高考数学 玩转压轴题 专题4.2 与球相关的外接与内切问题

合集下载

与球相关的外接与内切问题-玩转压轴题(原卷版)

与球相关的外接与内切问题-玩转压轴题(原卷版)

专题4.2 与球相关的外接与内切问题一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力。

研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)多面体外接球半径的求法,当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体.(2)与球的外切问题,解答时首先要找准切点,可通过作截面来解决.(3)球自身的对称性与多面体的对称性;二.解题策略类型一 柱体与球【例1】(2020·河南高三(理))已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( )A .116πB .106πC .56πD .53π 【举一反三】1.(2020·2,若该棱柱的顶点都在一个球面上,则该球的表面积为( )A .73πB .113πC .5πD .8π2.(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( ). A .234a π B .23a π C .26a π D .232a π 3.(2020·河南高三(理))有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )2.236≈≈≈)A .22个B .24个C .26个D .28个类型二 锥体与球【例2】5.已知球O O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________.【来源】重庆市2021届高三下学期二模数学试题【举一反三】1.(2020四川省德阳一诊)正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 2.(2020·宁夏育才中学)《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为3.(2020·贵阳高三(理))在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是一个正三角形,若平面PAD ⊥平面ABCD ,则该四棱锥的外接球的表面积为( )A .143πB .283πC .563πD .1123π 类型三 构造法(补形法)【例3】已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( )A .128πB .132πC .144πD .156π 【举一反三】1.(2020宁夏石嘴山模拟)三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于 .2.(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为 A . B . C . D .3.(2020·贵州高三月考(理))某几何体的三视图如图所示,则该几何体的体积为( )A .43B .53C .83D .163类型四 与球体相关的最值问题【例4】(2020·福建高三期末(理))在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高h =( )A .143B .134C .72D .163【举一反三】1.(2020·广东高三(理))我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB 82C 142D .2π2.(2020·遵义市南白中学高三期末)已知A ,B ,C ,D 四点在同一个球的球面上,6AB BC ==90ABC ∠=︒,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .4πB .8πC .16πD .32π3.(2020·河南高三(理))菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥D -ABC 体积最大时,其外接球表面积为( )A .153πB .2153πC .209πD .203π 三.强化训练一、选择题1.(2020·广西高三期末)棱长为a 的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的表面积为( )A .2334a +B .2336a +C .2336a - D .2334a - 2、(2020辽宁省师范大学附属中学高三)在三棱锥中,,则三棱锥外接球的表面积为( ) A . B . C . D .3.(2020·安徽高三期末)如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为( )A 23B .223C .22D .2234.(2020·北京人大附中高三)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为( )A .16πB .20πC .80πD .100π5.(2020河南省郑州市一中高三)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( ) A . B . C . D . 6、(2020河南省天一大联考)某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为( )A .B .C .D .7.(2020·江西高三期末(理))如图,三棱锥P ABC -的体积为24,又90PBC ABC ∠=∠=︒,3BC =,4AB =,410PB =P BC A --为锐角,则该三棱锥的外接球的表面积为( )A .169πB .144πC .185πD .80π8.(2019·湖南长沙一中高三)在如图所示的空间几何体中,下面的长方体1111ABCD A B C D -的三条棱长4AB AD ==,12AA =,上面的四棱锥1111P A B C D -中11D E C E =,1111PE A B C D ⊥平面,1PE =,则过五点A 、B 、C 、D 、P 的外接球的表面积为( )A .311π9B .311π18C .313π9D .313π189.三棱锥P —ABC 中,底面ABC 满足BA=BC , ,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P 到底面ABC 的距离为( )A .3B .C .D .10.(2019·河北高三月考)在平面四边形ABCD 中,AB ⊥BD ,∠BCD =30°,2246AB BD +=,若将△ABD 沿BD 折成直二面角A -BD -C ,则三棱锥A-BDC 外接球的表面积是( )A .4πB .5πC .6πD .8π11.(2020·梅河口市第五中学高三期末(理))设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为3的等边三角形,45ACB ∠=︒,则当三棱锥P ABC -的体积最大时,球O 的表面积为( ) A .283π B .10π C .323π D .12π12.(2020四川省成都外国语学校模拟)已知正方形ABCD 的边长为4,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 折成一个三棱锥P-AEF (使B ,C ,D 重合于P ),三棱锥P-AEF 的外接球表面积为( )A .B .C .D .13.已知球O 夹在一个二面角l αβ--之间,与两个半平面分别相切于点,A B .若2AB =,球心O 到该二面角的棱l 的距离为2,则球O 的表面积为( )A .8πB .6πC .4πD .2π【来源】江西省萍乡市2021届高三二模考试数学(文)试题 14.已知点,,A B C 在半径为2的球面上,满足1AB AC ==,3BC =,若S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( )A .3312+B .336+C .23312+D .3312+ 15.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A .39B .327C 3D .3316.(2020·重庆八中高三)圆柱的侧面展开图是一个面积为216π的正方形,该圆柱内有一个体积为V 的球,则V 的最大值为17.(2020·江西高三)半正多面体(semiregular solid )亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.2,则该二十四等边体外接球的表面积为18.(2020·福建高三期末(理))在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为1AA ,BC 的中点,点M 在棱11B C 上,11114B M B C =,若平面FEM 交11A B 于点N ,四棱锥11N BDD B -的五个顶点都在球O 的球面上,则球O 半径为19.(2020·黑龙江高三(理))设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为20.(2020·河北承德第一中学高三)正三棱锥S -ABC 的外接球半径为2,底边长AB =3,则此棱锥的体积为21.(2020·江西高三(理))已知P,A,B,C 是半径为2的球面上的点,PA=PB=PC=2,90ABC ∠=︒,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值为22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.【来源】宁夏固原市第五中学2021届高三年级期末考试数学(文)试题23.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___24.若正四棱锥P ABCD -的底面边长和高均为8,M 为侧棱PA 的中点,则四棱锥M ABCD -外接球的表面积为___________.【来源】山西省运城市2021届高三上学期期末数学(文)试题25.已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30的平面截球O ,截面的面积为16π,则球O 的表面积为________.【来源】广西钦州市2021届高三第二次模拟考试数学(理)试题26.如图是数学家GeminadDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球1O 和球2O 的半径分别为1和3,128O O =,截面分别与球1O 和球2O 切于点E 和F ,则此椭圆的长轴长为___________.【来源】江苏省盐城市阜宁县2020-2021学年高三上学期期末数学试题27.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.【来源】江苏省六校2021届高三下学期第四次适应性联考数学试题28.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为3棱锥D ABC -体积的最大值为___________.【来源】江苏省南京市秦淮中学2021届高三下学期期初学情调研数学试题29.已知四面体ABCD 的棱长均为6,,E F 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为___________,圆'O 的面积为__________.【来源】河南省九师联盟2021届高三下学期3月联考理科数学试题。

高考数学中的内切球和外接球问题(附习题)-精选.pdf

高考数学中的内切球和外接球问题(附习题)-精选.pdf
高考数学中的内切球和外接球问题
一、 有关外接球的问题
如果一个多面体的各个顶点都在同一个球面上, 那么称这个多面
体是球的内接多面体,这个球称为多面体的外接球 . 有关多面体外接
球的问题, 是立体几何的一个重点, 也是高考考查的一个热点 . 考查
学生的空间想象能力以及化归能力 .研究多面体的外接球问题,既要
学习 .
五 .确定球心位置法
例 5 在矩形 ABCD 中, AB 4, BC 3,沿 AC 将矩形 ABCD 折成一
个直二面角 B AC D ,则四面体 ABCD 的外接球的体积为
125
A. 12
125
B. 9
125
C. 6
125
D. 3
D
A
O
C
图4 B
解 设矩形对角线的交点为 O ,则由矩形对角线互相平分,可知
例 2 一个正方体的各顶点均在同一球的球面上,若该正方体的
表面积为 24 ,则该球的体积为 ______________.4 3 . 2、求长方体的外接球的有关问题
例 3 一个长方体的各顶点均在同一球面上, 且一个顶点上的三条
棱长分别为 1,2,3 ,则此球的表面积为
.14 .
例 4、已知各顶点都在一个球面上的正四棱柱高为 4,
只是希望能有个人,在我说没事的时候,知道我不是真的没事;能有个人,在我强颜欢笑的时候,知道我不是真的开心。 ——张小娴
OA OB OC OD .∴点 O 到四面体的四个顶点 A、B、C、D 的距离相
等,即点 O 为四面体的外接球的球心,如图 2 所示 .∴外接球的半径
5 R OA
V 球 4 R3 125
2 .故
3
6 .选 C.

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型

高考数学空间几何体的外接球与内切球常见题型本文介绍了空间几何体的外接球与内切球的经典类型,其中第一种类型为墙角模型,即三条棱两两垂直,不需要找球心的位置即可求出球半径。

具体方法是找到三条两两垂直的线段,然后使用公式2R=a+b+c或2R=a^2+b^2+c^2来求出R。

例如,在已知各顶点都在同一球面上的正四棱柱的高为4,体积为16的情况下,可以求出该球的表面积为32π。

第二种类型为对棱相等模型,补形为长方体。

在这种情况下,需要找到对棱相等的空间几何体,并补成长方体。

例如,如果三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积为36π。

除此之外,文章还给出了一些具体的例子,如正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA=23,则正三棱锥S-ABC外接球的表面积为36π。

同时,文章还提到了一些需要注意的引理,如正三棱锥的对棱互相垂直等。

需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要进行删除或修改。

题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD,AD=BC,AC=BD)首先,我们可以画出一个长方体,标出三组互为异面直线的对棱,如图2-1所示。

设出长方体的长宽高分别为a,b,c,AD=BC=x,AB=CD=y,AC=BD=z,列方程组:a^2+b^2=x^2b+c=yc^2+a^2=z^2根据墙角模型,我们可以得到2R=a+b+c=2(x^2+y^2+z^2)/(x^2+y^2+z^2),化简得到R=sqrt(2)/2*(x^2+y^2+z^2)/(x^2+y^2+z^2),求出R即可。

例2(1)如下图所示三棱锥A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,则该三棱锥外接球的表面积为。

2)在三棱锥A-BCD中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD外接球的表面积为。

3)正四面体的各条棱长都为2,则该正面体外接球的体积为。

高考数学一轮复习与球有关的切、接问题

高考数学一轮复习与球有关的切、接问题

2.设直三棱柱 ABC-A1B1C1的所有顶点都在一个表面积是 40π 的球面上,
且 AB=AC=AA1,∠BAC=120°,则该直三棱柱的体积是
()
A.4 6
46 B. 3
C.2 6
26 D. 3
解析:设 AB=AC=AA1=2m.因为∠BAC=120°,所以∠ACB=30°.由 正弦定理得sin2m30°=2r(r 是△ABC 外接圆的半径),r=2m.又球心到平面 ABC 的距离等于侧棱长 AA1 的一半,所以球的半径为 2m2+m2= 5m. 所以球的表面积为 4π( 5m)2=40π,解得 m= 2.因此该直三棱柱的体积
A.
6π 6
π C.6
B.π9 3π
D. 3
解析:平面 ACD1 截球 O 的截面为△ACD1 的内 切圆,∵正方体棱长为 1,∴AC=CD1=AD1= 2.∴ 内切圆半径 r=tan 30°·AE= 33× 22= 66.
∴所求截面面积 S=πr2=π·16=π6.
答案:C
“课时跟踪检测”见“课时跟踪检测(四十六)” (单击进入电子文档)
Q,外接球球心为 O, 由外接球的定义,OP=OA=OB
=OE=R,易得 O 在线段 PQ 上, 又圆柱的轴截面是
边长为 2 的正方形,所以底面圆半径 AQ=BQ=1,∵
PQ⊥AQ,则 OA2=OQ2+AQ2⇒R2=(2-R)2+12,解得 R=54,∴外接球
表面积为 4πR2=254π.
[答案]B
是 S△ABC·AA1=21×4m2× 23×2m=2 3m3=4 6. 答案:A
方法二 补形法
[典例](1)(2023·西安一模)在《九章算术》中,
将底面为矩形且有一条侧棱与底面垂直的四棱锥

(完整版)高考数学中的内切球和外接球问题.

(完整版)高考数学中的内切球和外接球问题.

(完整版)高考数学中的内切球和外接球问题.高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 .解设正六棱柱的底面边长为x ,高为h ,则有==h x x 24368936==213x h ∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)

2023届高三数学一轮复习专题  空间几何体的外接球与内切球问题  讲义 (解析版)

空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。

将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。

题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。

高考数学玩转压轴题专题4.2与球相关的外接与内切问题

高考数学玩转压轴题专题4.2与球相关的外接与内切问题

专题4.2 与球相关的外接与内切问题一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。

当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体。

与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积来求球的半径。

二.解题策略类型一构造法(补形法)【答案】 9【指点迷津】当一三棱锥的三侧棱两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解。

长方体的外接球即为该三棱锥的外接球。

【例2】一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()【答案】A【解析】【指点迷津】当一四面体或三棱锥的棱长相等时,可以构造正方体,在正方体中构造三棱锥或四面体,利用三棱锥或四面体与正方体的外接球相同来解即可。

【举一反三】1、如图所示,设A,B,C,D为球O上四点,AB,AC,AD两两垂直,且AB=AC=3,若AD=R(R为球O的半径),则球O的表面积为( )A.πB.2πC.4πD.8π【答案】D【解析】因为AB,AC,AD两两垂直,所以以AB,AC,AD为棱构建一个长方体,如图所示,则长方体的各顶点均在球面上,AB=AC=3,所以AE=6,AD=R,DE=2R,则有R2+6=(2R)2,解得R=2,所以球的表面积S=4πR2=8π.故选D。

高考数学:几何体中的外接球与内切球解题捷径

高考数学:几何体中的外接球与内切球解题捷径

高考数学:几何体中的外接球与内切球解题捷径
解惑
同学们在研究空间几何体的外接球与内切球时,常常因缺乏空间想象能力而感到束手无策.事实上,有时无需画出球体,只需找出球心和半径即可,或者画出球的大圆转化为平面几何问题.本文举几个简单的例子,希望给同学们一些帮助。

一、外接球
在考查几何体的外接球时,常常以正方体、长方体、三棱锥为基本模型。

二、内切球
空间几何体的内切球问题,常常转化为球心到平面的距离为球的半径解答。

球的内切和外接问题

球的内切和外接问题

接球。
性质
02
圆锥体的外接球的半径等于圆锥体母线长度的一半。
应用
03
在几何学中,圆锥体的外接球的概念常用于解决与圆锥体相关
的问题,如计算圆锥体的表面积、体积等。
03
球的内切和外接问题的 应用
在几何学中的应用
确定球与平面、球与多面体的位置关系
通过球的内切和外接问题,可以确定球与平面、球与多面体的位置关系,进一步研究球的相关性质。
当一个球恰好与圆柱体的上底面和下 底面相切,这个球被称为圆柱体的外 接球。
性质
应用
在几何学中,圆柱体的外接球的概念 常用于解决与圆柱体相关的问题,如 计算圆柱体的表面积、体积等。
圆柱体的外接球的半径等于圆柱体高 的一半。
球与圆锥体的外接
定义
01
当一个球恰好与圆锥体的顶点相切,这个球被称为圆锥体的外
解决几何问题
利用球的内切和外接问题,可以解决一些与球相关的几何问题,如计算球的表面积、体积等。
在物理学中的应用
确定天体的运动轨迹
在天文学中,通过研究天体与地球之 间的球内切和外接问题,可以确定天 体的运动轨迹和运行规律。
解决物理实验问题
在物理实验中,利用球的内切和外接 问题可以解决一些与球相关的物理实 验问题,如研究球的滚动摩擦等。
02
球的外接问题
球与多边形的外接
01
02
03
定义
当一个球恰好与一个多边 形的各顶点相切,这个球 被称为多边形的外接球。
性质
多边形的外接球的半径等 于多边形各顶点到其外接 圆圆心的距离。
应用
在几何学中,外接球的概 念常用于解决与多边形相 关的问题,如计算多边形 的面积、体积等。

高考球的外接、内接球问题

高考球的外接、内接球问题
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体 或正方体或直棱柱.
途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方 体或正方体.
途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面 都是是直角三角形的三棱锥都分别可构造正方体.
例1、如下图所示,在等腰梯形ABCD中,AB=2CD=2,DAB 60
.
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方 体或正方体或直棱柱.
例3、在三棱锥中A-BCD中,AB 平面BCD ,CD BC ,
AB=3,BC=4,CD=5, 则三棱锥A-BCD外接球的表面

. 50
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方 体或正方体或直棱柱.
.( 1)6
结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.
例2、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该
正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 9 ,底
面周长为3,则这个球的体积为 4 .
8
3
结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的 中点.
(1)截面图为正方形的内切圆EFGH,得

(2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,
如图4作截面图,圆o为正方形EFGH的外接圆,易得

(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面AA1
作截面图得,圆O为矩形AA1C1C的外接圆,易得

图3
图4
图5
2.棱锥的内切球(分割法)
.
4
3
结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共
斜边的中点就是其外接球的球心.

高中数学关于球的内切外接问题

高中数学关于球的内切外接问题

处理球的“内切”“外接”问题与球有关的组合体问题,一种是内切,一种是外接。

作为这种特殊的位置关系在高考中也是考查的重点,但同学们又因缺乏较强的空间想象能力而感到模糊。

解决这类题目时要认真分析图形,明确切点和接点的位置及球心的位置,画好截面图是关键,可使这类问题迎刃而解。

一、棱锥的内切、外接球问题例1.正四面体的外接球和内切球的半径是多少? 分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。

解:如图1所示,设点O 是内切球的球心,正四面体棱长为a .由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .正四面体的表面积223434a a S =⨯=表. 正四面体的体积22221234331BE AB a AE a V BCD A -=⨯⨯=- BCD A V r S -=⋅表31Θ,a aaS V r BCD A 12631223323=⨯==∴-表在BEO Rt ∆中,222EO BE BO +=,即22233r a R +⎪⎪⎭⎫ ⎝⎛=,得a R 46=,得r R 3= 【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为4h ( h 为正四面体的高),且外接球的半径43h,从而可以通过截面图中OBE Rt ∆建立棱长与半径之间的关系。

图1例2.设棱锥ABCD M -的底面是正方形,且MD MA =,AB MA ⊥,如果AMD ∆的面积为1,试求能够放入这个棱锥的最大球的半径.解:?⊥∴⊥⊥AB MA AB AD AB ,,Θ平面MAD , 由此,面⊥MAD 面AC .记E 是AD 的中点, 从而AD ME ⊥.⊥∴ME 平面AC ,EF ME ⊥设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球.如图2,得截面图MEF ∆及内切圆O不妨设∈O 平面MEF ,于是O 是MEF ∆的内心. 设球O 的半径为r ,则MFEM EF S r MEF++=∆2,设a EF AD ==,1=∆AMD S Θ.222,2⎪⎭⎫⎝⎛+==∴a a MF a EM ,12222222222-=+≤⎪⎭⎫⎝⎛+++=a a a a r当且仅当aa 2=,即2=a 时,等号成立. ∴当2==ME AD 时,满足条件的球最大半径为12-.练习:一个正四面体内切球的表面积为π3,求正四面体的棱长。

立体几何中球的内切和外接问题(完美版)

立体几何中球的内切和外接问题(完美版)

C 1
注意:①割补法,② V多面体 3 S全 r内切球
变式训练:一个正方体内接于一个球,过球心作一截面,如 图所示,则截面的可能图形是( )




• A .①② B.②④ C.①②③ D.②③④
D A
D1 A1
C
B O
C1 B1
球的内接正方体的对角线等于球直径。
变式训练:已知正四面体内接于一个球,某人画出四 个过球心的平面截球与正四面体所得的图形如下,
的动点,当弦 MN 的长度最大时, PM • PN 的取值范围是

感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
2023最新整理收集 do something
球与多面体的内切、外接
球的半径r和正方体 的棱长a有什么关系?
.r
a
一、 球体的体积与表面积


二、球与多面体的接、切
定义1:若一个多面体的各顶点都在一个球的球面上,
则称这个多面体是这个球的内接多面体,
这个球多是面这体个的外接球

定义2:若一个多面体的各面都与一个球的球面相切,
,即 为该四面体的外接球的球心
A
O
C
所以该外接球的体积为
03
破译规律-特别提

2 例题剖析-针对讲 解
04
举一反三-突破提

4 举一反三-突破提 升 1、(2015 海淀二模)已知斜三棱柱的三 视图如图所示,该斜三棱柱的体积为 ______.
4 举一反三-突破提 升
2、(2015 郑州三模) 正三角形ABC的2 边3 长
5 正棱锥的外接球的球心是在其 高上

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习

高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。

多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。

解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。

多面体外接球半径的求法在解题中往往起到至关重要的作用。

一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。

解析:要求球的表面积,只需知道球的半径。

由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。

故表面积为27π。

例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。

由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。

2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。

长方体体对角线长为√14,故球的表面积为14π。

例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。

由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。

3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。

由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。

高三数学理科综合内切球和外接球问题附习题

高三数学理科综合内切球和外接球问题附习题
答案B
2.直三棱柱 的各顶点都在同一球面上,若
, ,则此球的表面积等于。
解:在 中 , ,可得 ,由正弦定理,可得
外接圆半径r=2,设此圆圆心为 ,球心为 ,在 中,易得球半径 ,故此球的表面积为 .
3.正三棱柱 内接于半径为 的球,若 两点的球面距离为 ,则正三棱
柱的体积为.
答案8
4.表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为
解析: ,则此长方体为正方体,所以 长即为外接球的直径,利用直角三角形解出 .故球 的体积等于 .(如图4)
2、构造长方体
例9.已知点A、B、C、D在同一个球面上, , ,若 ,则球的体积是.
解析:构造下面的长方体,于是 为球的直径(如图5)
三.寻求轴截面圆半径法
例4正四棱锥 的底面边长和各侧棱长都为 ,点 都在同一球面上,则此球的体积为.
A. B. C. D.
答案A
【解析】此正八面体是每个面的边长均为 的正三角形,所以由 知,
,则此球的直径为 ,故选A。
5.已知正方体外接球的体积是 ,那么正方体的棱长等于()
B. C. D.
答案D
6.(2006山东卷)正方体的内切球与其外接球的体积之比为( )
A.1∶ B.1∶3C.1∶3 D.1∶9
例7(2006年山东高考题)在等腰梯形 中, , , 为 的中点,将 与 分布沿 、 向上折起,使 重合于点 ,则三棱锥 的外接球的体积为(C).
A. B. C. D.
解析:(如图3)
,即三棱锥 为正四面体,至此,这与例6就完全相同了
例8(2008年浙江高考题)已知球 的面上四点A、B、C、D, , , ,则球 的体积等于.
【例题】:已知三棱锥的四个顶点都在球 的球面上, 且 , , , ,求球 的体积。

高考数学中的内切球和外接球问题[1]

高考数学中的内切球和外接球问题[1]

高考数学中的内切球和外接球问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学中的内切球和外接球问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学中的内切球和外接球问题(word版可编辑修改)的全部内容。

高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点。

考查学生的空间想象能力以及化归能力。

研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为。

例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A。

16π B。

20π C. 24π D。

32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4.2 与球相关的外接与内切问题一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。

当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体。

与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积来求球的半径。

二.解题策略类型一构造法(补形法)【答案】 9【指点迷津】当一三棱锥的三侧棱两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解。

长方体的外接球即为该三棱锥的外接球。

【例2】一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为()【答案】A【解析】【指点迷津】当一四面体或三棱锥的棱长相等时,可以构造正方体,在正方体中构造三棱锥或四面体,利用三棱锥或四面体与正方体的外接球相同来解即可。

【举一反三】1、如图所示,设A,B,C,D为球O上四点,AB,AC,AD两两垂直,且AB=AC=3,若AD=R(R为球O的半径),则球O的表面积为( )A.πB.2πC.4πD.8π【答案】D【解析】因为AB,AC,AD两两垂直,所以以AB,AC,AD为棱构建一个长方体,如图所示,则长方体的各顶点均在球面上,AB=AC=3,所以AE=6,AD=R,DE=2R,则有R2+6=(2R)2,解得R=2,所以球的表面积S=4πR2=8π.故选D。

2、如图所示,已知三棱锥A­BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=3,BC=2,CD=5,则球O的表面积为( )A.12π B.7π C.9π D.8π【答案】A【解析】由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A ­BCD 可以补成以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π.故选A 。

3、在三棱锥A ­BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为__________. 【答案】43π【解析】依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.类型二 正棱锥与球的外接【例3】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814π B .16π C .9π D .274π【答案】A .【指点迷津】求正棱锥外接球的表面积或体积,应先求其半径,在棱锥的高上取一点作为外接球的球心,构造直角三角形,利用勾股定理求半径。

【举一反三】1、在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( )A .π B.3πC. 4πD.43π【答案】D2、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ­ABC 的体积的最大值为( )A .33B . 3C .2 3D .4 【答案】A【解析】 (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S ­ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=233.在Rt △SHO 中,OH =12OC =33,所以SH =⎝ ⎛⎭⎪⎫2332-⎝ ⎛⎭⎪⎫332=1, 故所求体积的最大值为13×34×22×1=33.3、把一个皮球放入如图10所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.cm 310B. cm 10C. cm 210D. cm 30【答案】B类型三 直棱柱的外接球【例4】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒, 则此球的表面积等于 。

【答案】【解析】在ABC ∆中2AB AC ==,120BAC ∠=︒,可得BC =,由正弦定理,可得ABC ∆外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '∆中,易得球半径R =故此球的表面积为2420R ππ=. 【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径。

【举一反三】1、已知直三棱柱ABC ­A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =90°,则该球的体积等于________. 【答案】43π【解析】设该球的球心为O ,△ABC 所在圆面的圆心为O 1,则OO 1⊥平面ABC 且OO 1=1.在△ABC 中,因为AB =AC =2,∠BAC =90°,所以△ABC 外接圆的半径r =12BC =12AB 2+AC 2=2,所以该球的半径R =r 2+O 1O2=(2)2+12=3,所以该球的体积V =43πR 3=43π.2、已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为 ( )A B .C .132D .【答案】C【解析】由球心作面ABC 的垂线,则垂足为BC 中点M 。

计算AM=52,由垂径定理,OM=6,所以半径132=,选C. 3、 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 .【答案】大三.强化训练1、矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π3125【答案】 C2、棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A B .1C .1+D【答案】 D3、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm πD .320483cm π 【答案】A【解析】设正方体上底面所在平面截球得小圆M ,则圆心M 为正方体上底面正方形的中心.如图. 设球的半径为R ,根据题意得球心到上底面的距离等于(R ﹣2)cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=(R ﹣2)2+42,解出R=5,所以根据球的体积公式,该球的体积V===.故选A .4、如图是一个几何体的三视图, 则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π【答案】C【解析】 该几何体为一个四棱锥,其外接球的球心为底面正方形的中心,所以半径为22,表面积为4π×(22)2=32π.故选C 。

5、已知四棱锥S ­ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3 B.162π3 C.322π3 D.642π3【答案】D6、将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( )【答案】C球的外切正四面体,这个小球球心与外切正四面体的中心重合,而正四面体的中心到顶点的距离是中心到地面距离的3倍。

7、在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。

【答案】π368、【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=9、球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ­ABC 的体积的最大值为( )A .33B . 3C .2 3D .4 【答案】A10、矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( ) A.π12125 B.π9125 C.π6125 D.π3125 【答案】 C11、在半径为R 的球内放入大小相等的4个小球,则小球的半径的最大值为( ) 【答案】R r )26(-=12、如图K38­16所示,ABCD ­A 1B 1C 1D 1是边长为1的正方体,S ­ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的表面积为( )图K38­16A.916πB.2516πC.4916πD.8116π 【答案】D【解析】 如图所示作辅助线,易知球心O 在SG 1上,设OG 1=x ,则OB 1=SO =2-x ,同时由正方体的性质知B 1G 1=22,则在Rt △OB 1G 1中,由勾股定理得OB 21=G 1B 21+OG 21,即(2-x)2=x 2+⎝ ⎛⎭⎪⎫222,解得x =78,所以球的半径R =2-78=98,所以球的表面积S =4πR 2=8116π.。

相关文档
最新文档