实验四+直流电机转速控制实验
电机转速控制实验报告
电机转速控制实验报告
1. 实验目的
本实验旨在研究电机转速控制的原理和方法,通过实际操作和数据分析来加深对电机控制的理解,并验证控制算法的有效性。
2. 实验原理
电机转速控制是通过改变电机供电电压或者改变电机绕组的接线方式来控制电机的转速。
在本次实验中,我们将采用调制技术来实现电机转速的控制。
3. 实验设备与材料
- 电机:直流电机
- 控制器:单片机控制器
- 传感器:转速传感器
- 电源
- 连接线
4. 实验步骤
1. 搭建实验电路:将电机和传感器连接至控制器,并接通电源。
2. 编写控制程序:根据所选的控制算法,编写相应的控制程序,并将其烧录至控制器中。
3. 运行实验:根据预设条件,控制电机的转速并记录数据。
4. 数据分析:对实测数据进行分析,验证控制算法的有效性。
5. 实验结果与分析
在实验过程中,我们采用了调制技术来实现电机转速的控制。
通过对控制程序的设计和实验数据的分析,我们得出以下结论:
- 当调制信号的频率增加时,电机的转速也随之增加,说明控制算法的设计是成功的。
- 通过调整调制信号的占空比,我们可以实现对电机转速的精确控制。
6. 实验总结
通过本次实验,我们深入了解了电机转速控制的原理和方法。
实验结果表明,调制技术能够有效地实现电机转速的控制,并且可以通过调整参数来实现不同的控制效果。
在实验过程中,我们还学习了如何编写控制程序和分析实验数据。
这些都对我们进一步深入研究电机控制提供了良好的基础。
7. 参考文献
- 电机控制技术原理与应用教材
- 直流电机转速控制实验指导书。
综合实验四直流电机调速
综合实验四直流电机调速一、实验目的1、掌握直流电机的驱动原理。
2、了解直流电机调速的方法。
二、实验内容1、实验原理图:2、实验内容(1)用0832 D/A转换电路后的输出经放大后驱动直流电机。
(2)编制程序改变0832输出经放大后的方波信号的占空比来控制电机转速。
本实验中D/A输出为双极性输出,因此电机可以正反向旋转。
3、连线方法(1)将D/A区0832的片选信号连到译码输出Y0上。
(2)0832的输出AOUT端连到DJ插孔。
(3)直流电机插头插到实验仪的DM插座上。
(4)D/A区0832的WR连到BUS3区XWR上。
(5)将+12V、-12V插孔用导线连到外置电源上。
如果电源内置,则+12V、-12V插孔电源已连好。
(6)D/A区0832的VREF连到W2的输出VREF插孔。
W2输入VIN连到+12V插孔,调节W2,使VREF为+5V。
(7)将DMTO区-5V插孔用导线连到外置电源上,如果电源内置,-5V线内部已连好。
三、程序程序清单:ORG 0C30HHA14S: MOV SP,#53HMOV DPTR,#8000HMOV A,#0FFHHA14S1: MOVX @DPTR,ALCALL DELAYHA14S2: DEC ALCALL DELAYMOVX @DPTR,ACJNE A,#00H,HA14S2HA14S3: INC AMOVX @DPTR,ALCALL DELAYCJNE A,#0FFH,HA14S3SJMP HA14S1DELAY: MOV R7,#0FFHDELAY1: MOV R6,#80HDELAY2: DJNZ R6,DELAY2DJNZ R7,DELAY1RETEND四、实验步骤1、确认连线正确性。
2、在“P.....”状态下,从起始地址0C30H开始连续运行程序。
3、观察直流电机的转速。
直流电机转速控制实验报告
直流电机转速控制实验报告自动控制原理实验实验报告直流电机转速控制设计一、实验目的1、了解直流电机转速测量与控制的基本原理。
2、掌握LabVIEW图形化编程方法,编写直流电机转速控制系统程序。
3、熟悉PID参数对系统性能的影响,通过PID参数调整掌握PID控制原理。
二、实验设备与器件计算机、NI ELVIS II多功能虚拟仪器综合实验平台、LabVIEW软件、万用表、12V直流电机、光电管,电阻、导线。
三、实验原理直流电机转速测量与控制系统的基本原理是:通过调节直流电机的输入电压大小调节电机转速;利用光电管将电机转速转换为一定周期的光电脉冲、采样脉冲信号,获取脉冲周期。
将脉冲的周期变换为脉冲频率,再将脉冲频率换算为电机转速;比较电机的测量转速与设定转速,将转速偏差信号送入PID控制器,由PID 控制器输出控制电压,通可变电源输出作为直流电机的输入电压,实现电机转速的控制。
四、实验过程(1)在实验板上搭建出电机转速光电检测电路将光电管、直流电机安装在实验板上的合适位置,使得直流电机的圆片恰好在光电管之中,用导线将光电管与相应阻值的电阻相连,并将电路与相应的接口相连,连接好的电路图如下。
(2)编写程序,实现PID控制SP为期望转速输出,是用户通过转盘输入期望的转速;PV为实际测量得到的电机转速,通过光电开关测量马达转速可以得到;MV为PID输出控制电压,将其接到“模拟DBL”模块,实现控制电源产生所需的直流电机控制电压。
通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,实现对直流电机转速的控制。
编写的程序如下图所示五、调试过程及结果PID参数调整如下时,系统出现了振荡现象,导致了系统的不稳定。
于是将参数kc调小,调整后的参数如下:系统出现了一定程度的超调,不满足实际的应用。
继续将Ti参数调大,并加入移位寄存器,对转速测量值取滑动平均,得到较为理想的系统输出。
-全文完-。
实验四、直流电机实验
实验报告系院电气与电子工程学院专业电气工程及其自动化班级学生姓名学号指导教师成绩2020年06月10日教务处印制广东···实验报告系:电气与电子工程学院专业:电气工程及其自动化年级:姓名:学号:实验时间: 2020.06.10 指导教师签字:成绩:(2)电流量程的选择因为直流并励电动机的额定电流为1.2A,测量电枢电流的电表A3可选用直流安培表的5A量程档;额定励磁电流小于0.16A,选用直流毫安表的200mA量程档。
(3)电机额定转速为1600r/min,转速表选用1800r/min量程档。
(4)变阻器的选择变阻器选用的原则是根据实验中所需的阻值和流过变阻器最大的电流来确定,电枢回路R1可选用D44挂件的1.3A的90Ω与90Ω串联电阻,磁场回路R f1可选用D44挂件的0.41A的900Ω与900Ω串联电阻。
4、直流他励电动机的起动准备按图4-2接线。
图中直流他励电动机M用DJ15,其额定功率P N=185W,额定电压U N=220V,额定电流I N=1.2A,额定转速n N=1600r/min,额定励磁电流I fN<0.16A。
校正直流测功机MG作为测功机使用,TG为测速发电机。
直流电流表选用D31。
R f1用D44的1800Ω阻值作为直流他励电动机励磁回路串接的电阻。
R f2选用D42的1800Ω阻值的变阻器作为MG励磁回路串接的电阻。
R1选用D44的180Ω阻值作为直流他励电动机的起动电阻,R2选用D42上的900Ω串900Ω加上900Ω并900Ω共2250Ω阻值作为MG的负载电阻。
接好线后,检查M、MG及TG之间是否用联轴器直接联接好。
(1)检查按图2-2的接线是否正确,电表的极性、量程选择是否正确,电动机励磁回路接线是否牢固。
然后,将电动机电枢串联起动电阻R1、测功机MG的负载电阻R2、及MG的磁场回路电阻R f2调到阻值最大位置,M的磁场调节电阻R f1调到最小位置,断开开关S,并确认断开控制屏下方右边的电枢电源开关,作好起动准备。
直流电机转速测量与控制实验
直流电机转速测量与控制实验1、实验目的:了解霍尔器件工作原理及转速测量与控制的基本原理、基本方法,掌握DAC0832电路的接口技术和应用方法,提高实时控制系统的设计和调试能力。
2、实验内容:设计并调试一个程序其功能为测量电机的转速,并在超想-3000TB综合实验仪显示器上显示出来,采用比例调节器方法,使电机转速稳定在某一设定值。
此设定值可由超想-3000TB综合实验仪上的键盘输入。
3、工作原理:转速是工程上一个常用参数。
旋转体的转速常以每秒钟或每分钟转数来表示,因此其单位为转/秒、转/分,也有时用角速度表示瞬时转速,这时的单位相应为孤度/秒。
转速的测量方法很多,由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。
霍尔开关传感器正由于其体积小,无触点,动态特性好,使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。
霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的两个侧面之间产生霍尔电势。
其大小和外磁场及电流大小成比例。
本实验选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3020,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单、输出电平可与各种数字电路兼容等特点。
器件采用三端平塑封装。
引出端功能符号如下:引出端序号 1 2 3功能电源地输出符号 VC1 GND OUT我们根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔器件3020,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比,测出脉冲的周期或频率即可计算出转速。
直流电机的转速与施加于电机两端的电压大小有关。
本实验用DAC0832控制输出到直流电机的电压,控制DAC0832的模拟输出信号量来控制电机的转速。
直流电机转速测控实验
直流电机转速测控实验一、实验目的1. 掌握电机转速的测量原理;学会根据被测环境、对象不同选择合适的传感器测量转速;2. 掌握电机转速控制的原理;学会用计算机和传感器组成转速测控系统。
二、实验原理图1所示为计算机直流电机转速测控系统原理图。
图1 计算机测控直流电机转速原理框图根据被测环境和对象选择不同转速传感器(光电、霍尔、磁电)实现直流电机转速的测量及控制。
三. 实验仪器和设备1. CSY-5000型传感器测控技术实训公共平台;2. 环形带综合测控实验台;3. 数据采集模板及测控软件(LabVIEW试用版);4. 12V直流电机调节驱动挂箱;5. 光电式、霍尔式、磁电式转速传感器各一件;6. PC机及RS232通讯接口。
四.实验预习要求1.查阅资料,了解旋转轴转速测量的常用方法;2.掌握采用光电式、霍尔式、磁电式传感器测量转速的原理及特点;3.理解计算机测控直流电机转速的系统工作原理;4.熟悉CSY-5000型传感器测控技术实训平台的硬件配置。
五. 实验步骤及内容第一部分:转速测量1、在关闭公共平台主机箱电源开关的前提下,连接数据采集模板电源线、RS232通讯线;2、根据你选用的转速传感器,按转速传感器附录图1、图2、图3示意图安装接线;(注意光电、霍尔传感器为+5V供电,磁电传感器为+15V供电)3、主机箱上0~12V可调电源与电压表(电压表量程选择20V档)及环形带综合测控实验台电机(环形带综合测控实验台背面)接口并接(注意接口的相应极性);4、检查接线无误后,首先将主机箱上0~12V可调旋钮逆时针方向缓慢调节到底(起始输出电压最小);然后桌面“环形带综合测试软件”(或者启动计算机中的测试软件目录“SensorTest.vi”),双击打开,显示图2环形带综合测试程序软件界面;再打开主机箱电源开关给测量系统供电。
图2 环形带综合测试软件界面5、在计算机的环形带综合测试程序软件界面采单栏下方栏点击运行按钮,串口通讯正常后选择测试软件中“手动转速控制与测量”选项,软件界面显示为图3转速测量选择传感器类型界面;在界面下方选择“传感器类型”为现在做测量转速实验相对应的转速传感器。
自动控制直流电机测速反馈控制实验
目录一、实验目的 (1)二、实验器材 (1)三、实验对象介绍 (1)四、实验思路 (1)五、实验过程 (2)六、实验结果 (7)七、出现问题及解决方案 (8)八、总结 (9)直流电动机转速控制实验一、实验目的1.掌握控制系统的结构框架和基本环节对系统的影响或作用2.建立数学建模的思想,学会用建模思想解决控制系统问题3.通过设计的测速闭环反馈控制系统让直流电动机达到理想和稳定的转速二、实验器材直流电动机、电路实验箱、电动机驱动模块、电源模块、导线若干三、实验对象介绍被控对象:电动机被控量:电动机的转速四、实验思路1、首先通过实验测定直流电动机转速模型的传递系数K 、时间常数T,以获得电机转速的传递函数1)(+=ΦTs K s 。
2.然后对未校正的直流电机转速控制系统建立数学模型。
3.最后添加校正环节到控制系统,使电机转速达到预定转速 电路直流电机控制系统模拟五、实验过程1.接线(1)电机:粗线(红、黑端)接输入驱动模块的out+和out-,细线(红、黑端)接测速反馈;(2)电源模块:输出端v+、com(提供24V电压)分别接电动机驱动模块的电源输入端BAT+、GND;(3)电动机驱动模块:S1端接地,S2端接控制信号;out+和out-为控制信号输出;EN、COM两端短接,控制其工作使能;(注:若输出信号为负,短接DIR和COM)。
2.获取电机转速的传递函数(1)电动机的传递函数为一阶系统,给控制系统加一个单位阶跃输入,测其输出响应。
但输出仿真波形中出现了大量高次噪声,所以需串联一个滤波环节。
(2)一阶积分环节具有滤除高频噪声的能力,同样二阶惯性环节也能滤除高频噪声,由于二阶惯性环节电路图比较复杂,所以选用一阶积分环节。
一阶环节的电路原理图如下:(3)加入滤波环节后再对其加单位阶跃输入,测得其输出响应波形为通过测试得到k=1.04,t=0.296,所以电机转速的传递函数为 1296.004.1)(+=Φs s 。
直流电机转速控制实验报告
计算机控制技术综合性设计实验实验课程:直流电机转速控制实验设计报告学生姓名:学生姓名:学生姓名:学生姓名:指导教师:牛国臣实验时间:年月日直流电机转速控制实验设计报告一、实验目的:1.掌握电机的工作原理。
2.掌握直流电机驱动控制技术。
3.掌握增量式编码器位置反馈原理。
4.熟悉单片机硬件电路设计及编程。
5.实现直流电机的转速控制。
二、实验内容:已知某一直流永磁有刷伺服电机参数如下:设计直流电机转速控制系统。
要求:表1 直流伺服电机参数1.分析并建立电机的数学模型,分别得出在连续控制系统和离散控制系统中对应的传递函数;2.基于MATLAB软件对直流电机进行仿真,并通过PID控制器的参数整定对直流电机进行闭环控制,3.设计直流电机控制硬件电路,主要包括主控模块、电机驱动模块、编码器反馈模块、通信模块、电源模块、显示模块等。
4.对各模块进行单元调试,设计数字PID控制器,并基于A VR单片机编制程序,进行系统联调。
5.最终完成直流电机控制硬件平台的设计、搭建及软件调试,要求有速度设置、显示功能,速度控制误差在1%以内,具有与上位机通讯的接口,能通过上位机方便进行参数设置、速度控制等操作。
三、 实验步骤:1、建立电机的数学模型,得出控制统的传递函数;由直流电机得来的三个方程:n k dt di Li R s u E m m ++=)( i k T M m =f L m T dtdw J T T ++= 、 进行拉式变换得:)()()()(s n k s LSI s I R s U E m m ++=)(s I k T M m =f L m T s JS T T +Ω+=)(带入数据在进行z 变换得: 521039.19252.01394.0459.1)(-⨯+-+=z z z z G 2、.基于MATLAB 软件对直流电机进行仿真(1)连续系统阶跃响应程序为:>> num=[1]num =1>> den=[0.0000000542,0.00061,0.0468]den =0.0000 0.0006 0.0468>> G=tf(num,den)Transfer function:1----------------------------------5.42e-008 s^2 + 0.00061 s + 0.0468>> step(G)>> Gz=c2d(G,0.01,'zoh')Transfer function:11.43 z + 0.06868-----------------z^2 - 0.4618 zSampling time: 0.01>> step(Gz)阶跃响应曲线如图1所示:图1 阶跃响应曲线(2)离散系统的单位阶跃响应程序如下:>> num=[52.756.913];>> den=[1 -0.8009 0.0005123];>> sys=[num,den,0.001];>> dstep(num,den,100)离散系统的阶跃响应曲线如图2所示(T=1ms):图2 离散系统的阶跃响应曲线(3)PID参数整定1)设D(z)=错误!未找到引用源。
PLC控制直流电机实验
实验四直流电机PLC控制实验一、实验目的1.掌握PLC的基本工作原理2.掌握PID控制原理3.掌握PLC控制直流电机方法4.掌握直流电机的调速方法二、实验器材1.计算机控制技术实验装置一台2.CP1H编程电缆一条3.PC机一台三、实验内容根据输入,实现PLC对直流电机的调速PID控制。
1、输入功能(1)功能操作,按钮11.1、按钮1按下一次,显示SV(设定点值)。
1.2、按钮1按下两次,显示速度设定值。
1.3、按钮1按下三次,设定P值,显示。
1.4、按钮1按下四次,显示P值。
1.5、按钮1按下五次,设定I值,显示。
1.6、按钮1按下六次,显示I值。
1.7、按钮1按下七次,设定D值,显示。
1.8、按钮1按下八次,显示D值。
1.9、按钮1按下九次,显示At(PID 自调整增益)1.10、按钮1按下十次,自整定显示1.11、按钮1按下十一次,复位(2)增加按钮2,数值增加(3)减小按钮3,数值减小(4)确定按钮4,操作确定2、PWM脉冲输出,接输出101.00。
3、直流电机测速,光耦,接高速脉冲输入。
4、LED显示,根据按钮输入,显示设定值/测量值/加减量。
四、实验原理1.直流无刷电机PWM调速原理PWM的意思是脉宽调节,也就是调节方波高电平和低电平的时间比,一个20%占空比波形,会有20%的高电平时间和80%的低电平时间,而一个60%占空比的波形则具有60%的高电平时间和40%的低电平时间,占空比越大,高电平时间越长,则输出的脉冲幅度越高,即电压越高.如果占空比为0%,那么高电平时间为0,则没有电压输出.如果占空比为100%,那么输出全部电压。
PWM的占空比决定输出到直流电机的平均电压,所以通过调节占空比,可以实现调节输出电压的目的,而且输出电压可以无级连续调节。
在使用PWM控制的直流无刷电动机中,PWM控制有两种方式:(1)使用PWM信号,控制三极管的导通时间,导通的时间越长,那么做功的时间越长,电机的转速就越高。
直流电机转速计算机控制实验结论
直流电机转速计算机控制实验结论
在本次实验中,我们通过计算机控制技术实现了对直流电机转速的有效调节。
实验结果表明,计算机控制技术在直流电机控制领域具有显著的优势和应用前景。
首先,通过实验数据的分析,我们发现计算机控制技术可以实现对直流电机转速的精确控制。
在实验过程中,我们通过改变输入的电压或电流,观察到了直流电机转速的相应变化。
这表明计算机控制技术可以快速、准确地响应指令,实现对电机转速的精细调节。
其次,计算机控制技术还具有灵活性高的优点。
在实验中,我们通过编写不同的控制程序,实现了对直流电机不同转速模式和响应时间的控制。
这使得计算机控制技术在不同的应用场景中具有广泛的应用前景。
此外,我们还发现计算机控制技术可以有效地提高直流电机的能效。
在实验中,我们通过优化控制算法,减少了电机的能耗并提高了其运行效率。
这为节能减排和可持续发展提供了重要的技术支持。
综上所述,直流电机转速计算机控制实验结果表明,计算机控制技术在直流电机控制领域具有广泛的应用前景和重要的价值。
未来,我们可以通过进一步研究和开发,实现更加高效、智能的电机控制系统,为工业自动化和智能制造的发展做出更大的贡献。
实验四 双闭环不可逆直流调速系统实验
实验四双闭环不可逆直流调速系统实验一、实验目的(1)了解闭环不可逆直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握双闭环不可逆直流调速系统的调试步骤、方法及参数的整定。
(3)研究调节器参数对系统动态性能的影响。
二、实验所需挂件及附件三、实验线路及原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由速度调节器和电流调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
实验系统的原理框图组成如下:启动时,加入给定电压U g,“速度调节器”和“电流调节器”即以饱和限幅值输出,使电动机以限定的最大启动电流加速启动,直到电机转速达到给定转速(即U g=U fn),并在出现超调后,“速度调节器”和“电流调节器”退出饱和,最后稳定在略低于给定转速值下运行。
系统工作时,要先给电动机加励磁,改变给定电压U g的大小即可方便地改变电动机的转速。
“速度调节器”、“电流调节器”均设有限幅环节,“速度调节器”的输出作为“电流调节器”的给定,利用“速度调节器”的输出限幅可达到限制启动电流的目的。
“电流调节器”的输出作为“触发电路”的控制电压U ct,利用“电流调节器”的输出限幅可达到限制αmax的目的。
在本实验中DJK04上的“调节器I”做为“速度调节器”使用,“调节器II”做为“电流调节器”使用;若使用DD03-4不锈钢电机导轨、涡流测功机及光码盘测速系统和D55-4智能电机特性测试及控制系统两者来完成电机加载请详见附录相关内容。
四、实验内容(1)各控制单元调试。
(2)测定电流反馈系数β、转速反馈系数α。
实验4PWM控制直流电机实验
实验4 PWM控制直流电机实验PWM控制直流电机实验实验目的1、熟悉PWM调制的原理和运用。
2、熟悉直流电机的工作原理。
3、能够读懂和编写直流电机的控制程序。
实验器材:电脑。
数字综合实验系统HS-EDA5.1试验箱。
USB-BLASTER。
USB线ISP下载线实验原理:运动控制系统是以机械运动的驱动设备??电机为控制对象,以控制器为核心,以电力电子器件及功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。
这类系统控制电机的转矩、转速和转角,将电能转换为机械能,实现运动控制的运动要求。
可以看出,控制技术的发展是通过电机实现系统的要求,电机的进步带来了对驱动和控制的要求。
电机的发展和控制、驱动技术的不断成熟,使运动控制经历了不同的发展阶段。
1、直流电机的工作原理: 直流电机的原理图如下:这是分析直流电机的物理模型图。
其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。
转动部分有环形铁心和绕在环形铁心上的绕组。
(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)。
上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。
定子与转子之间有一气隙。
在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。
换向片之间互相绝缘,由换向片构成的整体称为换向器。
换向器固定在转轴上,换向片与转轴之间亦互相绝缘。
在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。
当给电刷加一直流电压,绕组线圈中就有电流流过,由电磁力定律可知导体会受到电磁力作用。
导体处于N极下与电刷A接触电流向里流,产生电磁力矩为逆时针;导体处于S极下与电刷B接触电流向外流,产生电磁力矩仍为逆时针。
转子在该电磁力矩作用下开始旋转。
直流电机转速测量与控制
实验五、直流电机转速测量与控制实验一、实验目的:1、掌握直流电机的驱动原理。
2、了解直流电机调速的方法。
二、实验内容:1、用DAC0832D/A转换电路的输出,经放大后驱动直流电机。
2、编制程序,改变DAC0832输出经放大后的方波信号的占空比来控制电机转速。
三、实验步骤:1、确认连好实验线路。
2、从起始地址开始连续运行程序。
(1)联机时,实验程序文件名为\DVCC\H8EXE\H89S.EXE。
(2)单机时,实验程序起始地址为F000:9600。
在系统显示监控提示符“P.”时:输入F000 按F1键,输入9600 按EXEC键,观察直流电机的转速和正反向变化情况。
四、实验原理图:五、程序:CODE SEGMENTASSUME CS:CODEDAFCRT EQU 0060H ;定义端口地址DAFCRT=0060H START: MOV AL,0FFH ;将0FFH赋值给ALNEXT1: MOV DX,DAFCRT ;将端口地址0060H送DX OUT DX,AL ;将AL=0FF的内容送出到端口地址为DXMOV CX,1000H ;计数器CX计数1000次NEXT2: LOOP NEXT2 ;CX-1,若0≠CX,则转至NEXT2 DEC AL ;AL自减1JNZ NEXT1 ;当0AL时,转至NEXT1≠NEXT3: MOV DX,DAFCRT ;将端口地址0060H送至DX OUT DX,ALMOV CX,0600HNEXT4: LOOP NEXT4INC AL ;AL自加1JNZ NEXT3 ;若0AL,则转至NEXT3≠JMP START ;转向符号地址SRART处CODE ENDSEND START。
PID直流电机转速控制实验报告
STC89C52 参数
STC89C52 基本参数
FLASH (bytes)
8K
RAM (Bytes)
256
最大频率 (MHz)
24
11
Vcc (V)
5±20%
STC89C52 其他特性
I/O 引脚
32
ISP
--
STC89C52 封装类型
PDIP40, PLCC44, TQFP44, PQFP44
2.2 直流电机驱动芯片 ULN2803 的设计
5
Ea = Ceфn=Ke n 可知 1.电刷两端的感应电势与电机的转速成正比。 2.直流发电机能够把转速信号换成电势信号,从而用来测
速。 自动控制系统对测速发动机的要求为:1.输出电压与转速的关 系曲线为线性。2.输出特性的斜率要大。3.温度变化对输出特 性的影响要小。4.输出电压的波纹要小。5.正反转两个方向的 输出特性要一致。 图中实线为直流测速发电机的理想输出特性,虚线为实际输出 特性,实际特性与要求的线性特性之间存在误差,且该误差与 负载电阻有关。
电机每转一圈,每一相霍尔传感器产生 2 脉冲,且其周期与 电机转速成反比,因此可以利用霍尔传感器信号得到电机的实 际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍 尔传感器的一个正脉冲的宽度,则电机的实际转速为:
V=N*30; V:速度 R/min N:每秒采样的脉冲个数 霍尔传感器输出的是脉冲,可以直接将输出脉冲接入单片 机外部计数器,故而非常简单实用。
1.4.1 模拟 PID 控制规律的离散化
模拟形式
离散化形式
e(t) r(t) c(t)
e(n) r(n) c(n)
de(t ) dT
t
0 e(t)dt
直流电机控制(PID)实验报告
直流电机控制实验(PID控制)
一、实验目的
1.了解脉宽调制(PWM)的原理
2.学习用PWM输出模拟量驱动直流电机
3.熟悉51系列单片机的延时程序
4.使用PID算法控制直流电机
二、实验步骤与过程
本实验需要用到单片机最小应用系统(F1区)、串行静态显示(I3区)和直流电机驱动模块(M1区)。
1.单片机最小应用系统的P1.7接直流电机驱动模块的PWM输入口Control,最小系统的INTO接直流电机驱动模块PULSEOUT,最小系统的P1.0、P1.1接串行静态显示的DIN、CLK。
b = speed1 / 100;
s = speed1 % 100 / 10;
g = speed1 % 100 % 10;
sent(table[b]);
sent(table[s]);
sent(table[g]);
sent(0); sent(0);//预期值
sent(table[speedset/100]);
2.用串行数据通信线连接计算机与仿真器,然后将仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。
3.打开Keil uVision2仿真软件,首先建立本实验的项目文件,接着添加源程序,进行编译,直到编译无误。
4.进行软件设置,选择硬件仿真,选择串行口3,设置波特率为最大值。
5.打开模块电源和总电源,点击开始调试按钮,点击RUN按钮运行程序。观察直流电机转速,一段时间后控制在程序设定的值30转/S的左右。
sent(table[speedset%100/10]);
《专业课程设计》实验报告直流电机转速及方向的控制
专业课程设计设计报告直流电机转速及方向的控制班级:专业:设计人(学号):完成日期二零零九年九月直流电机转速及方向的控制一、设计目的:①培养自学能力:由于DP-51PROC单片机综合仿真实验仪以前没用过,所以只能以已学过的51单片机实验箱为基础,自己摸索,学习。
②培养合作精神:由于本实验相对比较综合,需要这几个人的合作协调,所以在实验过程中,可以培养自己的合作精神。
③提高知识串联的应用能力:本实验涉及单片机,电力拖动,电子电子等知识,尤其是跟单片机联系非常紧密,需要有综合应用各个知识点的能力,如单片机的C语言,电力电子的PWM控制,以及电机拖动中的直流电机的工作原理等。
④培养查阅资料的能力:由于本实验用到的DP-51PROC单片机没有用过,所以程序调试过程中会遇到很多的问题,有时候需要自己去图书馆查阅资料,有时需要在网上搜索,甚至是请教以前的老师。
二、设计任务:在DP-51PROC单片机综合仿真实验仪为实验平台上,通过编写程序,以PWM(脉宽调制)方波,实现对直流电机的转速大小,正反方向的控制以及对直流电机的启动、停止的控制。
三、设计要求:1、学习如何控制直流电机,理解PWM功率驱动电路,学会利用仿真仪上的已有模块进行接口控制。
2、分析设计项目原理,进行方案可行性实验验证并有记录。
3、进行方案设计,包含硬件设计和软件设计,由于实验室提供DP-51PROC实验箱,所以主要是软件设计。
程序由C语言编写,在KEIL软件平台上通过编译,并生成HEX 文件,还要画出程序的流程图。
4、提供电子版和纸质的设计报告各一份。
5、准备方案论证的PPT,阐述设计思想。
四、系统方案设计:1、⑴系统总体设计:在DP-51PROC单片机综合仿真实验仪的实验平台上,编写实验程序,实现直流电机的启动停止、速度大小及方向控制。
①启动、停止控制可以通过定义DP-51PROC 单片机端口来实现。
②直流电机可以顺时转动,也可以逆时针转动,只要改变输入端接线的极性,就可以改变电机的转向,为防止方向瞬时变化给直流电机造成较大的冲击,产生火花,必须在电机停转后再改变方向,可通过加延时程序实现。
实验四 转速、电流反馈控制直流调速系统的仿真
实验四转速、电流反馈控制直流调速系统的仿真一、实验目的熟练使用MATLAB下的SIMULINK软件进行系统仿真。
学会用MATLAB下的SIMULINK软件建立转速、电流反馈控制的直流调速系统的仿真模型和进行仿真实验的方法。
二、实验器材PC机一台,MATLAB软件三、实验参数采用转速、电流反馈控制的直流调速系统,按照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n的响应数据,绘制出它们的响应曲线,并对实验数据进行分析,给出相应的结论。
转速、电流反馈控制的直流调速系统中各环节的参数如下:直流电动机:额定电压U N = 220 V,额定电流I dN =136 A,额定转速n N = 1460r/min,电动机电势系数C e= 0.132 V·min/r,允许过载倍数λ=1.5。
晶闸管整流装置的放大系数K s = 40。
电枢回路总电阻R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数T m = 0.18 s,整流装置滞后时间常数T s=0.0017s,电流滤波时间常数T oi=0.002s。
电流反馈系数β=0.05V/A(≈10V/1.5I N)。
四、实验内容1、电流环的仿真。
参考教材P90中相关内容建立采用比例积分控制的带限幅的电流环仿真模型,设置好各环节的参数。
图1电流环的仿真模型2、按照表1中的数据分别改变电流环中比例积分控制器的比例系数K p 和积分系数K i ,观察电流环输出电枢电流I d 的响应曲线,记录电枢电流I d 的超调量、响应时间、稳态值等参数,是否存在静差?分析原因。
表1 比例积分系数t/sI d /A不同比例系数Kp 和积分系数Ki 时的电枢电流曲线表1不同比例系数K p 和积分系数K i 的电枢电流数据对比分析:由表1可知,不同的比例系数K p 和积分系数K i 会影响系统的电枢电流且系统存在静差,原因是电流调节系统受到电动机反电动势的扰动,电动机反电动势是一个线性渐增的扰动量,所以系统做不到无静差。
实验四-温度采集和直流电机速度控制
实验四温度采集和直流电机速度控制一、实验目的1 学习PLC的A/D模/数转换模块的使用方法。
2 学习PLC的D/A数/模转换模块的使用方法。
3 了解工业现场的测温仪器PT100的工作原理及使用方法。
4 掌握PLC和A/D、D/A模块之间读写操作的编程方法。
5 了解直流电机的转速控制方法。
二、实验原理利用测温仪器PT100测出现场温度,通过A/D转换模块输入到PLC里面,经过PLC的处理,再通过D/A模块输出相应电压信号控制直流电机的速度。
1 温度采集PT100是铂热电阻,它的阻值会随着温度的变化而改变。
PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。
根据这一特性,通过变送器,将阻值信号变送为4-20mA信号。
本实验中PT100与变送器的相关参数如下:供电电压:DC24V量程:0-100摄氏度输出方式:4-20mA(即输出为4mA时,对应温度为0摄氏度,输出为20mA时,对应温度为100摄氏度,并且电流与温度成线性变化)通过AD模块采集PT100温度传感器所测当前室温。
本实验AD模块采用FX3U-4AD模块,可将PT100温度变送器输出的4-20mA信号采集并变换以便PLC CPU采集处理。
2 直流调速电机控制本实验DA模块选用FX3U-4DA-ADP模块,输出0-10V电压,经过直流调速电机模块内部放大电路,使直流电机两端的电压对应的0-24V变化,从而改变直流电机的转速。
三、主要实验设备1 实验控制屏1台2 电脑1台3 PLC通迅电缆1根4 温度采集和直流电机速度控制模块1块5 FX3U 4A/D模块 1块6 FX3U 4D/A 模块 1块7 跨接线若干四、实验内容1 控制要求通过A/D模块将温度传感器PT100采集到的信号转换成数字量送给PLC,PLC处理后,再通过D/A模块输出模拟量对直流电机的速度进行控制,使温度在0~40℃变化时,电机的速度也随之改变。
实验四 直流电机转速控制实验
实验四直流电机转速控制实验39032510 赵正1.实验目的(1)掌握单片机通用I/O 口的使用;(2)掌握使用单片机定时器产生占空比可调的PWM 波;(3)掌握使用单片机定时器2 的捕获功能实现电机转速测量的方法。
实验电路2.硬件原理图2.1电机控制实验箱的原理框图如图1 所示。
2.2 实验装置接口说明控制系统与电机实验箱通过DB9 插头连接,其接口定义如表1 所示。
3 PID 控制算法简介3.1 增量式PID 算法增量式PID 输出表达式为:实际实验时,可以采取试凑法来得出Kp的值。
3.2 增量式PID 算法流程图采用单片机实现PID 算法时,可以采取如图2 所示的流程图进行。
4.实验要求(1)通过实验箱上的键盘输入需要达到的转速值,转速范围为200~1300r/min (2)将测量到的电机转速显示到实验箱的数码管LED3~LED6 上,转速单位为“转/分”。
软件流程图开始定时器初始化电机初始化8279初始化开外部中断外部中断0边沿触发开中断5.实验步骤1)硬件连接2)程序开发调试软件为KeilC,下载软件为S51ISP,先通过单片机控制电机,改变占空比,使用示波器测量转速。
3)硬件连接,将测得转速显示在数码管上。
6.实验心得在完成电机控制实验时,我遇到了很多的困难,要控制其速度那么首先要准确地测量电机的速度,一开始测时转速时,采用计数器方法,效率低,控制效果也差,后来改成定时器2的捕获方式测量转速,但最后的精度仍然不够高。
7.程序思路、算法根据增量式PID算法进行程序的编写如下;void pid(){float temx,e1=aim-c1;e2=aim-c2;e3=aim-c3;temx=kp*(2.45*e3-3.5*e2+1.25*e1);input=input+temx; //限幅if(input>100)input=100;if(input<0)input=0;c1=c2;c2=c3;c3=speed;}通过这个函数不断修正占空比(input),最终使电机转速达到期望转速,同时,我也做了一个简单的仿真,假设电机模型为图3中的模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四直流电机转速控制实验
39032510 赵正
1.实验目的
(1)掌握单片机通用I/O 口的使用;
(2)掌握使用单片机定时器产生占空比可调的PWM 波;
(3)掌握使用单片机定时器2 的捕获功能实现电机转速测量的方法。
实验电路
2.硬件原理图
2.1电机控制实验箱的原理框图如图1 所示。
2.2 实验装置接口说明
控制系统与电机实验箱通过DB9 插头连接,其接口定义如表1 所示。
1
3 PID 控制算法简介
3.1 增量式PID 算法
增量式PID 输出表达式为:
实际实验时,可以采取试凑法来得出Kp的值。
3.2 增量式PID 算法流程图
采用单片机实现PID 算法时,可以采取如图2 所示的流程图进行。