA 交AB 于点H ,如图.∵EF ⊥AC ,∠ACB =90°,∴CD∥EF ;∵EG ⊥EF ,∴EG ∥AC ,∴EG ∥DH ,∴EF DC =AE AD =EGDH,又∵EF =EG ,∴CD =DH.设CD =DH =x ,则BD =12-x ,由DH ∥CA 得:DHCA=BD BC ,即6x =1212x ,解得x =4,故CD =4.故选B.1. (2019·岳阳)如图,已知BE 平分∠ABC ,且BE ∥DC ,若∠ABC =50°,则∠C 的度数是( )A 、20ºB 、25ºC 、30ºD 、50º 【答案】B【解析】∵BE 平分∠ABC ,∴∠EBC =12∠ABC =12×50º=25º、∵BE ∥DC ,∴∠C =∠EBC =25º、 故选B 、2. (2019·滨州)如图,AB ∥CD ,∠FGB=154°,FG 平分∠EFD,则∠AEF 的度数等于( ) A 、26°B 、52°C 、54°D 、77°【答案】B【解析】∵AB∥CD,∴∠DFG+∠FGB=180°、∵∠FGB=154°,∴∠DFG=26°、∵FG平分∠EFD,∴∠EFD=2∠DFG=2×26°=52°、∵AB∥CD,∴∠AEF=∠EFD=52°、故选B、3. (2019·济宁)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125 °,则∠4的度数是()A、65°B、60°C、55 °D、75°【答案】C【解析】如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°-∠5=180°-125°=55°,故选C、4. (2019·泰安) 如图,直线l1∥l2,∠1=30°,则∠2+∠3=A.150°B.180°C.210°D.240°【答案】C【解析】过点A作l3∥l1,,∵l1∥l2,∴l2∥l3,∴∠4=∠1=30°,∠5+∠3=180°,∴∠2+∠3=∠4+∠5+∠3=210°,故选C.5. (2019·淄博) 如图,小明从A 处出发沿北偏东40°方向行走至B 处,又从点B 处沿东偏南20°方向行走至C 处,则∠ABC 等于( )A 、130°B 、120°C 、110°D 、100°【答案】C 、【解析】如图,由题意,得∠DAB =40°,∠EBC =20°,∵南北方向上的两条直线是平行的, ∴AD ∥BF ,∴∠ABF =∠DAB =40°. 又∵∠EBF =90°, ∴∠CBF =90°﹣20°=70°,∴∠ABC =∠ABF +∠CBF =40°+70°=110°. 故选C .6.(2019·乐山)如图,直线a ∥b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于( ) A 、45°B 、50°C 、55°D 、60°【答案】C【解析】本题考查了平行线的性质,∵BC AB ⊥,∴∠ABC=90°,∴ ∠3=180°-∠ABC -∠1=55°,∵直线a ∥b ,∴ 2∠=∠3=55°,故选C.7. (2019·凉山) 如图,BD ∥EF , AE 与 BD 交于点 C ,∠B =30°,∠A =75°,则 ∠E 的度数为( )A. 135°B.125° C . 115° D .105°【答案】D【解析】∵∠ACD =∠A +∠B =30°+75°=105°,BD ∥EF ,∴∠E =∠ACD =105°,故选D.8. (2019·攀枝花)如图, AB ∥CD , AD =CD ,∠1=50°,则∠2的度数是( ) A 、55° B 、60° C 、65° D 、70°【答案】C【解析】∵AB ∥CD ,∴∠ACD =∠2、∵AD =CD , ∠1=50°,∴∠2=∠CAD =65°,故选C 、9.(2019·宁波)已知直线m ∥n,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D.若∠1=25°,则∠2的度数为 ( )A.60°B.65°C.70°D.75°【答案】C【解析】∵∠B =45°,∠1=25°,∴∠3=∠1+∠B =70°,∵m ∥n,∴∠2=∠3=70°,故选C.二、填空题 9、(a ∥b ,∠1=50°,那么∠2=°.【答案】50°【解析】由a ∥b ,∠1=50°,根据两直线平行,同位角相等,即可求出∠2的度数.15、(2019·淮安)如图,1l ∥2l ∥3l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F.若AB=3,DE=2,BC=6,则EF= .第15题图 【答案】4【解析】∵1l ∥2l ∥3l ,∴EF DE BC AB =,又∵AB=3,DE=2,BC=6,∴EF263=,∴EF=4. 15、(2019·娄底) 如图(8),AB ∥CD ,AC ∥BD ,∠1=28°,则∠2的度数为_____________、【答案】28°、【解析】∵AC ∥BD ,∠1=28°,∴∠A =∠1=28°、 又∵AB ∥CD ,∴∠2=∠A =28°、13、(2019·黄冈) 如图,直线AB ∥CD ,直线EC 分别与AB ,CD 相交于点A ,点C.AD 平分∠BAC ,已知∠ACD =80°,则∠DAC 的度数为 .【答案】50°【解析】∵AB ∥CD ,∠ACD =80°,∠BAC =180°-∠ACD =180°-80°=100°,又因为AD 平分∠BAC ,所以∠BAC =12∠BAC =12×100°=50°.1. (2019·自贡)如图,直线AB 、CD 被直线EF 所截,AB ∥CD ,∠1=120°,则∠2= .【答案】60°【解析】CD与EF交于G,∵AB∥CD,∴∠EGC=∠1=120°,∵∠EGC与∠2是邻补角,∴∠2=1800-∠EGC=600,三、解答题18、(2019·武汉)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F证明:∵∠A=∠1,∴AE∥BF,∴∠E=∠2、∵CE∥DF,∴∠F=∠2、∴∠E=∠F、12、(2019·滨州)如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过对角线OB的中点D和顶点C、若菱形OABC的面积为12,则k的值为()A、6B、5C、4D、3【答案】C【解析】如图,连接AC,∵四边形OABC是菱形,∴AC经过点D,且D是AC的中点、设点A的坐标为(a ,0),点C 坐标为(b ,c ),则点D 坐标为(2a b,2c)、∵点C 和点D 都在反比例函数y=k x 的图象上,∴bc=2a b ×2c,∴a=3b ;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4、故选C 、法2:设点A 的坐标为(a ,0),点C 的坐标为(c ,),则,点D 的坐标为(),∴,解得,k =4,故选C 、18、(2019·德州)如图,点A 1、A 3、A 5…在反比例函数y =(x >0)的图象上,点A 2、A 4、A 6……在反比例函数y =(x >0)的图象上,∠OA 1A 2=∠A 1A 2A 3=∠A 2A 3A 4=…=∠α=60°,且OA 1=2,则A n (n 为正整数)的纵坐标为 、(用含n 的式子表示)【答案】(﹣1)n +1()【解析】过A 1作A 1D 1⊥x 轴于D 1,∵OA 1=2,∠OA 1A 2=∠α=60°,∴△OA 1E 是等边三角形,∴A 1(1,),∴k =,∴y =和y =﹣,过A 2作A 2D 2⊥x 轴于D 2,∵∠A 2EF =∠A 1A 2A 3=60°,∴△A 2EF 是等边三角形,设A 2(x ,﹣),则A 2D 2=,Rt △EA 2D 2中,∠EA 2D 2=30°,∴ED 2=,∵OD 2=2+=x ,解得:x 1=1﹣(舍),x 2=1+,∴EF ====2(﹣1)=2﹣2,A 2D 2===,即A 2的纵坐标为﹣;过A 3作A 3D 3⊥x 轴于D 3,同理得:△A 3FG 是等边三角形,设A 3(x ,),则A 3D 3=,Rt △F A 3D 3中,∠F A 3D 3=30°,∴FD 3=,∵OD 3=2+2﹣2+=x ,解得:x 1=(舍),x 2=+;∴GF ===2(﹣)=2﹣2,A 3D 3===(﹣),即A 3的纵坐标为(﹣);…∴A n (n 为正整数)的纵坐标为:(﹣1)n +1();故答案为:(﹣1)n +1()、20. (2019·遂宁)如图,一次函数y=x-3的图像与反比例函数)0(≠=k xky 的图像交于点A 与点B(a,-4),(1) 求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合0,连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若△POC 的面积为3,求出点P 的坐标.解:(1)∵B(a,-4)在一次函数y=x-3上, ∴a=-1,∴B(-1,-4),∵B(-1,-4)在反比例函数图像上,∴k=(-1)(-4)=4 ∴反比例函数表达式为xy 4=(2)如图,设P (m,m 4),则C(m 4+3,m 4),∴PC=m 4+3-m,OH=m 4,∵△POC 的面积为3, ∴34)-3421=⨯+mm m ( ∴m 1=2,542-=m ∵P 点在第一象限, ∴542-=m 不合题意舍去, ∴m=2∴P(2,2)22、(2019·广元)如图,在平面直角坐标系中,直线AB 与y 轴交于点B(0,7),与反比例函数y =8x -在第二象限内的图象相交于点A(-1,a).(1)求直线AB 的解析式;(2)将直线AB 向下平移9个单位后与反比例函数的图象交于点C 和点E,与y 轴交于点D,求△ACD 的面积;(3)设直线CD 的解析式为y =mx+n,根据图象直接写出不等式mx+n ≤8x-的解集.第22题图解:(1)∵点A(-1,a)在反比例函数y =8x -图象上,∴a =81--,∴a =8,∴A(-1,8),设直线AB 的解析式为y =kx+b,则8=7k b b -+⎧⎨=⎩,∴17k b =-⎧⎨=⎩,∴y =-x+7; (2)将直线AB 向下平移9个单位后,得到直线CD:y =-x -2,∴D(0,-2),令8x-=-x -2,得x 1=2,x 2=-4,当x =2时,y =-4,∴E(2,-4),当x =-4时,y =2,∴C(-4,2),过点A 作y 轴的平行线,交DC 与点M,则点D 坐标为(-1,-1),∴S △ACD =S △ACM +S △ADM =18;(3)∵C(-4,2),E(2,-4),∴不等式mx+n ≤8x-的解集为-4≤x<0,x ≥2.。
中考数学专项练习相交线与平行线(含解析)
中考数学专项练习相交线与平行线(含解析)一、单选题1.下面四个图形中,∠1与∠2互为对顶角的是()A.B. C.D.2.下列说法:(1)同角的余角相等(2)相等的角是对顶角(3)在同一平面内,不相交的两条直线叫平行线(4)直线外一点与直线上各点连接的所有线段中,垂线段最短中,正确的个数是()A.1B.2C.3D.43.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°4.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()A.10°B.15°C.20°D.30°5.如图,已知直线AB、CD相交于点O,OB平分∠EOD,若∠EOD= 110°,则∠AOC的度数是()A.35°B.55°C.70°D.110°6.如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A.30°B.35°C.40°D.50°7.如图所示,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于点H,EF⊥AB于点F,则下列结论中,不正确的是()A.ACD=B B.CH=CE=EF C.AC=AF D.CH=HD8.如图,以下推理正确的是()A.若AB∥CD,则∠1=∠2B.若AD∥BC,则∠1=∠2C.若∠B=∠D,则AB∥CDD.若∠CAB=∠ACD,则AD∥BC9.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,因此AD∥BC B.因为∠C+∠D=18 0°,因此AB∥CDC.因为∠A+∠D=180°,因此AB∥CD D.因为∠A+∠C=18 0°,因此AB∥CD10.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A.3B.4C.4D.2二、填空题11.填写理由AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?什么缘故?解:BE∥/DF∵AB⊥BC,∠ABC=________即∠3+∠4=________又∵∠1+∠2=90°,且∠2=∠3∴________=________理由是:________∴BE∥DF理由是:________12.如图,a∥b,∠1=65°,∠2=140°,则∠3等于________.13.如图,直角三角尺的直角顶点在直线b上,∠3 = 25°,转动直线a,当∠1=________,时,a∥b14.如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是依照________15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.16.如图,在正方体中,与线段AB平行的线段有________.17.如图,已知AB∥CD,O是∠BAC与∠ACD的平分线的交点.OE ⊥AC于E,OE=2,则点O到AB与CD的距离之和为________.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,O D∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长________cm.三、运算题19.如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.20.如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BA D和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.21.如图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.四、解答题23.如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?24.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.25.已知:如图,a//b,∠1=55°,∠2=40°,求∠3和∠4的度数.五、综合题26.如图,点M(4,0),以点M为圆心,2为半径的圆与x轴交于点A、B,已知抛物线y= x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象.(2)点P为此抛物线对称轴上一个动点,求PC﹣PA的最大值.(3)CE是过点C的⊙M的切线,E是切点,CE交OA于点D,求O E所在直线的函数关系式.答案解析部分一、单选题1.【答案】C【考点】对顶角、邻补角【解析】【解答】解:依照对顶角的定义可知:C中∠1、∠2属于对顶角,故选C.【分析】依照对顶角的定义来判定,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,如此的两个角叫做对顶角.2.【答案】C【考点】余角和补角,对顶角、邻补角,垂线段最短【解析】【解答】解:同角的余角相等,故(1)正确;如图:∠ACD=∠BCD=90°,但两角不是对顶角,故(2)错误;在同一平面内,不相交的两条直线叫平行线,故(3)正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故(4)正确;即正确的个数是3,故选C.【分析】依照余角定义,对顶角定义,垂线段最短,平行线定义逐个判定即可.3.【答案】C【考点】平面中直线位置关系【解析】【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故答案为:C.【分析】第一依照同位角相等,两直线平行可得a∥b,再依照平行线的性质可得∠3=∠5,再依照邻补角互补可得∠4的度数.4.【答案】B【考点】平行线的性质【解析】【解答】过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴45°+α=(60°-α)+(30°-α),解得α=15°.故选B.【分析】过点P作一条直线平行于AB,依照两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.5.【答案】B【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOD=110°,OB平分∠EOD,∴∠BOD = ∠EOD=55°,∴∠AOC=∠BOD=55°,故选:B.【分析】依照角平分线定义可得∠BOD= ∠EOD,由对顶角性质可得∠A OC=∠BOD.6.【答案】C【考点】平行线的性质,全等三角形的判定与性质,旋转的性质【解析】【分析】因为△ADE是由△ABC绕点A逆时针旋转得到的,因此△ADE≌△ABC,因此∠CAB=∠EAD=70º,AE=AC,因为EC∥AB,因此∠CAB=∠ECA=70°,因为AE=AC,因此∠AEC=70°,因此∠EAC=180°-70°×2=40°,因此∠CAD=∠EAD-∠EAC=70º-40°=30°,因此∠BAD=∠CAB-∠CAD =70º-30°=40°.【点评】该题是常考题,要紧考查学生对图形旋转的意义,以及对全等三角形性质和角的等量代换的应用。
(专题精选)初中数学相交线与平行线真题汇编附答案解析
(专题精选)初中数学相交线与平行线真题汇编附答案解析一、选择题1.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=o,则1244α-A.14o B.16o C.90α-o D.44o【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.下列说法中,正确的是( )A .过一点有且只有一条直线与已知直线垂直B .过直线外一点有且只有一条直线与已知直线平行C .垂于同一条直线的两条直线平行D .如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A 、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B 、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C 、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D 、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意; 故选:B .【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.5.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.6.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.8.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.10.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°【答案】A【解析】 【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP ∥BC ,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF ﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A .【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,直线AB ,AB 相交于点O ,OE ,OF 为射线,则对顶角有( )A .1对B .2对C .3对D .4对【答案】B【解析】【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【详解】图中对顶角有:∠AOC 与∠BOD 、∠AOD 与∠BOC ,共2对.故选B .【点睛】本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠=∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.16.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.17.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..18.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【答案】C【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选C.【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.20.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.。
中考数学相交线与平行线专题训练50题-含答案
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.一副直角三角板如图所示摆放,它们的直角顶点重合于点O,//CO AB,则∠=()BODA.30︒B.45︒C.60︒D.90︒2.∠1与∠2是一组平行线被第三条直线所截的同旁内角,若∠1=50°,则()A.∠2=50°B.∠2=130°C.∠2=50°或∠2=130°D.∠2的大小不一定3.如图,AB//CD,如果∠B=30°,那么∠C为()A.40°B.30°C.50°D.60°4.如图,已知∠1=50°,要使a∠b,那么∠2等于()A.40°B.130°C.50°D.120°5.在同一平面内不重合的三条直线的交点个数()A.可能是0个,1个,2个B.可能是0个,1个,3个C.可能是0个,1个,2个,3个D.可能是0个,2个,3个6.在下图中,1∠是同位角的是()∠和2A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 7.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .6,(3,2)C .3,(3,0)D .3,(3,2) 8.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D .9.如图,直线l ∠m ,将Rt △ABC (∠ABC =45°)的直角顶点C 放在直线m 上,若∠2=24°,则∠1 的度数为( )A .23︒B .22︒C .21︒D .24︒ 10.如图,已知1130∠=︒,250∠=︒,3115∠=︒,则4∠的度数为( )A .65︒B .60︒C .55︒D .50︒11.如图,直线AB ,CD 被直线EF 所截,则∠AGE 的同位角是( )A .∠BGEB .∠BGFC .∠CHED .∠CHF 12.下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =13.如图,直线AB 、直线CD 交于点E ,EF AB ⊥,则CEF ∠与BED ∠的关系是( )A .互余B .相等C .对顶角D .互补 14.下列命题是真命题的是()A .过一点有且只有一条直线与已知直线垂直B .经过一点有且只有一条直线与已知直线平行C .同旁内角互补,两直线平行D .同位角相等15.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )A .150°B .40°C .80°D .90° 16.如图,直线a //b ,∠1=85°,∠2=35°,则∠3的度数为( )A .40°B .45°C .50°D .55° 17.如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A .15°B .25°C .35°D .45° 18.如图,∠1=∠2=22°,∠C=130°,则∠DAC = ( )A .28°B .25°C .23°D .22° 19.如图,∠ADB =∠ACB =90°,AC 与BD 相交于点O ,且OA =OB ,下列结论:∠AD =BC ;∠AC =BD ;∠∠CDA =∠DCB ;∠CD ∠AB ,其中正确的有( )A .1个B .2个C .3个D .4个 20.一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为( )A .第一次向右拐38°,第二次向左拐142°B .第一次向左拐38°,第二次向右拐38°C .第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°二、填空题a b∠=︒,则∠2=_________.21.如图,已知直线//,17022.如图,AB∠CD,CE∠GF,若∠1=60°,则∠2=_____°.23.如图,直线AC和FD相交于点B,下列判断:∠∠GBD和∠HCE是同位角;∠∠ABD和∠ACH是同位角;∠∠FBC和∠ACE是内错角;∠∠FBC和∠HCE是内错角;∠∠GBC和∠BCE是同旁内角.其中正确的是____.(填序号)24.如图,直线a,b交于点O,若138∠=︒,则2∠=__°.25.如图,四边形ABCD,点E是AB的延长线上的一点.请你添加一个条件,能判定∥.这个条件是______.AD BC26.如图,AB 、BC 是∠O 的弦,OM ∥BC 交AB 于点M ,若∠AOC =100°,则∠AMO =___.27.检验直线与平面平行的方法:(1)______________只能检验直线与水平面是否平行;(2)______________可以检验一般的直线与平面是否垂直;28.如图,AB//CD ,点E 在线段BC 上,若140∠=,230∠=,则3∠的度数是______.29.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)30.如图,AB∠CD .EF∠AB 于E ,EF 交CD 于F ,已知∠1=58°12',则∠2=______.31.如图,直线AB 、CD 相交于点O ,∠AOC=80°,∠1=30°,求∠2的度数解:因为∠DOB=∠______ ( )_________=80° (已知)所以,∠DOB=____°(等量代换)又因为∠1=30°( )所以∠2=∠____- ∠_____ = _____ - _____=_____ °32.把一张宽度相等的纸条按如图所示的方式折叠.图中∠1=100°,则∠2=____°.33.已知,如图,在△ABC 中,BO 和CO 分别平分△ABC 和△ACB ,过O 作DE△BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为________.34.如图,在四边形ABCD 中,AB ∠CD ,连接AC ,BD .若∠ACB =90°,AC =BC ,AB =BD ,AD =AE 则∠ADC =_____°.35.如图,BE 平分ABC ∠,DE BC ∥,若1=25∠.,则2∠的度数为______.36.在四边形ABCD 中,AD BC ∥,AD BC <,90A ∠=︒,4AB =,3BC =,点E 为BCD ∠的平分线上一点,连接BE ,且3BE =,连接DE ,则CDE 的面积为________.37.如图,将矩形纸片ABCD 沿EF 折叠后,点C 、D 分别落在点C ′、D ′处,若∠AFE=65°,则∠C ′EB =________度.38.已知 ∠1 的两边分别平行于 ∠2 的两边,若 ∠1 = 40°,则 ∠2 的度数为__. 39.如图,在∠ABC 中,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF∠BC 交AB 于E ,交AC 于F.若BE=2,CF=3,则线段EF 的长为________.40.如图,在t R ABC ∆中,90︒∠=C ,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是________.三、解答题41.如图,∠A=∠1,∠1=∠2,CD 平分∠ADE ,试说明∠C=∠ADC .42.如图.BA DE ∥,30B ∠=︒,40D ∠=︒,求∠C 的度数.43.如图所示,已知12180,3,B DE ∠+∠=︒∠=∠和BC 平行吗?如果平行,请说明理由.44.如图,点E 、F 分别在AB 、CD 上,AF ∠CE 于点O ,∠1=∠B ,∠A +∠2=90°,求证∠AB ∥CD .请填空.证明∠∠AF ∠CE (已知),∠∠AOE =90°(___)又∠∠1=∠B (已知)∠CE ∥BF (_____),∠∠AFB =∠AOE (___)∠∠AFB =90°(_)又∠∠AFC +∠AFB +∠2=180°(平角的定义)∠∠AFC +∠2=(________)又∠∠A +∠2=90°(已知)∠∠A =∠AFC (_____)∠AB ∥CD (_____)45.如图,在∠ABC 中,AB =BC ,点D 、E 分别在边AB 、BC 上,且DE ∠AC ,AD =DE ,点F 在边AC 上,且CE =CF ,连接FD .(1)求证:四边形DECF是菱形;(2)如果∠A=30°,CE=4,求四边形DECF的面积.46.已知:如图,B、D分别在AC、CE上,AD是∠CAE的平分线,BD∠AE,AB=BC.求证:AC=AE.47.如图,直线AB与CD交于点F,锐角∠CDE=α,∠AFC+α=180°.(1)求证:AB∠DE;(2)若G为直线AB(不与点F重合)上一点,∠FDG与∠DGB的角平分线所在的直线交于点P.∠如图2,α=50°,G为FB上一点,请补齐图形并求∠DPG的度数;∠直接写出∠DPG的度数为(结果用含α的式子表示).48.完成下面的证明.已知:如图,BC∠DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∠BC∠DE,∠∠ABC=∠ADE().∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4.∠∠().∠∠1=∠2().49.如图所示,∠ABC∠∠DEF,试说明AB∠DE,BC∠EF.50.(1)填空:如图∠,AB∠CD,猜想∠BPD与∠B,∠D的关系,并说明理由.解:过点P作EF∠AB,如图所示∠∠B+∠BPE=180°(______________________________).∠AB∠CD,AB∠EF∠EF∠CD(如果两条直线都和第三条直线平行,那么(_____________________).∠∠EPD+∠D=180°∠∠B+∠BPE+∠EPD+∠D=________,即∠BPD+∠B+∠D=360°(2)仿照上面的解题方法,观查图∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,并说明理由.(3)观查图∠和∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,不需要说明理由.参考答案:1.C【分析】由AB //CO 得出∠BAO =∠AOC ,即可得出∠BOD .【详解】解://AB CO ,60OAB AOC ∴∠=∠=︒6090150BOC ∴∠=︒+︒=︒90AOC DOA DOA BOD ∠+∠=∠+∠=︒60AOC BOD ∴∠=∠=︒故选:C .【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题. 2.B【分析】根据两直线平行,同旁内角互补即可得.【详解】根据题意有:∠1+∠2=180°,∠∠1=50°,∠∠2=130°,故选:B .【点睛】本题主要考查了平行线的性质的知识,掌握两直线平行,同旁内角互补是解答本题的关键.3.B【分析】根据两直线平行内错角相等即可解决.【详解】解://30AB CD B ∠=︒,,30C ∴∠=︒, 故选:B .【点睛】本题主要考查平行线的性质,平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;题目较简单,能正确识别角的类型是解题的关键.4.C【分析】先假设a ∠b ,由平行线的性质即可得出∠2的值.【详解】解:假设a ∠b ,∠∠1=∠2,∠∠1=50°,∠∠2=50°.故选:C.【点睛】本题考查的是平行线的判定定理,即同位角相等,两直线平行.5.C【分析】在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.【详解】解:由题意画出图形,如图所示:故选C.【点睛】本题考查了直线的交点个数问题,此类题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F “形.7.D【分析】由AC x ∥轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ∠AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】解:∠AC x ∥轴,A (-3,2),(),C x y ,()3,5B ,∠y =2,当BC ∠AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值为:5−2=3, ∠此时点C 的坐标为(3,2),故D 正确.故选:D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.8.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A 、不是同位角,故本选项错误;B 、不是同位角,故本选项错误;C 、不是同位角,故本选项错误;D 、是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.9.C【分析】过点B 作直线b∠l ,再由直线m∠l 可知m∠l∠b ,得出∠3=∠1,∠2=∠4,由此可得出结论.【详解】解:过点B 作直线b∠l ,如图所示:∠直线m∠l ,∠m∠l∠b ,∠∠3=∠1,∠2=∠4.∠∠2=24°,∠∠4=24°,∠∠3=45°-24°=21°,∠∠1=∠3=21°;故选择:C.【点睛】本题考查的是平行线的性质;熟练掌握平行线的性质,并能进行推理论证与计算是解决问题的关键.10.A【分析】如图,由题意易得a ∠b ,则有∠3+∠5=180°,∠4=∠5,然后问题可求解.【详解】解:如图,∠1130∠=︒,250∠=︒,∠12180∠+∠=︒,∠a ∠b ,∠∠3+∠5=180°,∠3115∠=︒,∠4565∠=∠=︒;故选A .【点睛】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.11.C【分析】根据同位角的定义进行分析解答即可,两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角.【详解】解:∠直线AB 、CD 被直线EF 所截,∠只有∠CHE 与∠AGE 在截线EF 的同侧,且在AB 和CD 的同旁,即∠AGE 的同位角是∠CHE .故选:C .【点睛】本题考查同位角概念,解题的关键在于运用同位角的定义正确地进行分析. 12.B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.13.A【分析】根据邻补角的定义由90BEF ∠=︒得到90FEA ∠=︒,即90CEA AEF ∠+∠=︒,再根据对顶角相等得到CEA BED ∠=∠,所以90CEF BED ∠+∠=︒.【详解】解:90BEF ∠=︒,90FEA ∴∠=︒,即90CEA CEF ∠+∠=︒,CEA BED ∠=∠,90CEF BED ∴∠+∠=︒,即CEF ∠与BED ∠互余.故选:A .【点睛】本题考查了对顶角、邻补角:解题的关键是:知道有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.14.C【分析】根据两直线的位置关系、平行线的性质与判定分别进行判断即可.【详解】A:同一平面内,过一点有且只有一条直线与已知直线垂直,错误;B:过直线外一点有且只有一条直线与已知直线平行,错误;C:平行线的判定:同旁内角互补,两直线平行,正确;D:平行线的性质:两直线平行,同位角相等,错误.故答案选:C【点睛】本题考查两直线的位置关系以及平行线的性质与判定,掌握两直线的位置关系以及平行线的性质与判定是解题关键.15.D【详解】解:∠AB=DC,AD=BC,∠四边形ABCD为平行四边形,∠∠ADE=∠CBF,∠BF=DE,∠∠ADE∠∠CBF,∠∠BCF=∠DAE,∠∠DAE+∠ADB=∠AEB∠∠BCF=∠DAE=∠AEB-∠ADB=90°故选D.16.C【分析】根据平行线的性质可得同位角相等,再根据三角形的外角性质可求出∠3,即可求出结果.a b【详解】解://∴∠=∠︒14=85∠=∠∠,由三角形外角性质知,42+3∠=︒又235∴∠=∠-∠=︒-︒=︒,342853550故选:C.【点睛】本题考查平行线的性质、三角形的外角等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.C【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【详解】解:∠AB∠CD,∠∠DNM=∠BME=80°,∠∠PND=45°,∠∠PNM=∠DNM-∠DNP=35°,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.18.A【详解】因为∠1=∠2=22°,所以AB//CD,所以∠DAC+∠CAB=180°.由于∠C=130°,则︒-︒-︒=︒.故选A.∠DAC=180130222819.D【分析】由△ABC∠∠BAD(AAS),推出AD=BC,AC=BD,故∠∠正确,再证明CO=OD,可得∠CDA=∠DCB,故∠正确,由∠CDO=∠OAB,可得CD∠AB,故∠正确;【详解】解:∠OA=OB,∠∠DAB=∠CBA,∠∠ACB=∠BDA=90°,AB=BA,∠∠ABC∠△BAD(AAS),∠AD=BC,AC=BD,故∠∠正确,∠BC=AD,BO=AO,∠CO=OD,∠∠CDA=∠DCB,故∠正确,∠∠COD=∠AOB,∠∠CDO=∠OAB,∠CD∠AB,故∠正确,故选:D.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、平行线的判定等知识,解题的关键是灵活的选择判定方法证明三角形全等.20.B【详解】A. 如图:∠∠1=38°,∠2=142°,∠∠3=180°−∠2=38°,∠∠4=∠1+∠3=76°≠∠1,∠AB与CD不平行;故本选项错误;B. 如图:∠∠1=∠2=38°,∠AB∠CD,且方向相同;故本选项正确;C. 如图:∠∠2=142°,∠∠3=180°−∠2=38°,∠∠1=38°,∠∠1=∠2,∠AB∠CD,但方向相反;故本选项错误;D. 如图:∠∠2=40°,∠∠3=180°−∠2=140°≠∠1,∠AB与CD不平行,故本选项错误.故选:B.21.110°【详解】解:根据a∠b得∠1=∠3=70°,∠∠2+∠3=180°,∠∠2=180°-70°=110°.故答案为110°.22.60【分析】根据AB∠CD得出:∠1=∠CEF,又CE∠GF得出:∠2=∠CEF,根据等量代换∠=∠=︒.即可得出:1260【详解】解:∠AB∠CD,∠∠1=∠CEF,∠CE∠GF,∠∠2=∠CEF,∠∠2=∠1,∠∠1=60°,∠∠2=60°,故答案为:60.【点睛】本题考查平行线的性质,注意两直线平行,内错角相等、同位角相等. 23.∠∠∠【分析】根据同位角、内错角、同旁内角的定义判断即可.【详解】∠中∠GBD 和∠HCE 没有任何关系,故∠错;∠中∠ABD 和∠ACH 是直线FD 与直线CH 被直线AC 所截形成的同位角,故∠对; ∠中∠FBC 和∠ACE 是直线FD 与直线CE 被直线AC 所截形成的内错角,故∠对; ∠中∠FBC 和∠HCE 没有任何关系,故∠错;∠中∠GBC 和∠BCE 是直线BG 与直线CE 被直线AC 所截形成的同旁内角,故∠对; 综上正确的有:∠∠∠.【点睛】本题主要考查同位角、内错角、同旁内角的定义,解题的关键是能够熟练地掌握同位角、内错角、同旁内角的定义即可.24.38【分析】根据对顶角相等进行解答即可.【详解】解:∠图中1∠和2∠是对顶角,138∠=︒,∠2138∠=∠=︒.故答案为:38.【点睛】本题主要考查了对顶角的性质,熟练掌握对顶角相等,是解题的关键. 25.A CBE ∠=∠(答案不唯一)【分析】根据平行线的判定方法结合图形进行补充条件即可.【详解】解:补充:,A CBE由同位角相等,两直线平行可得,AD BC ∥补充:180,A ABC根据同旁内角互补,两直线平行可得,AD BC ∥故答案为:A CBE ∠=∠或180A ABC ∠+∠=︒(任写一个即可)【点睛】本题考查的是平行线的判定,掌握“同位角相等,两直线平行或同旁内角互补,两直线平行”是解本题的关键.26.50°##50度【分析】先由圆周角定理求出∠B 的度数,再根据平行线的性质即可求出∠AMO 的度数【详解】∠∠AOC =2∠B ,∠AOC =100°,∠∠B =50°,∠OM ∥BC ,∠∠AMO =∠B =50°,故答案为50°.【点睛】本题考查了圆周角定理,平行线的性质,熟练掌握圆周角定理,并找到∠AMO 与∠B 的关系,已知角与∠B 的关系,从而求出角的度数.27. 铅垂线 合页型折纸【分析】根据平行线的判定,以及“铅垂线”、“合页型折纸法”、“长方形纸片法”的方法分析判断即可得解.【详解】(1)根据重力学原理,铅垂线垂直于水平面,与铅垂线垂直的直线则与平面平行,故填:铅垂线;(2)合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把折断的两边放到水平面上,可判断折痕与水平面垂直,故填:合页型折纸.【点睛】本题考查了平行线的判定与垂线,利用物理力学原理是最好的检验方法. 28.70【分析】先根据平行线的性质求出C ∠的度数,再由三角形外角的性质即可得出结论.【详解】解:AB//CD ,140∠=,230∠=,C 40∠∴=,3∠是CDE 的外角,3C 2403070∠∠∠∴=+=+=.故答案为70.【点睛】本题考查了平行线的性质,三角形外角的性质,用到的知识点为:两直线平行,内错角相等.29.假.【分析】根据邻补角的定义来分析:既要其和是个平角(或180°),也要满足位置关系.【详解】解:根据邻补角的定义可知,两个角的度数和是180度,且有一条公共边称这两个角互为邻补角,∴如果两个角的和是平角时,那么这两个角不一定是邻补角.故答案为:假.【点睛】本题主要考查了邻补角的概念,比较简单.30.31°48′【分析】先由平行线的性质求出∠3的度数,再由∠AEF=90°,即可求出∠2.【详解】∠AB ∠ CD,∠1=58°12',∠∠3=∠1=58°12',∠EF∠AB,∠∠AEF=90°,∠∠2=90°-∠3=90°-58°12'=31°48′,故答案为31°48′.【点睛】本题考查了平行线的性质、垂线的定义,熟练掌握相关内容是解题的关键. 31.∠AOC,对顶角相等,∠AOC, 80°,已知BOD,1,80°,30°,50【详解】解:因为∠DOB=∠AOC (对顶角相等),∠AOC=80° (已知),所以,∠DOB=80°(等量代换),又因为∠1=30°(已知),所以∠2=∠BOD- ∠1 = 80°-50°=30°,故答案为:∠AOC,对顶角相等,∠AOC,80°,已知,BOD,1,80°,30°,50. 32.50.【详解】试题解析:如图:∠FED,根据折叠得出∠2=∠DEM=12∠是一张宽度相等的纸条,∠AE∠BM,∠1=100°,∠∠FED=∠1=100°,∠∠2=50°考点:1.平行线的性质;2.翻折变换(折叠问题).33.5【详解】∠在△ABC 中,BO 和CO 分别平分∠ABC 和∠ACB , ∠∠DBO=∠OBC ,∠ECO=∠OCB ,∠DE∠BC ,∠∠DOB=∠OBC=∠DBO ,∠EOC=∠OCB=∠ECO ,∠DB=DO ,OE=EC ,∠DE=DO+OE ,∠DE=BD+CE=5.故答案为5.34.105【分析】先根据90,ACB AC BC ∠=︒=判断出ACB ∆是等腰直角三角形,再根据AB BD =,AD DE =利用等腰三角形两底角相等的性质求算.【详解】∠90,ACB AC BC ∠=︒=∠45CAB ∠=︒又∠,AB BD AD AE ==∠,ADE AED BAD BDA ∠=∠∠=∠设=ADE AED x ∠=∠︒∠1802DAE x DAB ADB x ∠=︒-︒∠=∠=︒,∠180245x x ︒-︒+︒=︒∠75x =︒∠75DAB x ∠=︒=︒又∠//AB CD∠18075105ADC ∠=︒-︒=︒故答案为:105【点睛】本题考查平行线、等腰三角形、等腰直角三角形的性质,转化相关的角度是解题关键.35.50.【分析】先由角平分线的定义即可得出∠ABC 的度数,再根据平行线的性质求出∠1的度数.【详解】∠BE 平分∠ABC ,∠∠ABC=2∠1=50°.∠DE∠BC,∠∠ABC=∠2=50°.故答案为50°.【点睛】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.36.6【分析】过点D作DF∠BC,连接BD,根据平行线的判定和性质得出DF=AB=4,再由等边对等角确定∠BEC=∠BCE,利用各角之间的关系及平行线的判定及性质得出BE∠DC,∆CED与∆CDB的边CD上的高相等,结合图形求解即可.【详解】解:过点D作DF∠BC,连接BD,如图所示,∠AD∠BC,∠A=90,∠∠ABC=90,∠DF∠BC,∠∠DFB=90,∠DF∠AB,∠四边形ABFD为平行四边形,∠DF=AB=4,∠BE=BC=3,∠∠BEC=∠BCE,∠CE平分∠BCD,∠∠DCE=∠BEC,∠BE∠DC,∠∆CED与∆CDB的边CD上的高相等,∠1·62CDE BCDS S BC DF===,故答案为:6.【点睛】题目主要考查平行四边形的判定和性质,平行线的判定,角平分线的计算,等边对等角等,理解题意,综合运用这些知识点是解题关键.37.50【详解】试题解析:∠AD∠BC∠∠FEC=∠AFE=65°又∠沿EF折叠∠∠C′EF=∠FEC=65°,∠∠C'EB=180°-65°-65°=50°.【点睛】本题考查了翻折变换的知识,解答本题关键是掌握折叠前后图形的对应边和对应角相等,另外要熟练运用平行线的性质,难度一般.38.40°或140°【分析】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. 根据题意, ∠1=∠2或∠1和∠2互补.【详解】解:根据题意,得∠1=∠2=40°或∠2=180°-∠1=180°-40°=140°故答案为40°或140°.【点睛】本题考查了平行线的性质,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.39.5【分析】利用角平分线和平行可证得∠EBD=∠EDB,∠FDC=∠FCD,可得到DE=BE,DF=FC,可得到EF=BE+FC.【详解】∠BD平分∠ABC,∠∠EBD=∠DBC,∠EF∠BC,∠∠EDB=∠DBC,∠∠EBD=∠EDB,∠DE=BE=2,同理DF=3,∠EF=DE+DF=2+3=5.【点睛】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,解答此题的关键是熟练掌握等腰三角形的两角相等或两边相等.40.1.2【分析】过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,利用相似求解即可.【详解】∠90︒∠=C ,6AC =,8BC =,∠AB =10,∠2CF =,将CEF ∆沿直线EF 翻折,点C 落在点P 处,∠CF =PF =2,AF =AC -CF =6-2=4,过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,∠∠A =∠A ,∠AGF =∠ACB ,∠△AGF ∠△ACB , ∠AF GF AB CB =, ∠4108GF =, ∠FG =3.2,∠PD =FG -PF =3.2-2=1.2,故答案为:1.2.【点睛】本题考查了勾股定理,折叠的性质,三角形相似,垂线段最短,准确找到最短位置,并利用相似求解是解题的关键.41.见解析.【分析】根据平行线的判定可得AD∠BE ,然后求出∠2=∠E ,结合已知条件可证明AC∠DE ,进而得到∠C=∠CDE ,再根据角平分线的定义求出∠ADC=∠CDE ,等量代换即可证明结论.【详解】证明:∠∠A=∠1,∠AD∠BE ,∠∠2=∠E ,∠∠1=∠2,∠∠1=∠E ,∠AC∠DE ,∠∠C=∠CDE ,∠CD 平分∠ADE ,∠∠ADC=∠CDE ,∠∠C=∠ADC.【点睛】本题考查了角平分线的定义以及平行线的判定和性质,灵活运用平行线的判定定理和性质定理是解题的关键.42.70°【分析】过点C 作//CF BA ,根据平行线的性质及可求解;【详解】解:过点C 作//CF BA ,∠30BCF B ∠=∠=︒,∠//BA DE ,∠//CF DE ,∠40FCD D ∠=∠=︒,∠70BCD BCF FCD ∠=∠+∠=︒.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.43.DE ∠BC ,理由见解析【分析】由条件可得到∠2+∠DFH =180°,可证得AB//EH ,可得到∠3+∠BDE=180°,结合条件可证明DE//BC【详解】DE ∠BC ,理由如下:∠∠1+∠2=180°,∠1=∠DFH ,∠∠2+∠DFH =180°,∠AB ∠EH ,∠∠3+∠BDE =180°,∠∠B =∠3,∠∠B +∠BDE =180°,∠DE ∠B C .【点睛】本题主要考查平行线的判定,用到的知识点为:同旁内角互补,两直线平行. 44.垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【分析】根据垂直的定义,平行线的判定与性质即可得.【详解】证明∠∠AF ∠CE (已知),∠∠AOE =90°(垂直的定义),又∠∠1=∠B (已知),∠CE BF ∥ (内错角相等,两直线平行),∠∠AFB =∠AOE (两直线平行,同位角相等),∠∠AFB =90°(等量代换),又∠∠AFC +∠AFB +∠2=180°(平角的定义),∠∠AFC +∠2=(90°),又∠∠A +∠2=90°(已知),∠∠A =∠AFC (同角的余角相等),∠AB CD ∥ (内错角相等,两直线平行),故答案为:垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【点睛】本题考查了垂直的定义,平行线的判定与性质,解题的关键是掌握这些知识点. 45.(1)证明见解析;(2)四边形DECF 的面积=8【分析】(1)根据等腰三角形的性质和平行线的性质得到BDE BED ∠=∠,求得BD BE =,推出四边形DECF 是平行四边形,于是得到结论;(2)过点F 作FG BC ⊥交BC 于G ,根据菱形的性质得到4CF =,根据等腰三角形的性质得到A C ∠=∠,根据直角三角形的性质得到122FG FC ==,于是得到结论.【详解】(1)解:AB BC =,A C ∴∠=∠,//DE AC ,BDE A ∴∠=∠,BED C ∠=∠,BDE BED ∴∠=∠,BD BE ∴=,BA BD BC BE ∴-=-,AD CE ∴=,AD DE =,DE EC ∴=,CE CF =,DE CF ∴=,//DE FC ,∴四边形DECF 是平行四边形,CE CF =,∴四边形DECF 是菱形;(2)解:过点F 作FG BC ⊥交BC 于G ,四边形DECF 是菱形,4CE =,4CF ∴=,AB BC =,A C ∴∠=∠,30A ∠=︒,30C ∴∠=︒,90FGC ∠=︒,30C ∠=︒,122FG FC ∴==, ∴四边形DECF 的面积428EC FG ==⨯=.【点睛】本题考查了菱形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,直角三角形的性质,解题的关键是正确的识别图形.46.见解析【分析】根据角平分线和平行线的性质以及等腰三角形的判定解答即可.【详解】证明:∠AD 是∠CAE 的平分线,∠∠BAD =∠DAE ,∠BD ∠AE ,∠∠BDA =∠DAE ,∠∠BAD =∠BDA ,∠AB =BD ,∠AB =BC ,∠BC =BD ,∠∠C =∠CDB ,∠BD ∠AE ,∠∠E =∠CDB ,∠∠C =∠E ,∠AC =AE .【点睛】此题考查等腰三角形的性质与判定,关键是根据角平分线和平行线的性质得出BC=BD .47.(1)见解析;(2)∠见解析,∠DPG =65°;∠(90°﹣12a )或(90°+12a ) 【分析】(1)利用邻补角的意义,得出∠D =∠AFD ,根据内错角相等,两直线平行即可得结论;(2)∠根据题意画出图形结合(1)即可求出∠DPG 的度数;∠结合∠即可写出∠DPG 的度数.【详解】(1)证明:∠∠AFC +∠AFD =180°,∠AFC +α=180°,∠∠AFD =α=∠CDE ,∠AB∠DE;(2)解:∠如图即为补齐的图形,∠∠FDG与∠DGB的角平分线所在的直线交于点P,∠∠FDG=2∠FDP=2∠GDP,∠DGB=2∠DGQ=2∠BGQ,由(1)知AB∠DE,∠∠DFB=180°﹣α=180°﹣50°=130°,∠∠DGB=∠FDG+∠DFG,∠2∠DGQ=2∠GDP+130°,∠∠DGQ=∠GDP+65°,∠∠DGQ=∠GDP+∠DPG,∠∠DPG=65°;∠由∠知∠DPG=12∠DFB=12(180°﹣α)=90°﹣12a.当点G在AF上时,∠DPG=180°﹣(∠GDP+∠DGP)=180°﹣12(∠GDC+∠DGB)=180°﹣12∠DFB=180°﹣12(180°﹣α)=90°+12 a.故答案为:(90°﹣12a)或(90°+12a).【点晴】考查了平行线的判定与性质,解题关键是灵活运用其性质.48.两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的性质得出∠ABC=∠ADE,根据角平分线定义得出∠3=12∠ABC,∠4=12∠ADE,求出∠3=∠4,根据平行线的判定得出DF∠BE,根据平行线的性质得出即可.【详解】证明:∠BC∠DE,∠∠ABC=∠ADE(两直线平行,同位角相等).∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4,∠DF∠BE(同位角相等,两直线平行),∠∠1=∠2(两直线平行,内错角相等),故答案是:两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能综合运用平行线的性质和判定进行推理是解此题的关键.49.见解析.【分析】根据∠ABC∠∠DEF,得到∠A=∠D,∠1=∠2,根据内错角相等,两直线平行即可判定.【详解】解:证明:∠∠ABC∠∠DEF∠∠A=∠D,∠AB//DE;∠∠ABC∠∠DEF,∠∠1=∠2,∠BC//EF.【点睛】考查全等三角形的性质以及平行线的判定,掌握全等三角形的性质是解题的关键.50.(1)两直线平行,同旁内角互补;这两条直线互相平行;360°(2)∠BPD=∠B+∠D;理由见解析(3)图∠:∠D=∠B+∠BPD;图∠:∠B=∠BPD+∠D【分析】(1)利用平行线的性质解答;(2)作平行线,根据内错角相等可证∠BPD=∠B+∠D;(3)同样作平行线,根据内错角相等可证∠B=∠BPD+∠D.【详解】(1)过点P作EF∥AB,如图所示:∠∠B+∠BPE=180°(两直线平行,同旁内角互补),∠AB∥CD,EF∥AB,∠CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD+∠D=180°,∠∠B+∠BPE+∠EPD+∠D=360°,∠∠B+∠BPD+∠D=360°.故答案为:两直线平行,同旁内角互补;这两条直线互相平行;360°.(2)猜想∠BPD=∠B+∠D;理由:过点P作EP∥AB,如图所示:∠EP∥AB,∠∠B=∠BPE(两直线平行,内错角相等),∠AB∥CD,EP∥AB,∠CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD=∠D,∠∠BPD=∠B+∠D.(3)图∠结论:∠D=∠BPD+∠B,。
初中数学相交线与平行线专题训练50题含答案
初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。
(典型题)初中数学专项练习《相交线与平行线》100道解答题包含答案(专项练习)
初中数学专项练习《相交线与平行线》100道解答题包含答案(专项练习)一、解答题(共100题)1、如图,五边形 ABCDE中,AE∥CD,∠A=107°,∠B=121°,求∠C的度数。
2、如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.3、补全解答过程:已知:如图,直线,直线与直线,分别交于点G,H;平分,.求的度数.解:与交于点H,(已知).(▲),(已知).(▲),与,交于点G,H,(已知)(▲)▲平分,(已知)▲.(角平分线的定义)4、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。
5、如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.6、如图,已知点B,E,C,F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.7、如图,已知,,,.AB 与DE平行吗?为什么?8、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点F.求证:BF=AC.9、把下面的说理过程补充完整:已知:如图,BC//EF,BC=EF,AF=DC线段AB和线段DE平行吗?请说明理由.答:AB//DE理由:∵AF=DC(已知)∴AF+FC=DC+ ▲∴AC=DF(▲)(填推理的依据)∵BC//EF(已知)∴∠BCA=∠▲(两直线平行,内错角相等)又∵BC=EF(已知)∴ (▲)(填推理的依据)∴∠A=∠▲(全等三角形的对应角相等)∴AB//▲(内错角相等,两直线平行)10、小明在踢足球时把一块梯形ABCD的玻璃的下半部分打碎了,若量得上半部分∠A=123 ,∠D=105 ,你能知道下半部分的两个角∠B和∠C的度数吗?请说明理由.11、如图,BE∥CG,∠1=∠2,求证:BD∥CF12、如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.13、如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM 的度数.14、如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?15、已知:如图,∠1=∠2,∠3=∠E,求证:∠A=∠CBE.16、如图,在直角△ABC 中,∠ACB=90°,CD 是高,∠1=35°,求∠2,∠B 与∠A 的度数.17、在平行四边形ABCD中, ∠A+∠C=160°,求∠A,∠C,∠B,∠D的度数.18、已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFD=72°,则∠EGC等于多少度?19、如图,AF=BE,AC∥BD,CE∥DF,则(1)AC=_____,CE=______,(2)证明(1)中的结论。
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。
初中数学 中考中相交线与平行线 专题练习(含答案)
相交线与平行线第一部分知识梳理1.邻补角的定义:将一个角的一边反向延长,与另一边所形成的角,与原角是一对邻补角。
邻补角与互补的关系:互补不一定互为邻补,但互为邻不一定互补2、对顶角的定义:将一个角的两边都反向延长,所形成的角与原角是一对对顶角对顶角的性质:相等.3.当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫另一直线的垂线,它们的交点叫垂足.如图,用几何语言表示:Array方式⑴∵∠AOC=90°∴ AB⊥CD,垂足是O方式⑵∵ AB⊥CD于O∴∠AOC=90°56、点到直线的距离:垂线段的长度叫点到直线的距离7.在同一平面内,过一点有且只有一条直线与已知直线垂直.注意:垂线是一条直线,垂线段是一条线段,它们都是图形.点到直线的距离是垂线段的长度,是一个数量,不能说“垂线段”是距离.8.识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;9. 现在所说的两条直线的位置关系,是两条直线在“同一平面”的前提下提出来的,它们的位置关系只有两种:一是相交(有一个公共点),二是平行(没有公共点).10.平行线的定义:在同一平面内,没有公共点的两条直线叫做平行线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.平行线的传递性:平行于同一直线的两直线相互平行.11.两条直线平行的判定方法:⑴平行线的定义,⑵平行线的传递性,⑶平行线的判定公理:同位角相等,两直线平行⑷平行线的判定定理1:内错角相等,两直线平行⑸平行线的判定定理2:同旁内角互补,两直线平行12.两条直线平行的性质:⑴根据平行线的定义⑵平行线的性质公理:两直线平行,同位角相等⑶平行线的性质定理1:两直线平行,内错角相等⑷平行线的性质定理2:两直线平行,同旁内角互补⑸平行线间的距离处处相等.13.命题的定义:判断一件事情的语句,叫做命题.每个命题都是由题设和结论组成.每个命题都可以写成“如果……,那么……”的形式,用“如果”开始的部份是题设,用“那么”开始的部份是结论,正确的命题叫做真命题,错误的命题叫做假命题.从长期的实践活动中总结出来的正确命题叫做公理,通过正确的推理得出的真命题叫做定理(或推论).14、平移的特征:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点;(3)连接各组对应的线段平行且相等.即,在平面内,将一个图形沿某一移动一定的距离,图形的这种移动,叫做平移变换,简称平移.图形平移的方向,不一定是水平的.图形经过平移后,改变了图形的位置,不改变图形的形状和图形的大小.(填“改变”或“不改变”)第二部分中考链接一、相交线1.(2018•邵阳)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为() A.20°B.60°C.70°D.160°1题图2题图3题图2.(2019浙江绍兴)如图,墙上钉着三根木条a,b,c,量得170∠=︒,2100∠=︒,那么木条a,b所在直线所夹的锐角是() A.5︒ B.10︒ C.30︒ D.70︒3、(2018•河南)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.二、垂线1、(2018•杭州)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN2、(2019·江苏常州)如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD3题图4题图3、(2019贵州毕节)如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB 所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度4、(2019广东广州)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.第2图BP三、平行线的性质1、(2017潍坊)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠α D.∠α+∠β=90°1 2lab CB A1题图2题图 3题图4题图2.( 2017济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是().A.40°B.45°C.50°D.60°3.(2017临沂)30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50° B.60° C.70° D.80°4.(贵州2017)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5、(辽宁2017)过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142°D.128°5题图6题图7题图8题图6、(2017攀枝花市)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33° B.57° C.67° D.60°7、(2017黄冈)已知:如图,直线a∥b,∠1=50°∠2=∠3,则∠2的度数为()A.50° B. 60° C. 65° D. 75°8、(2018潍坊)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )A.45°B. 60°C. 75°D.82.5°9.(2018日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=() A.30° B.25°C.20°D.15°10.(2018滨州)如图,直线AB∥CD,则下列结论正确的是()A、∠1=∠2B、∠3=∠4C、∠1+∠3=180°D、∠3+∠4=180°9题图10题图12题图13题图11.(2018•东营)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.12.(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16°C.90°﹣αD.α﹣44°13.(2018•临沂)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°14.(2018•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30°C.45°D.50°15.(2018菏泽)如图,直线a∥b,等腰直角三角形的两个顶点分别落在直线a、b上,若130∠=,则2∠的度数是()A.45° B.30° C.15° D.10°14题图 15题图 16题图 17题图 18题图16.(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°17.(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°18.(2018•自贡)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50°B.45°C.40°D.35°19、(2018•怀化)如图,直线a∥b,∠1=60°,则∠2=()A.30°B.60°C.45°D.120°19题图 20题图21题图22题图20.(2018•绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°21.(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°22.(2018•乌鲁木齐)如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°23.(2018•衢州)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°23题图 24题图 26题图 27题图24.(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°25.(2018•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm26.(2018•黔南州)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°27.(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°28.(2018•十堰)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62°B.108°C.118°D.152°28题图 29题图 30题图 31题图29.(2018•恩施州)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135° C.145°D.155°30.(2018•内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°31.(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()个A.1 B.2 C.3 D.432.(2018•淮安)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°32题图 33题图 34题图35题图33.(2018•荆门)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°34.(2018•随州)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°35.(2018•遵义)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为( )A .35°B .55°C .56°D .65° 36.(2019日照)如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为( )A .35° B .45° C .55° D .65°36题图 37题图 38题图 39题图37. (2019东营)将一副三角板(∠A =30°,∠E =45°)按如图所示方式摆放,使得 B A ∥EF ,则∠AOF 等于( )A .75° B.90° C.105° D .115°38、(2019枣庄)按如图所示的位置放置,使含30︒角的三角板的一条直角边和含45︒角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45︒ B .60︒ C .75︒ D .85︒39、 (2019山东淄博) 如图,小明从A 处出发沿北偏东40°方向行走至B 处,又从点B 处沿东偏南20°方向行走至C 处,则∠ABC 等于( )A .130° B .120° C .110° D .100°40、(2019济南).如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A. 20B. 35C. 55D. 7040题图 41题图 42题图41、(2019临沂)如图,a ∥b ,若∠1=100°,则∠2的度数是( )A .110°B .80°C .70°D .60°42、 (2019 滨州)如图,AB ∥CD ,∠FGB=154°,FG 平分∠EFD,则∠AEF 的度数等于( )A .26°B .52°C .54°D .77°43、 (2019山东泰安) 如图,直线l 1∥l 2,∠1=30°,则∠2+∠3=A.150°B.180°C.210°D.240°43题图44题图45题图44.(2019山东菏泽)如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°45、(2019宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A. 105° B. 100° C. 75° D. 60°46、(2019随州)如图,直线l1∥l2,直角三角板的直角顶点C在直线l1上,一锐角顶点B 在直线l2上,若∠1=35°,则∠2的度数是() A.65° B.55° C.45° D.35°47、(2019四川乐山)如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于() A.45°B.50°C.55°D.60°46题图 47题图 48题图48、(2019四川省凉山市)如图,BD∥EF, AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为() A. 135° B.125°C. 115° D.105°49. (2019四川攀枝花)如图, AB∥CD, AD=CD,∠1=50°,则∠2的度数是()A.55° B.60° C.65°D.70°49题图 50题图 51题图52题图50.(2019四川南充)如图,直线a,b被直线c所截,//∠=︒,则2(a b,180∠=) A.130︒B.120︒C.110︒D.100︒.51、(2019四川成都)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°52、(2019四川资阳)如图,l1∥l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°53、(2019四川泸州)如图,BC⊥DE,垂足为点C,AC∥BD,∠B=40°,则∠ACE的度数为()A.40°B.50°C.45°D.60°53题图 54题图 55题图56题图54、(2019湖南省岳阳市)如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是()A.20º B.25º C.30º D.50º55.(2019湖南湘西)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°56、(2019浙江宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°57.(2019甘肃天水)一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为()A.145°B.140°C.135°D.130°57题图58题图59题图60题图58.(2019甘肃)如图,将一块含有30︒的直角三角板的顶点放在直尺的一边上,若148∠=︒,那么2∠的度数是() A.48︒B.78︒C.92︒D.102︒59.(2019湖北鄂州)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A.45°B.55°C.65°D.75°60、(2019湖北宜昌)如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45° B.60°C.75°D.85°61、(2019湖北十堰)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°61题图62题图63题图64题图62、(2019湖北仙桃)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°63、(2019湖北孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°64.(2019湖北荆州)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°65.(2019江苏宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°65题图66题图 67题图66. (2019广东深圳)如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5 C.∠2=∠3 D.∠1=∠367. (2019广西北部湾)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()。
中考数学总复习《相交线与平行线》专项测试题-附参考答案
中考数学总复习《相交线与平行线》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列命题①同位角相等;②相等的角是对顶角;③同角或等角的补角相等;④三角形的一个外角大于任何一个内角.其中是真命题...有()A.0个B.1个C.2个D.3个2.下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有()A.4个B.3个C.2个D.1个3.如图,点D是锐角三角形ABC的边BC上一个动点,当点D从B向C运动时,AD 的长度()A.变大B.变小C.先变大然后变小D.先变小而后变大4.如图,△ABC中AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.∠DAE=∠EAC D.AE∥BC 5.如图所示,在下列四组条件中,能判定AB∥CD的是( )A.∠1=∠2B.∠ABD=∠BDCC.∠3=∠4D.∠BAD+∠ABC=180∘6.如图AB∥DE,则下列各式中正确的是( )A.∠1+∠2+∠3=360∘B.∠2+∠3−∠1=180∘C.∠1+∠2−∠3=90∘D.∠1+∠3−∠2=90∘7.如图,若∠1=∠3,则下列结论一定成立的是( )A.∠1=∠4B.∠1+∠2=180∘C.∠2+∠4=180∘D.∠3=∠48.如图,小明用两块同样的三角板,按下面的方法作出了平行线,则AB∥CD的理由是( )A.∠2=∠4B.∠3=∠4C.∠5=∠6D.∠2+∠3+∠6=180∘二、填空题(共5题,共15分)9.把命题“邻补角互补”写成“如果⋯⋯那么⋯⋯”的形式是.10.如图,直线l与直线AB,CD分别相交于E,F,∠1=120∘,当∠2=时AB∥CD.11.如图,有一张矩形纸片ABCD,将它沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠GHC=110∘,则∠AGE等于.12.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70∘,∠BCD=40∘,则∠BED的度数为.13.如图∠1=∠2=40∘,MN平分∠EMB,则∠3=.三、解答题(共3题,共45分)14.已知:如图AB∥CD,∠B+∠D=180∘求证:BE∥FD.15.如图,已知三角形ABD,AC是∠DAB的平分线,平移三角形ABC,使点C移动到点D、点B的对应点是E,点A的对应点是F.(1) 在图中画出平移后的三角形FED.(2) 若∠DAB=72∘,EF与AD相交于点H,则∠FDA=∘,∠DHF=∘.16.如图,BD平分∠ABC,∠ABD=∠ADB .(1) 求证:AD∥BC;(2) 若BD⊥CD,∠BAD=α,求∠DCB的度数.(用含α的代数式表示)参考答案1.【答案】B2.【答案】C3.【答案】D4.【答案】C5. 【答案】B6. 【答案】B7. 【答案】B8. 【答案】B9. 【答案】如果两个角为邻补角,那么这两个角互补10. 【答案】60°11. 【答案】40°12. 【答案】55°13. 【答案】110°14. 【答案】∵AB∥CD∴∠B=∠BMD又∵∠B+∠D=180∘∴∠BMD+∠D=180∘∴BE∥FD.15. 【答案】(1) 画图略.(2) 36;10816. 【答案】(1) ∵BD平分∠ABC∴∠1=∠2.∵∠1=∠3∴∠3=∠2.∴AD∥BC.(2) ∵AD∥BC且∠BAD=α∴∠ABC=180∘−α.∴∠3=∠2=12∠ABC=90∘−12α.同理可证:∠C=180∘−∠ADC.∵BD⊥CD∴∠4=90∘.∴∠C=180∘−(∠3+∠4)=180∘−(90∘−12α+90∘)=12α.。
中考数学第五章 相交线与平行线测试试题含答案
中考数学第五章 相交线与平行线测试试题含答案一、选择题1.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°2.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 23.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角4.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠=5.下列四个说法中,正确的是( )A .相等的角是对顶角B .平移不改变图形的形状和大小,但改变直线的方向C .两条直线被第三条直线所截,内错角相等D .两直线相交形成的四个角相等,则这两条直线互相垂直6.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-7.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1) 8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.下列命题中,假命题的个数为( )(1)“是任意实数,”是必然事件; (2)抛物线的对称轴是直线;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为; (4)某件事情发生的概率是1,则它一定发生;(5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;(6)函数与轴必有两个交点.A .2B .3C .4D .510.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°二、填空题11.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.12.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.13.如图,AB ∥CD, AC ∥BD, CE 平分∠ACD ,交BD 于点E ,点F 在CD 的延长线上,且∠BEF=∠CEF ,若∠DEF=∠EDF ,则∠A 的度数为_____︒.14.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.15.如图,长方形ABCD 中,AB =6,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位长度,得到长方形A 1B 1C 1D 1,第2次平移长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位长度,得到长方形A 2B 2C 2D 2,…,第n 次平移长方形A n -1B n -1C n -1D n -1沿A n -1B n -1的方向向右平移5个单位长度,得到长方形A n B n C n D n (n >2),若AB n 的长度为2 016,则n的值为__________.16.已知M、N是线段AB的三等分点,C是BN的中点,CM=6 cm,则AB=_________ cm.17.如图,请你添加一个条件....使得AD∥BC,所添的条件是__________.18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.19.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.20.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.三、解答题21.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.22.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.23.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ(B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.24.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a ∥b ,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C .【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.2.B解析:B【详解】解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .3.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 4.B解析:B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.5.D解析:D【分析】根据对顶角的概念、平移的性质、平行线的性质以及垂直的概念进行判断.【详解】A.相等的角不一定是对顶角,而对顶角必定相等,故A错误;B.平移不改变图形的形状和大小,也不改变直线的方向,故B错误;C.两条直线被第三条直线所截,内错角不一定相等,故C错误;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故D正确.故选D.【点睛】本题考查了平移的性质、对顶角、平行线以及垂直的定义,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.6.C解析:C【分析】过C 作CD ∥AB ,过M 作MN ∥EF ,推出AB ∥CD ∥MN ∥EF ,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN ,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C 作CD ∥AB ,过M 作MN ∥EF ,∵AB ∥EF ,∴AB ∥CD ∥MN ∥EF ,∴α+∠BCD=180°,∠DCM=∠CMN ,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,∴x =∠BCD+∠DCM=180αγβ︒--+,故选:C .【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.7.C解析:C【分析】根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案.【详解】解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,……∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .【点睛】本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明. 8.D解析:D【解析】试题分析:根据对顶角的性质可知∠1=∠DOF,然后由平面直角坐标系可知∠DOB=90°=∠DOF+∠2,可知∠1+∠2=90°,再由∠1:∠2=3:6,可求得∠2=60°,因此可知∠AOE=60°,从而求得∠EOD 的度数为150°.故选:D9.C解析:C【解析】试题解析:(1)“a 是任意实数,|a|-5>0”是不确定事件,是假命题;(2)抛物线y=(2x+1)2的对称轴是直线x=-,是假命题;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为,是假命题;(4)某件事情发生的概率是1,则它一定发生,是真命题;(5)某彩票的中奖率为10%,则买100张彩票中奖的可能性很大,但不是一定中奖,是假命题;(6)函数y=-9(x+2014)2+与x 轴必有两个交点,是真命题,则假命题的个数是4;故选C .考点:命题与定理. 10.B解析:B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.二、填空题11.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.12.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 13.108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性解析:108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性质,四边形的内角和求解.详解:∵CE平分∠ACD∴∠ACE=∠DCE∵AB∥CD,AC∥BD,∴∠A+∠B=180°,∠B=∠BDF,∠ACD+∠A=180°,∠ACE=∠CED∵∠EDF=∠DEF =∠ECD+∠CED∴∠CEF=∠FEB=∠CED+∠DEF设∠B=x,则∠A=180°-x,∠ACE=∠ECD=∠CED=12 x,∴∠EDF=x,∠BEF=32x∴∠CEB=360°-2×∠BEF=360°-3x∴∠A+∠B+∠BEC+∠ACE=180°-x+x+360°-3x+12x=360°解得x=72°∴∠A=180°-72°=108°.故答案为108.点睛:此题主要考查了平行线的性质和三角形的外角的综合应用,关键是利用平行线的性质和三角形的外角确定角之间的关系,有一定的难度.14.平行平行垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行平行垂直【解析】根据平行公理的推论,可由//,//a b b c,得出a∥c;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3).15.【解析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出ABn=(n+1)×5+1求出n 即解析:【解析】根据平移的性质得出AA 1=5,A 1A 2=5,A 2B 1=A 1B 1-A 1A 2=6-5=1,进而求出AB 1和AB 2的长,然后根据所求得出数字变化规律,进而得出AB n =(n +1)×5+1求出n 即可.解:∵AB =6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1, 第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…, ∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1−A 1A 2=6−5=1,∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+1=11=2×5+1,∴AB 2的长为:5+5+6=16=3×5+1;……∴AB n =(n +1)×5+1=2016,解得:n =402.故答案为:402.点睛:本题主要考查找规律.根据所求出的数字找出其变化规律是解题的关键.16.12【解析】如图,∵M 、N 是线段AB 的三等分点,C 是BN 的中点,∴AM=MN ,CN=CB ,∴AM+CB=MN+CN=MC=6,∴AB=AM+MN+CN+CB=(AM+CB )+(MN+CN )解析:12【解析】如图,∵M 、N 是线段AB 的三等分点,C 是BN 的中点,∴AM=MN ,CN=CB ,∴AM+CB=MN+CN=MC=6,∴AB=AM+MN+CN+CB=(AM+CB )+(MN+CN )=6+6=12(cm ).17.∠EAD =∠B 或∠DAC =∠C【解析】当∠EAD =∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).18.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.20.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答. 【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.三、解答题21.(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°【分析】(1)如图1,过点P作PE∥MN,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA252︒∠=∠=∠=,据此进一步求解即可;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=100°,再由角平分线和平行线的性质得∠BPE=130°,1PCA CPE DCA252︒∠=∠=∠=,据此进一步求解即可;(3)如图3,过点P作PE∥MN,根据角平分线性质得出∠DBP=∠PBA=40°,由此得出∠BPE=∠DBP=40°,然后根据题意得出1PCA DCA652︒∠=∠=,由此再利用平行线性质得出∠CPE度数,据此进一步求解即可.【详解】(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA 252︒∠=∠=, ∵MN ∥PE ,MN ∥GH ,∴PE ∥GH ,∴∠EPC=∠PCA=25°, ∴∠BPC =130°+25°=155°;(3)如图3,过点P 作PE ∥MN .∵BP 平分∠DBA .∴∠DBP =∠PBA=40°,∵PE ∥MN ,∴∠BPE =∠DBP =40°,∵CP 平分∠DCA ,∠DCA =180°−∠DCG =130°,∴1PCA DCA 652︒∠=∠=, ∵PE ∥MN ,MN ∥GH ,∴PE ∥GH ,∴∠CPE =180°−∠PCA =115°,∴∠BPC =40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.22.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P , 1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.23.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC +∠ABC =180°,∴∠DAB +∠ABC =180°,∴AD ∥BC ;(2)∵32CFB DCF ∠=∠,设∠DCF =x ,则∠CFB =1.5x , ∵CF ∥AB ,∴∠ABF =∠CFB =1.5x ,∵BE 平分∠ABC ,∴∠ABC =2∠ABF =3x ,∵AD ∥BC ,∴∠FDC +∠BCD =180°,∵∠FDC +∠ABC =180°,∴∠BCD =∠ABC =3x ,∴∠BCF =2x ,∵CF ∥AB ,∴∠ABC +∠BCF =180°,∴3x +2x =180°,∴x =36°,∴∠BCD =3×36°=108°;(3)如图,∵∠DCF =∠CFB ,∴BF ∥CD ,∴∠CDF +∠BFD =180°,∵AD ∥BC ,∴∠CBF +∠BFD =180°,∴∠CDF =∠CBF ,∵AD ,BE 分别平分∠ABC ,∠CDE ,∴∠ABC =2∠CBF ,∠CDE =2∠FDC ,∴∠ABC =∠CDE =2∠FDC ,∵∠FDC +∠ABC =180°,∴∠ABC =120°,∠FDC =60°,∵线段BC 沿直线AB 方向平移得到线段PQ ,∴BC ∥PQ ,∵AD ∥BC ,∴AD ∥PQ ,∵∠PQD ﹣∠QDC =20°,∴∠QDC =∠PQD ﹣20°,∴∠FDC +∠QDC +∠PQD =60°+∠PQD ﹣20°+∠PQD =180°,∴∠PQD =70°,即∠DQP =70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.24.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.25.(1)∠AEC =∠C +∠A ;(2)∠C ﹣∠E =15°;(3)2∠AGF +∠GDC =90°.理由见解析.【分析】(1)过点E 作EF ∥AB ,知AB ∥CD ∥EF ,据此得∠A=∠AEF ,∠C=∠CEF ,根据∠AEC=∠AEF+∠CEF 可得答案;(2)分别过点E 、F 作FM ∥AB ,EN ∥AB ,设∠NEF=x=∠EFM ,知∠AEF=x+50°,∠MFC=115°-x ,据此得∠C=180°-(115°-x )=x+65°,进一步计算可得答案;(3)分别过点E 、F 、G 作FM ∥AB ,EN ∥AB ,GH ∥AB ,设∠GAE=x=∠GAB ,∠GFM=y ,∠MPC=z ,知∠GPE=y+z ,从而得2x+2y+z=90°,∠C=180°-z ,根据GD ∥FC 得∠D=z ,由GH ∥AB ,AB ∥CD 知∠AGF=x+y ,继而代入可得答案.【详解】(1)∠AEC =∠C +∠A ,如图1,过点E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,则∠GPE=y+z,∴2x+2y+z=90°,∠C=180°﹣z,∵GD∥FC,∴∠D=z,∵GH∥AB,AB∥CD,∴∠AGF=x+y,∴2∠AGF+∠GDC=90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.(1)45;(2)①详见解析;②302α︒+或602α︒-; 【分析】(1)根据平行线性质可得180********BPD ∠=︒-︒-︒-︒=︒,再根据平行线性质得BOC BPD ∠=∠;(2)①根据平行线性质得160BOC ∠=∠=︒,2160∠=∠=︒,结合角平分线定义可证180DQE PDQ ∠+∠=︒,得PD QE ∥,根据平行线传递性可再证PD OC ∥; ②分两种情况分析:当Q 在H 的右侧时,根据平行线性质可得∠BPD=∠BOC=α,∠MQP=∠QPB=60°+α,根据角平分线性质∠MQE=12(60°+α),故∠PEQ=∠MQE ;当Q 在H 的右侧时,与上面同理,∠NQE=12(180°-60°-α),∠PEQ=∠NQE . 【详解】(1)由45NQD ∠=︒,MNAB ,可得180********BPD ∠=︒-︒-︒-︒=︒, 而PD OC ∥,则有BOC BPD ∠=∠.故45BPD α=∠=︒ (2)∵QE OC ∥,60BOC α∠==︒,∴160BOC ∠=∠=︒,又∵MN AB ,∴2160∠=∠=︒,又∵QE 平分PQH ∠,∴3260∠=∠=︒,又∵430∠=︒,∴4390DQE ∠=∠+∠=︒,且90PDQ ∠=︒,∴180DQE PDQ ∠+∠=︒,∴PD QE ∥,∵QE OC ∥,∴PD OC ∥.②当Q 在H 的右侧时,∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠MQP=∠QPB=60°+α又∵QE 平分∠MQP∴∠MQE=12(60°+α)=30°+12α∴∠PEQ=∠MQE=30°+12α 当Q 在H 的左侧时∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠NQP=180°-60°-α又∵QE 平分∠NQP∠NQE=12(180°-60°-α)=60°-12α ∴∠PEQ=∠NQE=60°-12α∴302PEQ α∠=︒+或602α︒-.【点睛】 考核知识点:平移、平行线判定和性质综合运用.熟练运用平行线性质和判定,分类讨论问题是关键.。
中考数学第五章 相交线与平行线知识点-+典型题含答案
中考数学第五章 相交线与平行线知识点-+典型题含答案一、选择题1.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°2.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°3.如图,直线//a b ,直线AB AC ⊥,若150∠=,则2∠=( )A .50B .45C .40D .304.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④ 5.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( )A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转30 6.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.已知:点A,B,C在同一条直线上,点M、N分别是AB、BC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm8.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A.纵坐标不变,横坐标减2B.纵坐标不变,横坐标先除以2,再均减2C.纵坐标不变,横坐标除以2D.纵坐标不变,横坐标先减2,再均除以29.如图,将直角边长为a(a>1)的等腰直角三角形ABC沿BC向右平移1个单位长度,得到三角形DEF,则图中阴影部分面积为()A.a-12B.a-1C.a+1 D.a2-110.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°二、填空题11.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;12.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).13.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.15.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM 的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.16.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F,G,D,C在同一直线上,点G和点D 重合.现将△EFG沿射线FC向右平移,当点F和点C重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm2,则△EFG 向右平移了____cm.17.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′、D′处,C′E交AF于点G,若∠CEF=64°,则∠GFD′=_____________.19.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 016,则n 的值为__________.20.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)______________.三、解答题21.如图1,D 是△ABC 延长线上的一点,CE //AB .(1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.23.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.24.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).25.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
相交线与平行线常考题目及答案(绝对经典)
相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个3.如图所示,同位角共有()A.6对 B.8对 C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3=.7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?12.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF=.(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+ =180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=°.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF 的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3=.∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC=.(2)如图②,若∠A=100°,∠C=120°,则∠AEC=.(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.48.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?参考答案及解析一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A【点评】灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个【分析】由OE⊥AB,OF⊥CD可知:∠AOE=∠DOF=90°,而∠1、∠AOF都与∠EOF互余,可知∠1=∠AOF,因而可以转化为求∠1和∠AOF的余角共有多少个.【解答】解:∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,即∠AOF+∠EOF=∠EOF+∠1,∴∠1=∠AOF,∴∠COA+∠1=∠1+∠EOF=∠1+∠BOD=90°.∴与∠1互为余角的有∠COA、∠EOF、∠BOD三个.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
中考数学专题复习《相交线与平行线》测试卷(附带答案)
中考数学专题复习《相交线与平行线》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.解答题(共15小题)1.已知:∠AOB=α(0°<α<90°)一块三角板CDE中∠CED=90°∠CDE=30°将三角板CDE如图所示放置使顶点C落在OB边上经过点D作直线MN∥OB交OA 边于点M且点M在点D的左侧.(1)如图若CE∥OA∠NDE=45°则α=°(2)若∠MDC的平分线DF交OB边于点F①如图当DF∥OA且α=60°时试说明:CE∥OA②如图当CE∥OA保持不变时试求出∠OFD与α之间的数量关系.2.如图(1)AB∥CD猜想∠BPD与∠B∠D的数量关系并说明理由.①读下列过程并填写理由.解:猜想∠BPD+∠B+∠D=360°.理由:过点P作EF∥AB.∴∠B+∠BPE=180°.()∵AB∥CD(已知)EF∥AB(辅助线的作法).∴CD∥EF.()∴∠EPD+∠CDP=180°.∴∠B+∠BPE+∠EPD+∠D=360°.∴∠B+∠BPD+∠D=360°.②仿照上面的解题方法观察图(2)已知AB∥CD猜想图中的∠BPD与∠B∠D的数量关系并说明理由.③观察图(3)和图(4)已知AB∥CD直接写出图中的∠BPD与∠B∠D的数量关系不必说明理由.3.如图1 将一副直角三角板放在同一条直线AB上其中∠ONM=30°∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置使得点O与点N重合CD与MN相交于点E则∠CEN=°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转使一边OD在∠MON的内部如图3 且OD恰好平分∠MON CD与NM相交于点E求∠CEN的度数(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周在旋转的过程中当边OC 旋转°时边CD恰好与边MN平行.(直接写出结果)4.问题探究:如图①已知AB∥CD我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②过点E作EF∥AB把∠BED分成∠BEF与∠DEF的和然后分别证明∠BEF=∠B∠DEF=∠D.李思同学:如图③过点B作BF∥DE则∠E=∠EBF再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路写出证明过程(2)请按李思同学的思路写出证明过程问题迁移:(3)如图④已知AB∥CD EF平分∠AEC FD平分∠EDC.若∠CED=3∠F请直接写出∠F的度数.5.如图由线段AB AM CM CD组成的图形像∑称为“∑形BAMCD”.(1)如图 1 ∑形BAMCD中若AB∥CD∠AMC=60°则∠A+∠C =°(2)如图2 连接∑形BAMCD中B D两点若∠ABD+∠BDC=160°∠AMC=α试猜想∠BAM与∠MCD的数量关系并说明理由(3)如图3 在(2)的条件下当点M在线段BD的延长线上从上向下移动的过程中请直接写出∠BAM与∠MCD所有可能的数量关系.6.如图1 E点在BC上∠A=∠D∠ACB+∠BED=180°.(1)求证:AB∥CD(2)如图2 AB∥CD BG平分∠ABE与∠EDF的平分线交于H点若∠DEB比∠DHB大60°求∠DEB的度数.(3)在(1)的结论下保持(2)中所求的∠DEB的度数不变如图3 BM平分∠EBK DN平分∠CDE作BP∥DN则∠PBM的度数是否改变?若不变请求值若改变请说明理由.7.如图点D点E分别在△ABC边AB AC上∠CBD=∠CDB DE∥BC∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°(2)如图②如果∠ACD的平分线与AB交于G点∠BGC=50°求∠DEC的度数.(3)如图③如果H点是BC边上的一个动点(不与B C重合)AH交DC于M点∠CAH的平分线AI交DF于N点当H点在BC上运动时∠DEC+∠DMH∠ANF的值是否发生变化?如果变化说明理由如果不变试求出其值.8.已知直线AB∥CD点E F分别在直线AB CD上点P是直线AB与CD外一点连接PE PF.(1)如图1 若∠AEP=45°∠DFP=105°求∠EPF的度数(2)如图2 过点E作∠AEP的角平分线EM交FP的延长线于点M∠DFP的角平分线FN交EM的反向延长线交于点N若∠M与3∠N互补试探索直线EP与直线FN 的位置关系并说明理由(3)若点P在直线AB的上方且不在直线EF上作∠DFP的角平分线FN交∠AEP的角平分线EM所在直线于点N请直接写出∠EPF与∠ENF的数量关系.9.实验证明平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图一束光线m射到平面镜上被a反射到平面镜b上又被b镜反射若被b 反射出的光线n与光线m平行且∠1=50°则∠2=°∠3=°(2)在(1)中若∠1=55°则∠3=°若∠1=40°则∠3=°(3)由(1)(2)请你猜想:当两平面镜a b的夹角∠3=°时可以使任何射到平面镜a上的光线m经过平面镜a b的两次反射后入射光线m与反射光线n平行请说明理由.10.如图已知直线l1∥l2l3l4和l1l2分别交于点A B C D点P在直线l3或l4上且不与点A B C D重合.记∠AEP=∠1 ∠PFB=∠2 ∠EPF=∠3.(1)若点P在图(1)位置时求证:∠3=∠1+∠2(2)若点P在图(2)位置时请直接写出∠1 ∠2 ∠3之间的关系(3)若点P在图(3)位置时写出∠1 ∠2 ∠3之间的关系并给予证明(4)若点P在C D两点外侧运动时请直接写出∠1 ∠2 ∠3之间的关系.11.当光线经过镜面反射时入射光线反射光线与镜面所夹的角对应相等例如:在图①图②中都有∠1=∠2 ∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①若α=90°判断入射光线EF与反射光线GH的位置关系并说明理由.(2)如图②若90°<α<180°入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系并说明理由.(3)如图③若α=120°设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°)入射光线EF与镜面AB的夹角∠1=m(0°<m<90°)已知入射光线EF从镜面AB开始反射经过n(n为正整数且n≤3)次反射当第n次反射光线与入射光线EF平行时请直接写出γ的度数.(可用含有m的代数式表示)12.已知:直线a∥b点A和点B是直线a上的点点C和点D是直线b上的点连接AD BC设直线AD和BC交于点E.(1)在如图1所示的情形下若AD⊥BC求∠ABE+∠CDE的度数(2)在如图2所示的情形下若BF平分∠ABC DF平分∠ADC且BF与DF交于点F当∠ABC=64°∠ADC=72°时求∠BFD的度数(3)如图3 当点B在点A的右侧时若BF平分∠ABC DF平分∠ADC且BF DF 交于点F设∠ABC=α∠ADC=β用含有αβ的代数式表示∠BFD的补角.13.如图1 AB∥CD E为AB上一点点P在线段CE上且PD∥CF.(1)求证:∠AEC+∠DCF=∠DPE(2)如图2 在线段CF上取点H使∠HPF=∠HFP若CD平分∠ECF PQ平分∠EPH∠HPQ+∠AEC=90°试判断PF与EF的大小关系.14.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°则∠ACB的度数为(2)若∠ACB=140°求∠DCE的度数(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由(4)当∠ACE<90°且点E在直线AC的上方时这两块三角尺是否存在AD与BC平行的情况?若存在请直接写出∠ACE的值若不存在请说明理由.15.(1)光线从空气中射入水中会产生折射现象同时光线从水中射入空气中也会产生折射现象如图1 光线a从空气中射入水中再从水中射入空气中形成光线b根据光学知识有∠1=∠2 ∠3=∠4 请判断光线a与光线b是否平行并说明理由(2)如图2 直线EF上有两点A C分别引两条射线AB CD.已知∠BAF=150°∠DCF=80°射线AB CD分别绕点A点C以1度/秒和3度/秒的速度同时顺时针转动设时间为t秒当射线CD转动一周时两条射线同时停止.则当直线CD与直线AB互相垂直时t=秒.参考答案与试题解析一.解答题(共15小题)1.已知:∠AOB=α(0°<α<90°)一块三角板CDE中∠CED=90°∠CDE=30°将三角板CDE如图所示放置使顶点C落在OB边上经过点D作直线MN∥OB交OA 边于点M且点M在点D的左侧.(1)如图若CE∥OA∠NDE=45°则α=45°(2)若∠MDC的平分线DF交OB边于点F①如图当DF∥OA且α=60°时试说明:CE∥OA②如图当CE∥OA保持不变时试求出∠OFD与α之间的数量关系.【考点】平行线的判定与性质.【专题】线段角相交线与平行线推理能力.【答案】(1)45(2)①证明过程见解答②150°−12α.【分析】(1)过点E作EF∥MN根据MN∥OB可得EF∥OB根据平行线的性质可得∠AOB=45°(2)①根据平行线的性质和角平分线定义即可说明CE∥OA②当CE∥OA保持不变时总有∠ECB=α在直角三角形DCE中∠DCE=60°可得∠DCB=60°+α根据MN∥OB和角平分线定义即可求出∠OFD与α之间的数量关系.【解答】解:(1)如图过点E作EF∥MN∴∠DEF=∠NDE=45°∵∠CED=90°∴∠FEC=45°∵MN∥OB∴EF∥OB∴∠BCE=∠FCE=45°∵AO∥CE∴∠AOB=∠ECB=45°则α=45°故答案为:45(2)①∵DF∥OA∴∠DFC=∠AOB=α=60°∵MN∥OB∴∠MDF=∠DFC∵DF平分∠MDC∴∠CDF=∠MDF=60°在直角三角形DCE中∠DCE=60°∴∠CDF=∠DCE∴CE∥DF∵DF∥OA∴CE∥OA②∵当CE∥OA保持不变时总有∠ECB=α在直角三角形DCE中∠DCE=60°∴∠DCB=60°+α∵MN∥OB∴∠MDC=∠DCB=60°+α且∠DFC=∠MDF ∵DF平分∠MDC∴∠DFC=∠MDF=30°+1 2α∴∠OFD=180°−∠DFC=180°−(30°+12α)=150°−12α.【点评】本题考查了平行线的判定与性质解决本题的关键是掌握平行线的判定与性质.2.如图(1)AB∥CD猜想∠BPD与∠B∠D的数量关系并说明理由.①读下列过程并填写理由.解:猜想∠BPD+∠B+∠D=360°.理由:过点P作EF∥AB.∴∠B+∠BPE=180°.(两直线平行同旁内角互补)∵AB∥CD(已知)EF∥AB(辅助线的作法).∴CD∥EF.(平行线公理的推论)∴∠EPD+∠CDP=180°.∴∠B+∠BPE+∠EPD+∠D=360°.∴∠B+∠BPD+∠D=360°.②仿照上面的解题方法观察图(2)已知AB∥CD猜想图中的∠BPD与∠B∠D 的数量关系并说明理由.③观察图(3)和图(4)已知AB∥CD直接写出图中的∠BPD与∠B∠D的数量关系不必说明理由.【考点】平行线的判定与性质.【答案】见试题解答内容【分析】①根据平行线的性质得到的∠B+∠BPE=180°∠EPD+∠CDP=180°.等量代换即可得到结论②首先过点P作PE∥AB由AB∥CD可得PE∥AB∥CD根据两直线平行内错角相等即可得∠1=∠B∠2=∠D则可求得∠BPD=∠B+∠D.③由AB∥CD根据两直线平行内错角相等与三角形外角的性质即可求得∠BPD与∠B∠D的关系.【解答】解:①猜想∠BPD+∠B+∠D=360°.理由:过点P作EF∥AB.∴∠B+∠BPE=180°.(两直线平行同旁内角互补)∵AB∥CD(已知)EF∥AB(辅助线的作法).∴CD∥EF.(平行线公理的推论)∴∠EPD+∠CDP=180°.∴∠B+∠BPE+∠EPD+∠D=360°.∴∠B+∠BPD+∠D=360°.故答案为:两直线平行同旁内角互补平行线公理的推论②∠BPD=∠B+∠D.理由:如图2 过点P作PE∥AB∵AB∥CD∴PE∥AB∥CD∴∠1=∠B∠2=∠D∴∠BPD=∠1+∠2=∠B+∠D③如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD∴∠1=∠D∵∠1=∠B+∠P∴∠D=∠B+∠P即∠BPD=∠D﹣∠B如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD∴∠1=∠B∵∠1=∠D+∠P∴∠B=∠D+∠P即∠BPD=∠B﹣∠D.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度不大解题的关键是注意掌握两直线平行内错角相等定理的应用注意辅助线的作法.3.如图1 将一副直角三角板放在同一条直线AB上其中∠ONM=30°∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置使得点O与点N重合CD与MN相交于点E则∠CEN=105°.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转使一边OD在∠MON的内部如图3 且OD恰好平分∠MON CD与NM相交于点E求∠CEN的度数(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周在旋转的过程中当边OC 旋转75或255°时边CD恰好与边MN平行.(直接写出结果)【考点】平行线的判定平移的性质.【专题】常规题型.【答案】见试题解答内容【分析】(1)在△CEN中依据三角形的内角和定理求解即可(2)根据角平分线的定义求出∠DON=45°利用内错角相等两直线平行求出CD∥AB 再根据两直线平行同旁内角互补求解即可(3)当CD在AB上方时CD∥MN设OM与CD相交于F根据两直线平行同位角相等可得∠OFD=∠M=60°然后根据三角形的内角和定理列式求出∠MOD即可得解当CD在AB的下方时CD∥MN设直线OM与CD相交于F根据两直线平行内错角相等可得∠DFO=∠M=60°然后利用三角形的内角和定理求出∠DOF再求出旋转角即可.【解答】解:(1)∵∠ECN=45°∠ENC=30°∴∠CEN=105°.故答案为:105°.(2)∵OD平分∠MON∴∠DON=12∠MON=12×90°=45°∴∠DON=∠D=45°∴CD∥AB∴∠CEN=180°﹣∠MNO=180°﹣30°=150°.(3)如图1 CD在AB上方时设OM与CD相交于F ∵CD∥MN∴∠OFD=∠M=60°在△ODF中∠MOD=180°﹣∠D﹣∠OFD=180°﹣45°﹣60°=75°当CD在AB的下方时设直线OM与CD相交于F∵CD∥MN∴∠DFO=∠M=60°在△DOF中∠DOF=180°﹣∠D﹣∠DFO=180°﹣45°﹣60°=75°∴旋转角为75°+180°=255°综上所述当边OC旋转75°或255°时边CD恰好与边MN平行.故答案为:75或255.【点评】本题考查了旋转的性质三角形的内角和定理三角形的一个外角等于与它不相邻的两个内角的和的性质直角三角形两锐角互余的性质熟记各性质并熟悉三角板的度数特点是解题的关键.4.问题探究:如图①已知AB∥CD我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②过点E作EF∥AB把∠BED分成∠BEF与∠DEF的和然后分别证明∠BEF=∠B∠DEF=∠D.李思同学:如图③过点B作BF∥DE则∠E=∠EBF再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路写出证明过程(2)请按李思同学的思路写出证明过程问题迁移:(3)如图④已知AB∥CD EF平分∠AEC FD平分∠EDC.若∠CED=3∠F请直接写出∠F的度数.【考点】平行线的性质.【专题】线段角相交线与平行线三角形推理能力.【答案】(1)(2)证明见解析部分.(3)36°.【分析】(1)如图②中过点E作EF∥AB利用平行线的性质证明即可.(2)如图③中过点B作BF∥DE交CD的延长线于G.利用平行线的性质证明即可.(3)设∠AEF=∠CEF=x∠CDF=∠EDF=y则∠F=x+y根据∠AEC+∠CED+∠DEB=180°构建方程求出x+y可得结论.【解答】解:(1)如图②中过点E作EF∥AB∵AB∥CD EF∥AB∴AB∥EF∥CD∴∠B=∠BEF∠D=∠DEF∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)如图③中过点B作BF∥DE交CD的延长线于G.∵DE∥FG∴∠EDC=∠G∠DEB=∠EBF∵AB∥CG∴∠G=∠ABF∴∠EDC=∠ABF∴∠DEB=∠EBF=∠ABE+∠ABF=∠ABE+∠EDC.(3)如图④中∵EF平分∠AEC FD平分∠EDC∴∠AEF=∠CEF∠CDF=∠EDF设∠AEF=∠CEF=x∠CDF=∠EDF=y则∠F=x+y ∵∠CED=3∠F∴∠CED=3x+3y∵AB∥CD∴∠BED=∠CDE=2y∵∠AEC+∠CED+∠DEB=180°∴5x+5y=180°∴x+y=36°∴∠F=36°.【点评】本题考查平行线的性质平角的性质等知识解题的关键是学会添加常用辅助线利用平行线的性质解决问题.5.如图由线段AB AM CM CD组成的图形像∑称为“∑形BAMCD”.(1)如图1 ∑形BAMCD中若AB∥CD∠AMC=60°则∠A+∠C=60°(2)如图2 连接∑形BAMCD中B D两点若∠ABD+∠BDC=160°∠AMC=α试猜想∠BAM与∠MCD的数量关系并说明理由(3)如图3 在(2)的条件下当点M在线段BD的延长线上从上向下移动的过程中请直接写出∠BAM与∠MCD所有可能的数量关系.【考点】平行线的性质.【专题】线段角相交线与平行线三角形推理能力.【答案】(1)60°(2)∠BAM+∠MCD=α+20°(3)∠BAM﹣∠MCD=α+20°或∠BAM﹣∠MCD=20°或∠MCD﹣∠BAM=α﹣20°.【分析】(1)过M作MN∥AB利用平行线的性质计算可求求解(2)过A点作AP∥CD交BD于点P利用平行线的性质及三角形的内角和定理可求得∠BAP=20°结合(1)的结论可求解(3)可分两种情况:当D C位于AM两侧时当D C位于AM同侧时利用平行线的性质及三角形外角的性质可分别计算求解.【解答】解:(1)过M作MN∥AB∵AB∥CD∴AB∥MN∥CD∴∠AMN=∠A∠MCD=∠C∴∠A+∠C=∠AMN+∠MCD=∠AMC=60°故答案为:60°(2)∠BAM+∠MCD=α+20°.理由:过A点作AP∥CD交BD于点P∴∠APB=∠D∵∠BAP+∠APB+∠B=180°∠B+∠D=160°∴∠BAP=180°﹣160°=20°由(1)可得∠AMC=∠P AM+∠MCD∵∠AMC=α∴∠P AM+∠MCD=α∴∠BAM+∠MCD=α+20°(3)如图当D C位于AM两侧时∵∠ABD+∠BDC=160°∠CDM+∠BDC=180°∴∠CDM﹣∠ABD=20°∵∠AMQ=∠B+∠BAM∠CMQ=∠MCD+∠CDM∠AMC=α∴α=∠AMQ﹣∠CMQ=∠B+∠BAM﹣(∠MCD+∠CDM)=∠BAM﹣∠MCD﹣20°即∠BAM﹣∠MCD=α+20°当A C M三点共线时∠AMC=α=0°∴∠BAM﹣∠MCD=20°当D C位于AM同侧时∵∠ABD+∠BDC=160°∠CDM+∠BDC=180°∴∠CDM﹣∠ABD=20°∵∠AMO=∠B+∠BAM∠CMO=∠MCD+∠CDM∠AMC=α∴α=∠CMO﹣∠AMO=∠MCD+∠CDM﹣(∠B+∠BAM)=∠MCD﹣∠BAM+20°即∠MCD﹣∠BAM=α﹣20°.综上∠BAM﹣∠MCD=α+20°或∠MCD﹣∠BAM=α﹣20°.【点评】本题主要考查平行线的性质三角形外角的性质三角形的内角和定理掌握平行线的性质是解题的关键.6.如图1 E点在BC上∠A=∠D∠ACB+∠BED=180°.(1)求证:AB∥CD(2)如图2 AB∥CD BG平分∠ABE与∠EDF的平分线交于H点若∠DEB比∠DHB大60°求∠DEB的度数.(3)在(1)的结论下保持(2)中所求的∠DEB的度数不变如图3 BM平分∠EBK DN平分∠CDE作BP∥DN则∠PBM的度数是否改变?若不变请求值若改变请说明理由.【考点】平行线的判定与性质.【专题】证明题线段角相交线与平行线运算能力推理能力.【答案】(1)证明过程请看解答(2)100°(3)40°.(1)如图1 延长DE交AB于点F根据∠ACB+∠BED=180°∠CED+∠BED 【分析】=180°可得∠ACB=∠CED所以AC∥DF可得∠A=∠DFB又∠A=∠D进而可得结论(2)如图2 作EM∥CD HN∥CD根据AB∥CD可得AB∥EM∥HN∥CD根据平行线的性质得角之间的关系再根据∠DEB比∠DHB大60°列出等式即可求∠DEB 的度数(3)如图3 过点E作ES∥CD设直线DF和直线BP相交于点G根据平行线的性质和角平分线定义可求∠PBM的度数.【解答】(1)证明:如图1 延长DE交AB于点F∵∠ACB+∠BED=180°∠CED+∠BED=180°∴∠ACB=∠CED∴AC∥DF∴∠A=∠DFB∵∠A=∠D∴∠DFB=∠D∴AB ∥CD(2)如图2 作EM ∥CD HN ∥CD∵AB ∥CD∴AB ∥EM ∥HN ∥CD∴∠1+∠EDF =180° ∠MEB =∠ABE∵BG 平分∠ABE∴∠ABG =12∠ABE∵AB ∥HN∴∠2=∠ABG∵CF ∥HN∴∠2+∠β=∠3∴12∠ABE +∠β=∠3 ∵DH 平分∠EDF∴∠3=12∠EDF∴12∠ABE +∠β=12∠EDF ∴∠β=12(∠EDF ﹣∠ABE )∴∠EDF ﹣∠ABE =2∠β设∠DEB =∠α∵∠α=∠1+∠MEB=180°﹣∠EDF+∠ABE=180°﹣(∠EDF﹣∠ABE)=180°﹣2∠β∵∠DEB比∠DHB大60°∴∠α﹣60°=∠β∴∠α=180°﹣2(∠α﹣60°)解得∠α=100°∴∠DEB的度数为100°(3)∠PBM的度数不变理由如下:如图3 过点E作ES∥CD设直线DF和直线BP相交于点G∵BM平分∠EBK DN平分∠CDE∴∠EBM=∠MBK=12∠EBK∠CDN=∠EDN=12∠CDE∵ES∥CD AB∥CD∴ES∥AB∥CD∴∠DES=∠CDE∠BES=∠ABE=180°﹣∠EBK ∠G=∠PBK由(2)可知:∠DEB=100°∴∠CDE+180°﹣∠EBK=100°∴∠EBK﹣∠CDE=80°∵BP∥DN∴∠CDN=∠G∴∠PBK=∠G=∠CDN=12∠CDE∴∠PBM=∠MBK﹣∠PBK=12∠EBK−12∠CDE=12(∠EBK﹣∠CDE)=12×80°=40°.【点评】本题考查了平行线的判定与性质解决本题的关键是掌握平行线的判定与性质.7.如图点D点E分别在△ABC边AB AC上∠CBD=∠CDB DE∥BC∠CDE的平分线交AC于F点.(1)求证:∠DBF+∠DFB=90°(2)如图②如果∠ACD的平分线与AB交于G点∠BGC=50°求∠DEC的度数.(3)如图③如果H点是BC边上的一个动点(不与B C重合)AH交DC于M点∠CAH的平分线AI交DF于N点当H点在BC上运动时∠DEC+∠DMH∠ANF的值是否发生变化?如果变化说明理由如果不变试求出其值.【考点】平行线的性质.【答案】见试题解答内容【分析】(1)根据DE∥BC得到∠EDB+∠DBC=180°再利用角平分线的性质即可解答(2)根据FD⊥AB∠BGC=50°得到∠DHG=40°利用外角的性质得到∠FDC+∠HCD=40°再根据DF平分∠EDC CG平分∠ACD得到∠EDC=2∠FDC∠ACD=2∠HCD得到∠EDC+∠ACD=2(∠FDC+∠HCD)=80°利用三角形内角和为180°∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣80°=100°.(3)不变根据∠DMH+∠DEC=2(∠ADF+∠DAN)∠ANF=∠ADF+∠DAN即可解答.【解答】解:(1)如图1∵DE∥BC∴∠EDB+∠DBC=180°∴∠EDF+∠FDC+∠CDB+∠DBC=180°∵∠CDB=∠DBC∠EDF=∠FDC∴2∠FDC+2∠CDB=180°∴∠FDC+∠CDB=90°∴FD⊥BD∴∠DBF+DFB=90°.(2)如图2∵∠BGC=50°FD⊥BD∴∠DHG=40°∴∠FDC+∠HCD=40°∵DF平分∠EDC CG平分∠ACD∴∠EDC=2∠FDC∠ACD=2∠HCD∴∠EDC+∠ACD=2(∠FDC+∠HCD)=80°∴∠DEC=180°﹣(∠EDC+∠ACD)=180°﹣80°=100°.(3)不变如图3∵∠DMH +∠DEC =2(∠ADF +∠DAN ) ∠ANF =∠ADF +∠DAN∴∠DEC+∠DMH ∠ANF =2(∠ADF+∠DAN)∠ADF+∠DAN =2.【点评】本题考查了平行线的性质 三角形角平分线 外角的性质 三角形内角和定理 解决本题的关键是利用三角形的角平分线 外角得到角之间的关系.8.已知 直线AB ∥CD 点E F 分别在直线AB CD 上 点P 是直线AB 与CD 外一点 连接PE PF .(1)如图1 若∠AEP =45° ∠DFP =105° 求∠EPF 的度数(2)如图2 过点E 作∠AEP 的角平分线EM 交FP 的延长线于点M ∠DFP 的角平分线FN 交EM 的反向延长线交于点N 若∠M 与3∠N 互补 试探索直线EP 与直线FN 的位置关系 并说明理由(3)若点P 在直线AB 的上方且不在直线EF 上 作∠DFP 的角平分线FN 交∠AEP 的角平分线EM 所在直线于点N 请直接写出∠EPF 与∠ENF 的数量关系.【考点】平行线的性质 余角和补角.【专题】线段角相交线与平行线推理能力.【答案】(1)120°(2)EP∥FN理由见解析(3)∠EPF+2∠ENF=180°或∠EPF=2∠ENF﹣180°.【分析】(1)过P作PQ∥AB根据平行线的性质可得∠EPF=120°(2)EP∥FN根据角平分线的定义和三角形外角的性质可得∠4=2∠1=∠AEP进而可得结论(3)根据角平分线的定义和平行线的性质分情况讨论即可.【解答】解:(1)如图过P作PQ∥AB∵AB∥CD∴PQ∥CD∴∠QPE=∠AEP=45°∠QPF=∠180°﹣∠DFP=180°﹣105°=75°∴∠EPF=∠QPE+∠DFP=45°+75°=120°.故∠EPF=120°(2)EP∥FN如图理由:∵EM平分∠AEP FN平分∠MFD∴∠AEP=2∠1 ∠MFD=2∠3由(1)得∠M=∠1+∠CFM=∠1+(180°﹣2∠3)=∠1+(180°﹣2∠4)∵AB∥CD∴∠3=∠4由三角形外角的性质可得∠N=∠4﹣∠2=∠4﹣∠1∵∠M与3∠N互补∴∠1+(180°﹣2∠4)+3(∠4﹣∠1)=180°整理得∠4=2∠1=∠AEP∴EP∥FN(3)①∠EPF+2∠ENF=180°.如图∵AB∥CD∴∠CFH=∠EHF∠EKF=∠DFK∵FN平分∠DFP ME平分∠AEP∴∠CFH=180°﹣2∠DFK∠AEP=2∠AEM=2∠KEN由外角的性质得∠EPF=∠EHF﹣∠AEP=180°﹣2∠DFK﹣2∠AEM∠ENF=∠EKF+∠KEN=∠DFK+∠AEM∴∠EPF=180°﹣2∠ENF∴∠EPF+2∠ENF=180°.②∠EPF=2∠ENF﹣180°.如图∵AB∥CD∴∠PKB=∠PFD=2∠DFN由外角的性质得∠EPF=∠PKB﹣∠BEP=∠PKB﹣(180°﹣2∠MEP)=2∠DFN+2∠AEM﹣180°由(1)得∠ENF=∠DFN+∠NEK=∠DFN+∠AEM∴2∠ENF=2∠DFN+2∠AEM∴∠EPF=2∠ENF﹣180°.【点评】本题考查平行线判定和性质角平分线的定义三角形外角与内角的关系根据题意理清各角之间的关系是解题关键.9.实验证明平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图一束光线m射到平面镜上被a反射到平面镜b上又被b镜反射若被b 反射出的光线n与光线m平行且∠1=50°则∠2=100°∠3=90°(2)在(1)中若∠1=55°则∠3=90°若∠1=40°则∠3=90°(3)由(1)(2)请你猜想:当两平面镜a b的夹角∠3=90°时可以使任何射到平面镜a上的光线m经过平面镜a b的两次反射后入射光线m与反射光线n 平行请说明理由.【考点】平行线的判定与性质三角形内角和定理.【专题】跨学科.【答案】见试题解答内容【分析】根据入射角与反射角相等可得∠1=∠4 ∠5=∠6.(1)根据邻补角的定义可得∠7=80°根据m∥n所以∠2=100°∠5=40°根据三角形内角和为180°即可求出答案(2)结合题(1)可得∠3的度数都是90°(3)证明m∥n由∠3=90°证得∠2与∠7互补即可.【解答】解:(1)100°90°.∵入射角与反射角相等即∠1=∠4 ∠5=∠6根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°根据m∥n所以∠2=180°﹣∠7=100°所以∠5=∠6=(180°﹣100°)÷2=40°根据三角形内角和为180°所以∠3=180°﹣∠4﹣∠5=90°(2)90°90°.由(1)可得∠3的度数都是90°(3)90°(2分)理由:因为∠3=90°所以∠4+∠5=90°又由题意知∠1=∠4 ∠5=∠6所以∠2+∠7=180°﹣(∠5+∠6)+180°﹣(∠1+∠4)=360°﹣2∠4﹣2∠5=360°﹣2(∠4+∠5)=180°.由同旁内角互补两直线平行可知:m∥n.【点评】本题是数学知识与物理知识的有机结合充分体现了各学科之间的渗透性.10.如图已知直线l1∥l2l3l4和l1l2分别交于点A B C D点P在直线l3或l4上且不与点A B C D重合.记∠AEP=∠1 ∠PFB=∠2 ∠EPF=∠3.(1)若点P在图(1)位置时求证:∠3=∠1+∠2(2)若点P在图(2)位置时请直接写出∠1 ∠2 ∠3之间的关系(3)若点P在图(3)位置时写出∠1 ∠2 ∠3之间的关系并给予证明(4)若点P在C D两点外侧运动时请直接写出∠1 ∠2 ∠3之间的关系.【考点】平行线的性质三角形的外角性质.【专题】证明题探究型.【答案】见试题解答内容【分析】此题四个小题的解题思路是一致的过P作直线l1l2的平行线利用平行线的性质得到和∠1 ∠2相等的角然后结合这些等角和∠3的位置关系来得出∠1 ∠2 ∠3的数量关系.【解答】解:(1)证明:过P作PQ∥l1∥l2由两直线平行内错角相等可得:∠1=∠QPE∠2=∠QPF∵∠3=∠QPE+∠QPF∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1证明:过P作直线PQ∥l1∥l2则:∠1=∠QPE∠2=∠QPF∵∠3=∠QPF﹣∠QPE∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2同(1)可证得:∠3=∠CEP+∠DFP∵∠CEP+∠1=180°∠DFP+∠2=180°∴∠CEP+∠DFP+∠1+∠2=360°即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2①当P在C点上方时同(2)可证:∠3=∠DFP﹣∠CEP∵∠CEP+∠1=180°∠DFP+∠2=180°∴∠DFP﹣∠CEP+∠2﹣∠1=0即∠3=∠1﹣∠2.②当P在D点下方时∠3=∠2﹣∠1 解法同上.综上可知:当P在C点上方时∠3=∠1﹣∠2 当P在D点下方时∠3=∠2﹣∠1.【点评】此题主要考查的是平行线的性质能够正确地作出辅助线是解决问题的关键.11.当光线经过镜面反射时入射光线反射光线与镜面所夹的角对应相等例如:在图①图②中都有∠1=∠2 ∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①若α=90°判断入射光线EF与反射光线GH的位置关系并说明理由.(2)如图②若90°<α<180°入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系并说明理由.(3)如图③若α=120°设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°)入射光线EF与镜面AB的夹角∠1=m(0°<m<90°)已知入射光线EF从镜面AB开始反射经过n(n为正整数且n≤3)次反射当第n次反射光线与入射光线EF平行时请直接写出γ的度数.(可用含有m的代数式表示)【考点】平行线的性质列代数式.【专题】综合题压轴题分类讨论线段角相交线与平行线几何直观运算能力推理能力.【答案】见试题解答内容【分析】(1)在△BEG中∠2+∠3+α=180°α=90°可得∠2+∠3=90°根据入射光线反射光线与镜面所夹的角对应相等可得∠FEG+∠EGH=180°进而可得EF∥GH(2)在△BEG中∠2+∠3+α=180°可得∠2+∠3=180°﹣α根据入射光线反射光线与镜面所夹的角对应相等可得∠MEG=2∠2 ∠MGE=2∠3 在△MEG中∠MEG+∠MGE+β=180°可得α与β的数量关系(3)分两种情况画图讨论:①当n=3时根据入射光线反射光线与镜面所夹的角对应相等及△GCH内角和可得γ=90°+m.②当n=2时如果在BC边反射后与EF 平行则α=90°与题意不符则只能在CD边反射后与EF平行根据三角形外角定义可得∠G=γ﹣60°由EF∥HK且由(1)的结论可得γ=150°.【解答】解:(1)EF∥GH理由如下:在△BEG中∠2+∠3+α=180°α=90°∴∠2+∠3=90°∵∠1=∠2 ∠3=∠4∴∠1+∠2+∠3+∠4=180°∵∠1+∠2+∠FEG=180°∠3+∠4+∠EGH=180°∴∠FEG+∠EGH=180°∴EF∥GH(2)β=2α﹣180°理由如下:在△BEG中∠2+∠3+α=180°∴∠2+∠3=180°﹣α∵∠1=∠2 ∠1=∠MEB∴∠2=∠MEB∴∠MEG=2∠2同理可得∠MGE=2∠3在△MEG中∠MEG+∠MGE+β=180°∴β=180°﹣(∠MEG+∠MGE)=180°﹣(2∠2+2∠3)=180°﹣2(∠2+∠3)=180°﹣2(180°﹣α)=2α﹣180°(3)90°+m或150°.理由如下:①当n=3时如图所示:∵∠BEG=∠1=m∴∠BGE=∠CGH=60°﹣m∴∠FEG=180°﹣2∠1=180°﹣2m∠EGH=180°﹣2∠BGE=180°﹣2(60°﹣m)∵EF∥HK∴∠FEG+∠EGH+∠GHK=360°则∠GHK=120°则∠GHC=30°由△GCH内角和得γ=90°+m.②当n=2时如果在BC边反射后与EF平行则α=90°与题意不符则只能在CD边反射后与EF平行如图所示:根据三角形外角定义得∠G=γ﹣60°由EF∥HK且由(1)的结论可得∠G=γ﹣60°=90°则γ=150°.综上所述:γ的度数为:90°+m或150°.【点评】本题考查了平行线的性质列代数式解决本题的关键是掌握平行线的性质注意分类讨论思想的利用.12.已知:直线a∥b点A和点B是直线a上的点点C和点D是直线b上的点连接AD BC设直线AD和BC交于点E.(1)在如图1所示的情形下若AD⊥BC求∠ABE+∠CDE的度数(2)在如图2所示的情形下若BF平分∠ABC DF平分∠ADC且BF与DF交于点F当∠ABC=64°∠ADC=72°时求∠BFD的度数(3)如图3 当点B在点A的右侧时若BF平分∠ABC DF平分∠ADC且BF DF 交于点F设∠ABC=α∠ADC=β用含有αβ的代数式表示∠BFD的补角.【考点】平行线的性质余角和补角垂线.【专题】线段角相交线与平行线推理能力.【答案】(1)∠BED=90°(2)∠BFD=68°(3)∠BFD的补角=12α−12β.【分析】(1)过点E作EG∥AB根据a∥b可得EG∥CD得∠ABE+∠CDE=∠BED =90°(2)过点F作FH∥AB结合(1)的方法根据BF平分∠ABC DF平分∠ADC即可求∠BFD的度数(3)过点F作FH∥AB结合(1)的方法根据BF平分∠ABC DF平分∠ADC设∠ABC=α∠ADC=β即可用含有αβ的代数式表示∠BFD的补角.【解答】解:(1)过点E作EG∥AB∵a∥b∴EG∥CD∴∠ABE=∠BEG∠CDE=∠DEG∴∠ABE+∠CDE=∠BEG+∠DEG=∠BED∵AD⊥BC∴∠ABE+∠CDE=∠BED=90°(2)如图过点F作FH∥AB∵a∥b∴FH∥CD∴∠ABF=∠BFH∠CDF=∠DFH∴∠BFD=∠ABF+∠CDF=∠BFH+∠DFH∵BF平分∠ABC DF平分∠ADC∠ABC=64°∠ADC=72°∴∠ABF=12∠ABC=32°∠CDF=12∠ADC=36°∴∠BFD=∠ABF+∠CDF=68°(3)如图过点F作FH∥AB∵a∥b∴FQ∥CD∴∠ABF+∠BFQ=180°∠CDF=∠DFQ∴∠BFD=∠BFQ+∠DFQ=180°﹣∠ABF+∠CDF∵BF平分∠ABC DF平分∠ADC∠ABC=α∠ADC=β∴∠ABF=12∠ABC=12α∠CDF=12∠ADC=12β∴∠BFD=180°﹣∠ABF+∠CDF=180°−12α+12β∴∠BFD的补角=12α−12β.【点评】本题考查了平行线的性质角平分线定义解决本题的关键是掌握平行线的性质.13.如图1 AB∥CD E为AB上一点点P在线段CE上且PD∥CF.(1)求证:∠AEC+∠DCF=∠DPE(2)如图2 在线段CF上取点H使∠HPF=∠HFP若CD平分∠ECF PQ平分∠EPH∠HPQ+∠AEC=90°试判断PF与EF的大小关系.【考点】平行线的性质.【专题】线段角相交线与平行线推理能力.【答案】(1)证明过程详见解答(2)PF<EF.【分析】(1)根据平行线的性质可得∠AEC=∠ECD∠PDC=∠DCF然后根据外角的性质即可证得结论(2)设∠ECD=∠FCD=α则∠ECF=2α设∠HPF=∠HFP=β根据平行线的性质可推出∠EPD=∠ECF=2α∠FPD=∠PFH=β∠AEC=∠ECD=α从而得出∠EPH=2α+2β根据已知条件∠HPQ+∠AEC=90°可得出2α+β=90°进一步得出结果.【解答】(1)证明:∵AB∥CD∴∠AEC=∠ECD∵PD∥CF∴∠PDC=∠DCF∵∠DPE=∠ECD+∠PDC∴∠DPE=∠AEC+∠DCF(2)∵CD平分∠ECF∴∠ECF=2∠ECD=∠2FCD设∠ECD=∠FCD=α则∠ECF=2α设∠HPF=∠HFP=β∵PD∥CF∴∠EPD=∠ECF=2α∠FPD=∠PFH=β∴∠HPD=∠FPH+∠FPD=β+β=2β∴∠EPH=∠EPD+∠HPD=2α+2β∵PQ平分∠EPH∴∠HPQ=12∠EPH=12(2α+2β)=α+β∵AB∥CD∴∠AEC=∠ECD=α∵∠HPQ+∠AEC=90°∴(α+β)+α=90°∴2α+β=90°∴∠EPF+∠HFP=90°∴∠EPF=∠CPF=90°∴PF<EF.【点评】本题主要考查了平行线的性质角平分线的定义等知识解决问题的关键是设参数简明地表达角之间数量关系.14.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°则∠ACB的度数为135°(2)若∠ACB=140°求∠DCE的度数(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由(4)当∠ACE<90°且点E在直线AC的上方时这两块三角尺是否存在AD与BC平行的情况?若存在请直接写出∠ACE的值若不存在请说明理由.【考点】平行线的判定余角和补角.【答案】见试题解答内容【分析】(1)根据∠DCE和∠ACD的度数求得∠ACE的度数再根据∠BCE求得∠ACB的度数(2)根据∠BCE和∠ACB的度数求得∠ACE的度数再根据∠ACD求得∠DCE的度数(3)根据∠ACE=90°﹣∠DCE以及∠ACB=∠ACE+90°进行计算即可得出结论(4)当∠ACE=30°时CB∥AD时根据平行线的判定即可解决问题【解答】解:(1)∵∠DCE=45°∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°(2)∵∠ACB=140°∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°(3)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°(4)30°理由:∵∠ACD=∠ECB=90°∴∠ACE=∠DCB=30°∴∠D=∠DCB=30°∴CB∥AD.【点评】本题主要考查了平行线的性质以及直角三角形的性质解题时注意分类讨论思想的运用分类时注意不能重复也不能遗漏.15.(1)光线从空气中射入水中会产生折射现象同时光线从水中射入空气中也会产生折射现象如图1 光线a从空气中射入水中再从水中射入空气中形成光线b根据光学知识有∠1=∠2 ∠3=∠4 请判断光线a与光线b是否平行并说明理由(2)如图2 直线EF上有两点A C分别引两条射线AB CD.已知∠BAF=150°∠DCF=80°射线AB CD分别绕点A点C以1度/秒和3度/秒的速度同时顺时针转动设时间为t秒当射线CD转动一周时两条射线同时停止.则当直线CD与直线AB互。
初中数学相交线与平行线经典测试题附答案
A. B. C. D.
【答案】B
【解析】
【分析】
由 可得∠ABE+∠CEB=180°,∠BED= ,即∠CEB=130°,由 可得 ,设 =k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由 可得 =∠DEF即可解答.
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
5.如图,直线a∥b,直线 分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
A.50°B.70°C.80°D.110°
【答案】C
【解析】
【分析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
考点:平行线的性质.
9.如图,下列条件中能判定 的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;
对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;
对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.
【详解】
∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;
∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;
∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.
中考数学第五章 相交线与平行线测试试题及答案
中考数学第五章 相交线与平行线测试试题及答案一、选择题1.下列说法中,正确的是A .相等的角是对顶角B .有公共点并且相等的角是对顶角C .如果1∠和2∠是对顶角,那么12∠=∠D .两条直线相交所成的角是对顶角2.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于03.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C .60°D .72° 4.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180° 5.如图,AB ∥CD ,∠1=120°,则∠2=( )A .50°B .70°C .120°D .130°6.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l 2的距离分别为a 、b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A .2个B .3个C .4个D .5个7.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A.540°B.180°n C.180°(n-1) D.180°(n+1)8.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A.70°B.45°C.110°D.135°9.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有()A.0个B.1个C.2个D.3个10.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)二、填空题11.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD 的条件是_______.(填序号)12.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ∥MN.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动_________秒,两灯的光束互相平行.13.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.14.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有_____.15.如图,AB∥CD, AC∥BD, CE平分∠ACD,交BD于点E,点F在CD的延长线上,且∠BEF=∠CEF,若∠DEF=∠EDF,则∠A的度数为_____ .16.如图,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∠A=120°,∠B=150°,则∠C的度数是________17.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.(1)如图a 所示,//AB CD ,且点E 在射线AB 与CD 之间,请说明AEC A C ∠=∠+∠的理由.(2)现在如图b 所示,仍有//AB CD ,但点E 在AB 与CD 的上方,①请尝试探索1∠,2∠,E ∠三者的数量关系.②请说明理由.22.如图,已知//AB CD ,50A C ∠=∠=︒,线段AD 上从左到右依次有两点E 、F (不与A 、D 重合)(1)求证://AD BC ;(2)比较1∠、2∠、3∠的大小,并说明理由;(3)若:1:4FBD CBD ∠∠=,BE 平分ABF ∠,且1BDC ∠=∠,判断BE 与AD 的位置关系,并说明理由.23.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.24.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.25.如图,A 、B 分别是直线a 和b 上的点,∠1=∠2,C 、D 在两条直线之间,且∠C =∠D .(1) 证明:a ∥b ;(2) 如图,∠EFG=60°,EF 交a 于H ,FG 交b 于I ,HK ∥FG ,若∠4=2∠3,判断∠5、∠6的数量关系,并说明理由;(3) 如图∠EFG 是平角的n 分之1(n 为大于1的整数),FE 交a 于H ,FG 交b 于I .点J 在FG 上,连HJ .若∠8=n ∠7,则∠9:∠10=______ .26.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A 、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B 、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C 、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D 、两条直线相交所成的角有对顶角、邻补角,错误;故选C .【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.2.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.A解析:A【分析】先根据平行线的性质求出∠ABC的度数,再由BC平分∠ABE可得出∠ABE的度数,进而可得出结论.【详解】解:∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°.∵BC平分∠ABE,∴∠ABE=2∠ABC=70°.∵AB∥CD,∴∠BED=∠ABE=70°.故选A.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.4.A解析:A【分析】运用平行线的判定方法进行判定即可.【详解】解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.【点睛】本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.5.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.6.C解析:C【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选C.【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.解析:C【分析】根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案.【详解】解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,……∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .【点睛】本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明. 8.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a ∥b ,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a ∥b ,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C .【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.9.B解析:B【解析】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.10.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题11.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.13.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.14.2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=12n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋解析:2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得, n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 15.108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性解析:108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性质,四边形的内角和求解.详解:∵CE平分∠ACD∴∠ACE=∠DCE∵AB∥CD,AC∥BD,∴∠A+∠B=180°,∠B=∠BDF,∠ACD+∠A=180°,∠ACE=∠CED∵∠EDF=∠DEF =∠ECD+∠CED∴∠CEF=∠FEB=∠CED+∠DEF设∠B=x,则∠A=180°-x,∠ACE=∠ECD=∠CED=12 x,∴∠EDF=x,∠BEF=32x∴∠CEB=360°-2×∠BEF=360°-3x∴∠A+∠B+∠BEC+∠ACE=180°-x+x+360°-3x+12x=360°解得x=72°∴∠A=180°-72°=108°.故答案为108.点睛:此题主要考查了平行线的性质和三角形的外角的综合应用,关键是利用平行线的性质和三角形的外角确定角之间的关系,有一定的难度.16.150°【解析】如图,过点B作BG∥AE,因为AE∥CD,所以AE∥BG∥CD.所以∠A=∠2,∠1+∠C=180°.因为∠A=120°,所以∠2=120°,所以∠1=150°-120°=解析:150°【解析】如图,过点B作BG∥AE,因为AE∥CD,所以AE∥BG∥CD.所以∠A=∠2,∠1+∠C=180°.因为∠A=120°,所以∠2=120°,所以∠1=150°-120°=30°.所以∠C=180°-30°=150°,故答案为150°.17.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.18.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:,∴∠解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.20.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.三、解答题21.(1);(2)①∠1+∠2-∠E=180°;②见解析【分析】(1)过点E作EF∥AB,根据平行线的性质得到∠A=∠AEF和∠FEC=∠C,再相加即可;(2)①、②过点E作EF∥AB,根据平行线的性质可得∠AEF+∠1=180°和∠FEC=∠2,从而可得三者之间的关系.【详解】解:(1)过点E作EF∥AB,∴∠A=∠AEF,∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,∵∠AEC=∠AEF+∠FEC,∴∠AEC=∠A+∠C;(2)①∠1+∠2-∠E=180°,②过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.【点睛】本题考查了平行线的性质,作辅助线并熟记性质是解题的关键.22.(1)见解析;(2)∠1>∠2>∠3,理由见解析;(3)BE⊥AD,理由见解析【分析】(1)证明∠C+∠ADC=180°,再根据平行线的判定证明即可;(2)通过比较∠EBC、∠FBC、∠DBC的大小,再进行等量代换即可;(3)设∠FBD=x°,则∠DBC=4x°,根据∠ABC=130°列出方程,求解即可.【详解】解:(1)证明:∵AB∥CD,∴∠A+∠ADC=180°,∵∠A=50°,∴∠ADC=130°,∵∠C=50°,∴∠C+∠ADC=180°,∴AD∥BC;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3;(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∵BE 平分∠ABF ,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE ⊥AD .【点睛】此题考查平行线的性质,关键是根据平行线的判定和性质解答.23.见解析【解析】分析:(1)求出∠ADE +∠FEB =180°,根据平行线的判定推出即可;(2)根据角平分线定义得出∠BAD =∠CAD ,推出HD ∥AC ,根据平行线的性质得出∠H =∠CGH ,∠CAD =∠CGH ,推出∠BAD =∠F 即可.详解:(1)AD ∥EF .理由如下:∵∠BDA +∠CEG =180°,∠ADB +∠ADE =180°,∠FEB +∠CEF =180°∴∠ADE +∠FEB =180°,∴AD ∥EF ;(2)∠F =∠H ,理由是:∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵∠EDH =∠C ,∴HD ∥AC ,∴∠H =∠CGH .∵AD ∥EF ,∴∠CAD =∠CGH ,∴∠BAD =∠F ,∴∠H =∠F .点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.24.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解; (2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.25.(1)见解析;(2)526∠=∠,见解析;(3)n-1 【分析】(1)延长AD 交直线b 于点E ,根据平行线的性质与判定即可得证;(2)由//HK FG 得到3EFG α∠+∠=∠,4FJH ∠=∠,再根据三角形的内角和与对顶角的性质即可求解;(3)延长EF 交直线b 于点P ,过点J 作//JQ a ,根据平行线的性质及三角形外角的性质等,得到180107n ︒∠=-∠,()1918017n n n-∠=⋅︒--∠,即可得到9:10∠∠的值. 【详解】(1)如图,延长AD 交直线b 于点E ,ADC C ∠=∠,//AD BC ∴,2AEB ∴∠=∠,12∠=∠,1AEB ∴∠=∠,//a b ∴.(2)∵//HK FG ,60EFG ∠=︒,∴360α∠+∠=︒,4FJH ∠=∠,5120FJH ∠+∠=︒,∵423∠=∠,∴523120∠+∠=︒,即()5260120α∠+-∠=︒,∴52α∠=∠,∵6α∠=∠,∴526∠=∠.(3)如图,延长EF 交直线b 于点P ,过点J 作//JQ a ,则10FPI ∠=∠,8180HJQ ∠+∠=︒,7QJI FIP ∠=∠=∠,∵EFG FPI FIP ∠=∠+∠,9HJI EFG ∠=∠+∠, ∴1801077EFG n︒∠=∠-∠=-∠, ()1918017n HJI EFG n n -∠=∠-∠=⋅︒--∠, ∴9:101n ∠∠=-,故答案为:1n -.【点睛】本题考查平行线的性质与判定,三角形内角和定理,三角形外角的性质等内容,解题的关键是根据题意作出辅助线.26.(1)∠APB=∠PAC +∠PBD ,不会变化;(2)∠PBD=∠PAC+∠APB 或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P 点在C 、D 之间运动时,首先过点P 作PE ∥l 1,由l 1∥l 2,可得PE ∥l 2∥l 1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学相交线平行线三角形试题分类汇编一、选择题1、(河北省)如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()CA.50°B.60°C.140°D.160°1、(浙江义乌)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()AA.3 B.4 C.5 D.62、(重庆)已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()C(A)200(B)1200(C)200或1200(D)3603、(浙江义乌)如图,AB∥CD,∠1=110°∠ECD=70°,∠E的大小是() BA.30° B.40° C.50° D.60°5、(天津)下列判断中错误..的是()BA. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等4、(甘肃陇南)如图,在△ABC中,DE∥BC,若13ADAB,DE=4,则BC=() DA.9 B.10C. 11 D.125(四川资阳)如图5,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )CA. 90°B. 135°C. 270°D. 315°6、(四川资阳)如图8,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行. 若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是( )DA. 6B. 7C. 8D. 97、(浙江临安)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则DE∶BC的值为()AA. B. C. D.8、(福建晋江)如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的个数有()C图5图8ab1 2O图1AB CD E①DC ′平分∠BDE ;②BC 长为a )22(+;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长。
A . 1个;B .2个;C .3个;D .4个。
9、(山东日照)某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法: 方法一:在底边BC 上找一点D ,连接AD 作为分割线; 方法二:在腰AC 上找一点D ,连接BD 作为分割线;方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,弧DE 作为分割线. 这些分割方法中分割线最短的是( )A(A )方法一 (B )方法二 (C )方法三 (D )方法四二、填空题1.(广西南宁)如图1,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °.60 2、(云南双柏)等腰三角形的两边长分别为4和9,则第三边长为 .9 3、(浙江义乌)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,已知DE=6cm ,则BC=___▲___cm. 12 4、(福建福州)如图5,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件 是 (只要写一个条件). 解:B C ∠=∠,AEB ADC ∠=∠,CEO BDO ∠=∠,AB AC BD CE ==,(任选一个即可)5、(四川德阳)如图,已知等腰ABC △的面积为28cm ,点D E ,分别是AB AC ,边的中点,则梯形DBCE 的面积为______2cm .6OC E AD B 图5 ABC ABCBCDE C ′EAD E CB第5题图12图1 c a b21ABC6、(浙江杭州)一个等腰三角形的一个外角等于110︒,则这个三角形的三个角应该为 。
70,704070,55,55︒︒︒︒︒︒或 7、(天津)如图,ABC ∆中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= ___ 。
38、(辽宁大连)如图5,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22米,则旗杆的高为_____________m .129、(湖南岳阳)已知等腰△ABC 中,AB=AC ,∠B=60°,则∠A =_________(答案:60°)10、(浙江金华)如图,在由24个边长都为1的小正三角形的网格中,点P 是正六边形的一个顶点,以点P 为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 .24713,,11、(湖南怀化)如图:111A B C ,,分别是BC AC AB ,,的中点,2A ,2B ,2C 分别是11B C ,11A C ,11A B 的中点L 这样延续下去.已知ABC △的周长是1,111A B C △的周长是1L ,222A B C △的周长是2n n n L A B C L 的周长是n L ,则n L =.12n 12、(四川资阳)如图4,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2A B ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5=_____________ . 2476099.三、解答题1、(浙江温州)已知:如图,12,.C D AC AD ∠=∠∠=∠=求证:.P …^ABC2A1C1B1A2B2C第19题图图4,12,AB AB C DCAB DABAC AD=∠=∠∠=∠∴∆≅∆∴=Q 证明2、(重庆)已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相BF交于点G ,A B ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,=CE 。
求证:(1)△ABC ≌△DEF ;(2)GF =GC 。
证明:(1)∵BF =CE ∴BF +FC =CE +FC ,即BC =EF又∵AB ⊥BE ,DE ⊥BE ∴∠B =∠E =900 又∵AB =DE ∴△ABC ≌△DEF(2)∵△ABC ≌△DEF ∴∠ACB =∠DFE ∴GF =GC 3、(浙江金华)如图,A E B D ,,,在同一直线上,在ABC △与DEF △中,AB DE =,AC DF =,AC DF ∥.(1)求证:ABC DEF △≌△;(2)你还可以得到的结论是 (写出一个即可,不再添加其它线段,不再标注或使用其它字母).(1)证明:AC DF Q ∥,A D ∴∠=∠,在ABC △和DEF △中 AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,,(SAS)ABC DEF ∴△≌△ (2)答案不惟一,如:AE DB =,C F ∠=∠,BC EF ∥等. 4、(甘肃陇南)如图,在△ABC 中,AB =AC ,D 是BC 边上的一点, DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF , 并说明理由.解: 需添加条件是 . 理由是:解: 需添加的条件是:BD =CD ,或BE =CF . ………………2分添加BD =CD 的理由:如图,∵ AB =AC ,∴∠B =∠C . …………………4分 又∵ DE ⊥AB ,DF ⊥AC ,∴∠BDE =∠CDF . …………………6分 ∴ △BDE ≌△CDF (ASA).∴ DE = DF . ………8分 添加BE =CF 的理由: 如图,∵ AB =AC ,∴ ∠B =∠C . ………………4分∵ DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD . …………6分 又∵ BE =CF , ∴ △BDE ≌△CDF (ASA). ∴DE = DF .A BDE FC1 2AE5、(湖南怀化)如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE = 证明:12=Q ∠∠ 12DAC DAC ∴+=+∠∠∠∠ 即:BAC DAE =∠∠ 又AB AD =Q ,AC AE = ABC ADE ∴△≌△ BC DE ∴=6、(南充)如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.解:AD 是△ABC 的中线.理由如下:在Rt △BDE 和Rt △CDF 中, ∵ BE =CF ,∠BDE =∠CDF , ∴ Rt △BDE ≌Rt △CDF . ∴ BD =CD .故AD 是△ABC 的中线.7、(浙江杭州)如图,已知,36,AB AC A AB =∠=︒的中垂线MN 交AC 于点D ,交AB 于点M ,有下面4个结论:①射线BD 是ABC ∠的角平分线; ②BCD ∆是等腰三角形; ③ABC ∆∽BCD ∆; ④AM D ∆≌BCD ∆。
(1)判断其中正确的结论是哪几个?(2)从你认为是正确的结论中选一个加以证明。
(1)正确的结论是①、②、③;(2)证明略。
8、(四川乐山)如图(11),在等边ABC △中,点D E ,分别在边BC AB ,上,且BD AE =,AD与CE 交于点F .(1)求证:AD CE =;(2)求DFC ∠的度数.(1)证明:ABC Q △是等边三角形,60BAC B ∴==o ∠∠,AB AC =又AE BD =Q(SAS)AEC BDA ∴△≌△, ······································································ 4分 AD CE ∴=. ························································································· 5分 ABCD FEN D MBA C(第7题)DA EF BC图(11)(2)解由(1)AEC BDA △≌△, 得ACE BAD =∠∠ ·················································································· 6分 DFC FAC ACE ∴=+∠∠∠60FAC BAD =+=o ∠∠··········································································· 9分 9、(重庆)已知,如图:△ABC 是等腰直角三角形,∠ABC =900,AB =10,D 为△ABC 外一点,边结AD 、BD ,过D 作DH ⊥AB ,垂足为H ,交AC 于E 。