2016-2018年全国卷3高考文科数学试题附答案
2018年全国卷Ⅲ文数高考试题(含答案)
由茎
知m =
79 + 81 = 80 . 2
列联表如 超过 m 第一种生产方式 第二种生产方式
3 19. 12 15 5
超过 m
5 15
由于 K 2 =
40(15 × 15 − 5 × 5) 2 = 10 > 6.635 ,所 有 99%的把握认为两种生产方式的效率有差异. 20 × 20 × 20 × 20
工人,将他们随机 成两组, 组 20 人,第一组工人用第一种生产方式,第 min 绘制了如 茎
二组工人用第二种生产方式.根据工人完成生产任务的工作时间 单
1 根据茎 2 求 40
判断哪种生产方式的效率更高?并说明理由 工人完成生产任务所需时间的中 数 m ,并将完成生产任务所需时间超过 m 和 超过 m 的
tan x 的最小 周期为 1 + tan 2 x
A.
π 4
B.
π 2
C. π 关于直线 x = 1 对 的是 C. y = ln(1 + x )
D . 2π
7. 列函数中,其 A. y = ln(1 − x ) 8.直线 x + y + 2 = 0 值范围是 A. [2, 6]
函数 y = ln x 的 B. y = ln(2 − x )
2
19. 12 如 ,矩形 ABCD 所在 面
所在 半圆弧 CD
面垂直, M 是 CD
异
于 C , D 的点. 1 证明 面 AMD ⊥ 面 BMC 面 PBD ?说明理由.
2 在线段 AM
是否存在点 P ,使得 MC ∥
20. 12 知斜率为 k 的直线 l 椭圆 C
x2 y 2 + = 1 交于 A , B 两点.线段 AB 的中点为 M (1, m)( m > 0) . 4 3
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2018年全国卷3文科数学试题与参考答案
绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试文科数学参考答案注意事项:1. 答题前,考生先将自己的、号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1)A B C D【答案】C【考点】交集2)A B C D【答案】D【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B答案能看见小长方体的上面和左面,C答案至少能看见小长方体的左面和前面,D答案本身就不对,外围轮廓不可能有缺失【考点】三视图4.)A B C D【答案】B【考点】余弦的二倍角公式5.某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为( )A B C D【答案】B【考点】互斥事件的概率6.( )ABCD 【答案】C【考点】切化弦、二倍角、三角函数周期7.ABCD【答案】B【解析】采用特殊值法,,,【考点】函数关于直线对称8( )AB C D 【答案】A【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数)9( )【答案】DA、B排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)10.距离为A B.2C D【答案】D【考点】双曲线的离心率、渐近线之间的互相转化)ABCD 【答案】C【考点】三角形面积公式、余弦定理4()ABCD【答案】B体积也最大. 此时:【考点】外接球、椎体体积最值二、填空题:本大题共4小题,每小题5分,共20分13.【考点】向量平行的坐标运算14. 某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方式有简单随机抽样,分层抽样和系统抽样,则最适合的抽样方法是______. 【答案】分层抽样【解析】题干中说道“不同年龄段客户对其服务的评价有较大差异”,所以应该按照年龄进行分层抽样【考点】抽样方法的区别15._________.【解析】采用交点法:(1)(2)(2)(3)(1)(3)3(方程(1)本题也可以用正常的画图去做【考点】线性规划 16.【考点】对数型函数的奇偶性三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤..第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)(1)(2).【答案】【解析】(2)18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)(3)根据(2)【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min之间,故可估计第二组的数据平均值要小于第一(2)(3)由(2)【考点】茎叶图、均值及其意义、中位数、独立性检验19.(12分)如图,边长为2(1)(2).【答案】(1)见解析;【解析】(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的容) (2)证明如下【考点】面面垂直的判定、线面垂直、存在性问题20. (12分)(1)(2)【答案】(1)见解析;(2)见解析【解析】(1)此公式可以作为点差法的二级结论在选填题中直接后续过程和点差法一样((联立法思路非常的简单通用,但是计算量非常的大,如果用口算解析几何系列公式计算的话,上述计算就非常简单了)(2)由(1)椭圆的第二定义)(21. (12分)(1)(2)【答案】(2)见解析 【解析】(2)利用不等式消参)【考点】切线方程、导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)),.(1)(2).【答案】【解析】(1)(2)(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23.(10分)(1)(2). 【答案】(1)见解析;(2)5【解析】(2)(1)中图象可知,5,【考点】零点分段求解析式、用函数图象解决恒成立问题。
2016年高考 全国三卷 文科数学
2016年普通高等学校招生全国统一考试(课标全国卷Ⅲ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( ) A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}2.若z=4+3i,则z|z|=( ) A.1B.-1C.45+35ID.45-35i3.已知向量BA ⃗⃗⃗⃗⃗ =(12,√32),BC ⃗⃗⃗⃗⃗ =(√32,12),则∠ABC=( ) A.30°B.45°C.60°D.120°4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上 B .七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个5.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.815B.18C.115D.1306.若tan θ=-13,则cos 2θ=( ) A.-45B.-15C.15D.457.已知a=243,b=323,c=2513,则( ) A.b<a<cB.a<b<cC.b<c<aD.c<a<b8.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3B.4C.5D.69.在△ABC 中,B=π4,BC 边上的高等于13BC,则sin A=( ) A.310B.√1010C.√55D.3√101010.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36√5B.54+18√5C.90D.8111.在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC,AB=6,BC=8, AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π312.已知O 为坐标原点,F 是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点,A,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设x,y 满足约束条件{2x -y +1≥0,x -2y -1≤0,x ≤1,则z=2x+3y-5的最小值为 .14.函数y=sin x-√3cos x 的图象可由函数y=2sin x 的图象至少向右平移 个单位长度得到.15.已知直线l:x-√3y+6=0与圆x 2+y 2=12交于A,B 两点,过A,B 分别作l 的垂线与x 轴交于C,D 两点.则|CD|= .16.已知f(x)为偶函数,当x ≤0时, f(x)=e -x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是 .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知各项都为正数的数列{a n }满足a 1=1,a n 2-(2a n+1-1)a n -2a n+1=0.(Ⅰ)求a 2,a 3;(Ⅱ)求{a n }的通项公式.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i=17y i =9.32,∑i=17t i y i =40.17,√∑i=17(y i -y)2=0.55,√7≈2.646.参考公式:相关系数r=∑i=1n(t i -t)(y i -y)√∑i=1(t i -t)2∑i=1(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距最小二乘估计公式分别为:b ^=∑i=1n(t i -t)(y i -y)∑i=1n(t i -t)2,a ^=y -b ^t .19.(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD,AD ∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点. (Ⅰ)证明MN ∥平面PAB; (Ⅱ)求四面体N-BCM 的体积.20.(本小题满分12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(本小题满分12分)设函数f(x)=ln x-x+1.(Ⅰ)讨论f(x)的单调性;<x;(Ⅱ)证明当x∈(1,+∞)时,1<x-1lnx(Ⅲ)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,☉O 中AB⏜的中点为P,弦PC,PD 分别交AB 于E,F 两点. (Ⅰ)若∠PFB=2∠PCD,求∠PCD 的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G,证明OG ⊥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =√3cosα,y =sinα(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2. (Ⅰ)写出C 1的普通方程和C 2的直角坐标方程;(Ⅱ)设点P 在C 1上,点Q 在C 2上,求|PQ|的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|2x-a|+a.(Ⅰ)当a=2时,求不等式f(x)≤6的解集;(Ⅱ)设函数g(x)=|2x-1|.当x ∈R 时, f(x)+g(x)≥3,求a 的取值范围.2016年普通高等学校招生全国统一考试(课标全国卷Ⅲ)一、选择题1.C 由补集定义知∁A B={0,2,6,10},故选C.2.D 由z=4+3i 得|z|=√32+42=5,z =4-3i,则z|z|=45-35i,故选D. 3.A cos ∠ABC=BA ⃗⃗⃗⃗ ·BC⃗⃗⃗⃗ |BA ⃗⃗⃗⃗|·|BC ⃗⃗⃗⃗|=√32,所以∠ABC=30°,故选A. 4.D 由雷达图易知A 、C 正确.七月份平均最高气温超过20 ℃,平均最低气温约为13 ℃;一月份平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月平均温差大,故B 正确.由题图知平均最高气温超过20 ℃的月份为六、七、八月,有3个.故选D.5.C 小敏输入密码的所有可能情况如下: (M,1),(M,2),(M,3),(M,4),(M,5), (I,1),(I,2),(I,3),(I,4),(I,5), (N,1),(N,2),(N,3),(N,4),(N,5),共15种.而能开机的密码只有一种,所以小敏输入一次密码能够成功开机的概率为115.6.D 解法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ =1-tan 2θ1+tan 2θ=45.故选D.解法二:由tan θ=-13,可得sin θ=±√10,因而cos 2θ=1-2sin 2θ=45.7.A a=243=423,c=2513=523,而函数y=x 23在(0,+∞)上单调递增,所以323<423<523,即b<a<c,故选A.8.B a=2,b=4,a=6,s=6,n=1; a=-2,b=6,a=4,s=10,n=2; a=2,b=4,a=6,s=16,n=3; a=-2,b=6,a=4,s=20,n=4.此时20>16,则输出n 的值为4,故选B.9.D 解法一:过A 作AD ⊥BC 于D,设BC=a,由已知得AD=a 3,∵B=π4,∴AD=BD,∠BAD=π4, ∴BD=a3,DC=23a,tan ∠DAC=DCAD=2.∴tan ∠BAC=tan (π4+∠DAC)=tan π4+tan ∠DAC 1-tan π4·tan ∠DAC =1+21-2=-3.cos 2∠BAC=11+tan 2∠BAC =110,sin ∠BAC=√1-cos 2∠BAC =3√1010.故选D. 解法二:过A 作AD ⊥BC于D,设BC=a,由已知得AD=a 3,∵B=π4,∴AD=BD,∴BD=AD=a 3,DC=23a,∴AC=√(a 3)2+(23a)2=√53a,在△ABC 中,由正弦定理得asin ∠BAC =√53a sin45°,∴sin ∠BAC=3√1010.故选D.10.B 由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为3√5的斜四棱柱.其表面积S=2×32+2×3×3√5+2×3×6=54+18√5.故选B.11.B 易得AC=10.设底面△ABC 的内切圆的半径为r,则12×6×8=12×(6+8+10)·r,所以r=2,因为2r=4>3,所以最大球的直径2R=3,即R=32.此时球的体积V=43πR 3=92π.故选B.12.A 解法一:设点M(-c,y 0),OE 的中点为N,则直线AM 的斜率k=y0a -c ,从而直线AM 的方程为y=y 0a -c (x+a),令x=0,得点E 的纵坐标y E =ay0a -c .同理,OE 的中点N 的纵坐标y N =ay0a+c .因为2y N =y E ,所以2a+c =1a -c ,即2a-2c=a+c,所以e=c a =13.故选A. 解法二:如图,设OE 的中点为N,由题意知|AF|=a-c,|BF|=a+c,|OF|=c,|OA|=|OB|=a, ∵PF ∥y 轴,∴|MF||OE|=|AF||AO|=a -ca ,|MF||ON|=|BF||OB|=a+c a,又∵|MF||OE|=|MF|2|ON|,即a -c a =a+c2a ,∴a=3c,故e=c a =13.二、填空题 13.答案 -10解析 可行域如图所示(包括边界),直线2x-y+1=0与x-2y-1=0相交于点(-1,-1),当目标函数线过(-1,-1)时,z 取最小值,z min =-10.14.答案 π3解析 函数y=sin x-√3cos x=2sin (x -π3)的图象可由函数y=2sin x 的图象至少向右平移π3个单位长度得到.15.答案 4解析 圆心(0,0)到直线x-√3y+6=0的距离d=6√1+3=3,|AB|=2√12-32=2√3,过C 作CE ⊥BD 于E,因为直线l 的倾斜角为30°,所以|CD|=|CE|cos30°=|AB|cos30°=2√3√32=4.。
2016年高考文科数学全国卷3-答案
【解析】因为 ,所以函数 的的图像可由函数 的图像至少向右平移 个单位长度得到.
【考点】三角函数图像的平移变换,两角差的正弦公式
15.【答案】4
【解析】由 ,得 ,代入圆的方程,整理得 ,解得 , ,所以 , ,所以 .又直线 的倾斜角为 ,由平面几何知识知在梯形 中, .
【提示】先求出 ,再利用三角函数求出 即可.
【考点】直线与圆的位置关系
16.【答案】
【解析】当 时, ,则 .又因为 为偶函数,所以 ,所以 ,则 ,所以切线方程为 ,即 .
【提示】本题考查利用导数研究过曲线上某点处的切线方程,考查了函数解析式的求解及常用方法.
【考点】函数的奇偶性,解析式及导数的几何意义
三、解答题
17.【答案】(Ⅰ)
(Ⅱ)
【解析】(Ⅰ)由题意,得 .
【考点】三视图,棱柱的表面积
11.【答案】B
【解析】要使球的体积 最大,必须球的半径 最大.因为 的内切圆的半径为2,且 ,所以由题意易知球与直三棱柱的上下底面都相切时,球的半径取得最大值 ,此时球的体积为 ,故选B.
【提示】根据已知可得直三棱柱 的内切球半径为 ,代入球的体积公式,可得答案.
【考点】三棱柱的内切球,球的体积
【考点】椭圆的几何性质,三角形相似
第Ⅱ卷
二、填空题
13.【答案】
【解析】作出不等式组满足的平面区域,如图所示,由图知当目标函数 经过点 时取得最小值,即 .
【提示】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
【考点】简单的线性规划
2016年普通高等学校招生全国统一考试(全国新课标卷3)
2018高考全国3卷文科数学带答案
2018年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3 •考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合 题目要求的。
1 •已知集合 A 」.x|x _1A 0?, B A.0,1,2?,则 A"B 二A •:、0】 B • 1 C • 〈1 , 2 D • :0 , 1 , 22- 1i 2」二 A • -3 -iB •£ iC •3-i D • 3 i3 •中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头•若如图摆放的木构件与某一带卯眼 的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4•若血'W ,则迹2 '0.45,既用现金支付也用非现金支付的概率为 0.15,则不 用现金支付的概率为A • 0.3B • 0.4C • 0.6D •0.76 •函数f x =tan x 1 tan 2 —的最小正周期为x八 nA • 一B • nC • nD •2 n427 •下列函数中, 其图像与函数 y -1 nx 的图像关于 •直线X =1对称的是A• y =1 n 1-x B • y =ln 2 —xC • y =ln 1 xD • y =ln 22 28 •直线x+y+2=0分别与x 轴,y 轴交于A , B 两点,点P 在圆(x -2)+y 2=2上,则 MBP 面积的取值范围是A • 12, 61B • 4 ,8】C •杠2,3 2D • 2「2 , 3 25 •若某群体中的成员只用现金支付的概率为 A1)9•函数y=_x 4・x 2 2的图像大致为则三棱锥D —ABC 体积的最大值为A . 12.3B . 183 二、填空题:本题共 4小题,每小题5分,共20分。
2018年全国卷Ⅲ文数高考真题文档版(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =I A .{0}B .{1}C .{1,2}D .{0,1,2}2.(1i)(2i)+-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α= A .89B .79C .79-D .89-5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.76.函数2tan ()1tan xf x x=+的最小正周期为 A .4π B .2πC .πD .2π7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+8.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是 A .[2,6]B .[4,8]C .[2,32]D .[22,32]9.函数422y x x =-++的图像大致为10.已知双曲线22221(00)x y C a b a b-=>>:,2(4,0)到C 的渐近线的距离为AB .2 C.2D.11.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =A .2π B .3π C .4π D .6π 12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为 A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考文科数学(3卷)答案详解(附试卷)(含试卷)
2x y 3 0 ,
15.若变量
x
,y
满足约束条件
x
2y
4
0
,则
z
x
1
y
的最大值是________.
x 2 0.
3
【解析】由约束条件,作出可行域如图 A15 所示.
化目标函数 z x 1 y 为 y = –3x+3z,由图可知,当直线 y = –3x+3z 过点 A(2,3)时,直线在 y 轴上的 3
a2 b2 c2
11.△ABC 的内角 A,B,C 的对边分别为 a,b,c.若△ABC 的面积为
,则 C =
4
A.
2
B.
3
C.
4
D.
6
【解析】由已知和△ABC 的面积公式有, 1 absin C a2 b2 c2 ,解得 a2 b2 c2 2ab sin C .
的图像关于直线 x 1 对称的图像,其函数表达式为 y In(x 2) .
第 2 页 共 18 页
图 A7
解法一:(特殊值法)由题意可知,所求函数与函数 y ln x 的图像上的对应点关于 x 1 对称. 在
函数 y ln x 的图像任取一点(1,0),其关于 x 1 对称的点为(1,0),即点(1,0)一定在所求的函
2018 年普通高等学校招生全国统一考试
文科数学 3 卷 答案详解
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给的四个选项中,只有一项是符合题目要 求的。
1.已知集合 A {x | x 1 0} , B {0,1, 2} ,则 A B
2016年高考文科数学试题全国卷3(含答案全解析)
2016年全国高考文科数学试题(全国卷3)第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =(A ){48}, (B ){026},,(C ){02610},,, (D ){0246810},,,,, (2)若43i z =+,则||z z = (A )1(B )1- (C )43+i 55 (D )43i 55- (3)已知向量BA →=(12,32),BC →=(32,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A )各月的平均最低气温都在0℃以上(B )七月的平均温差比一月的平均温差大(C )三月和十一月的平均最高气温基本相同(D )平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815 (B )18 (C )115 (D )130(6)若1tan 3θ=,则cos2θ= (A )45- (B )15- (C )15 (D )452(7)已知a=432,b=233,c=1325则(A)b<a<c (B) a<b<c (C) b<c<a (D) c<a<b (8)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(9)在△ABC 中,B=4π,BC 边上的高等于13BC ,则sin A = (A)31010 5 310 (10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+(C )90(D )81(11)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )9π2 (C )6π (D )32π3(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C的离心率为(A)1 3(B)12(C)23(D)34第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x,y满足约束条件210,210,1,x yx yx-+≥⎧⎪--≤⎨⎪≤⎩则z=2x+3y–5的最小值为______.(14)函数y=sin x–cos x的图像可由函数y=2sin x的图像至少向右平移______个单位长度得到.(15)已知直线l:360x y-+=与圆x2+y2=12交于A、B两点,过A、B分别作l的垂线与x轴交于C、D两点,则|CD|=______.(16)已知f(x)为偶函数,当0x≤时,1()xf x e x--=-,则曲线y= f(x)在点(1,2)处的切线方程式_____________________________.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知各项都为正数的数列{}n a满足11a=,211(21)20n n n na a a a++---=.(I)求23,a a;(II)求{}n a的通项公式.(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.34注:年份代码1–7分别对应年份2008–2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32i i y==∑,7140.17i i i t y ==∑721()0.55i i y y =-=∑,≈2.646. 参考公式:12211()()()(y y)ni ii n n ii i i t t y y r t t ===--=--∑∑∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为: 121()()()ni i i n ii t t y y b t t ==--=-∑∑,=.a y bt - (19)(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB;(II )求四面体N-BCM 的体积.(20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.(21)(本小题满分12分)5设函数()ln 1f x x x =-+.(I )讨论()f x 的单调性;(II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4—1:几何证明选讲如图,⊙O 中的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点。
2018年高考文科数学全国卷3-答案
2018年普通高等学校招生全国统一考试课标全国卷III文科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵{}{}|10=|1A x x x x =-≥≥,{}0,1,2B =,∴{}1,2A B =I ,故选C . 【考点】集合的运算 2.【答案】D【解析】2(1)(2)=223i i i i i i +--+-=+,故选D . 【考点】复数的运算 3.【答案】A【解析】两木构件咬合成长方体时,榫头完全进入卯眼,易知咬合时带卯眼的木构件的俯视图为A ,故选A .【考点】空间几何体的三视图 4.【答案】B【解析】因为1sin 3α=,2cos212sin αα=-,所以2127cos212()1399α=-⨯=-=.故选B .【考点】三角恒等变换 5.【答案】B【解析】设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则()1()()10.150.450.4P A P B P C =--=--=.故选B . 【考点】互斥事件,对立事件的概率 6.【答案】C【解析】解法1:()f x 定义域为π|π+,Z 2x x k k ⎧⎫∈⎨⎬⎩⎭≠,2sin 1cos ()sin cos sin 2sin 21()cos xx f x x x x x x===+g ,∴()f x 的最小正周期2ππ2T ==.解法二:22tan(π)tan (π)()1tan (π)1tan x x f x f x x x ++===+++,∴π是()f x 的周期,2πtan()π2()π21tan ()2x f x x ++=++,而πsin()cos 12tan()π2sin tan cos(+)2x x x x x x π++===--,∴2πtan (+)()21tan x f x f x x =-+≠, ∴π2不是()f x 的周期,∴π4也不是()f x 的周期,故选C . 【考点】三角函数的周期 7.【答案】B【解析】解法一:ln y x =图象上的点(1,0)P 关于直线1x =的对称点是它本身,则点P 在ln y x =关于直线1x =对称的图像上,结合选项可知,B 正确.故选B .解法二:设(,)Q x y 是所求函数图象上任一点,则关于直线1x =的对称点(2,)P x y -,在函数ln y x =图象上,∴ln(2)y x =-.故选B . 【考点】函数图象的对称性 8.【答案】A【解析】圆心(2,0)到直线20x y ++=,,设点P 到直线的距离为d ,则min d ==max d = 又易知(2,0)A -,B(0,2)-,∴||AB =,∴min min 11() || 222ABP S AB d ==⨯=g g △,maxmax 11() || 622ABP S AB d ==⨯=g g △. ∴ABP △面积的取值范围是[]2,6.故选A . 9.【答案】D【解析】令42()2y f x x x ==-++,则3()42f x x x '=-+,当x <0x <<()0f x '>,()f x 递增;当02x <<或2x <时,()0f x '<,()f x 递减.由此可得()f x 的图像大致为D 中的图像.故选D . 【考点】函数图象的识辨 10.【答案】D【解析】∵c e a ==0a >,0b >,∴1ba=, ∴C 的渐近线方程为y x =±,∴点(4,0)到C.【考点】双曲线的几何性质及点到直线的距离公式 11.【答案】C【解析】因为2222cos a b c ab C +-=,且2224ABC a b c S +-=△, 所以2cos 1sin 42ABC ab C S ab C ==△, 所以tan 1C =,又(0,π)C ∈, 所以π4C =.故选C . 12.【答案】B【解析】设等边ABC △的边长为a ,则有°1sin602ABC S a a =g g △6a =.设ABC △外接圆的半径为r ,则°62sin60r =,解得r =ABC 2,所以点D到平面ABC 的最大距离为246+=,所以三棱锥D ABC -体积最大值为163⨯=B .【考点】空间几何体的体积及与球有关的切接问题第Ⅱ卷二、填空题 13.【答案】12【解析】由题意得2(4,2)a b +=,因为(1,)c λ=,(2)c a b +∥,所以420λ-=,解得12λ=. 14.【答案】分层抽样【解析】因为不同年龄段客户对其服务的评价有较大差异,所以根据三种抽样方法的特点可知最合适的抽样方法是分层抽样. 【考点】抽样方法 15.【答案】3【解析】解法一:根据约束条件作出可行域,如图所示.13z x y =+可化为33y x z =-+.求z 的最大值可转化为求直线33y x z =-+纵截距的最大值,显然当直线33y x z =-+过(2,3)A 时,纵截距最大,故max 12333z =+⨯=.解法二:画出可行域(如上图),由图可知可行域为三角形区域,易求得顶点坐标分别为(2,3),(2,7)-,(2,1)-,将三点坐标代入,可知max 12333z =+⨯=.【考点】简单的线性规划 16.【答案】2-【解析】易知()f x 的定义域为R ,令22()ln(1)g x x x =+, 则()()0g x g x +-=,∴()g x 为奇函数,∴()()2f a f a +-=,又()4f a =,∴()2f a -=-. 【考点】函数的奇偶性 三、解答题17.【答案】(1)1(2)n n a -=-或12n n a -= (2)6m =【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【考点】等比数列的通项公式、前n 项和公式18.【答案】(1) 第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高. (2) 由茎叶图知7981802m +==. 列联表如下:(3)由于240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.【解析】(1)根据茎叶图中的数据大致集中在哪个茎,作出判断; (2)通过茎叶图确定数据的中位数,按要求完成22⨯列联表;(3)根据(2)中22⨯列联表,将有关数据代入公式计算得2K 的值,借助临界值表作出统计推断. 【考点】统计图表的含义及应用,独立性检验的基本思想及其应用19.【答案】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC CD ⊥,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC DM ⊥.因为M 为»CD上异于C ,D 的点,且DC 为直径,所以DM CM ⊥. 又BC CM C =I ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC OP ∥.MC ⊄平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .【解析】(1)通过观察确定点或直线的位置(如中点、中线),再进行证明. (2)把要得的平行当作已知条件,用平行的性质去求点、线.【考点】本题考查平面与平面垂直的判定与性质,直线与平面平行的判定与性质.20.【答案】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得 1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得()1,0F .设33()P x y ,,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=. 由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =, 从而3(1,)2P -,3||=2FP u u u r .于是222211111(1)(1)3(1)242x x FA x y x =-+=-+-=-u u u r .同理2=22xFB -u u u r .所以1214()32FA FB x x +=-+=u u u r u u u r .故2=+FP FA FB u u u r u u u r u u u r .【解析】本题考查椭圆的几何性质、直线与椭圆的位置关系.21.【答案】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +=+-+,则1()21e x g x x +'=++. 当1x <-时,()0g x '<,()g x 单调递减; 当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥. 【解析】构造函数证明不等式的策略:(1)转化为()f x C ≥(C 为常数)型,证明()min f x 或临界值大于或等于C .(2)转化为()()f x g x ≥型,利用导数判断()f x ,()g x 的单调性,是而求出函数()f x ,()g x 的最值或临界值,用原不等式成立的充分条件证明.(3)转化为()()()()f a g a f b g b +≥+型,构造函数()()()h x f x g x =+,利用()h x 单调性及,a b 的大小证明.【考点】导数的几何意义,导数的综合应用 22.【答案】(1)O e 的直角坐标方程为221x y +=.当2απ=时,l 与O e 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =.l 与O e 交于两点当且仅当1<,解得 1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π. (2)l 的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩为参数,44απ3π<<).设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t 满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y 满足cos ,2sin ,P P x t yt αα=⎧⎪⎨=-+⎪⎩所以点P 的轨迹的参数方程是2sin 2,22cos 2x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,)44απ3π<<. 【解析】以角θ为参数的参数方程,一般利用三角函数的平方关系22sin cos 1θθ+=化为普通方程;而弦的中点问题常用根与系数的关系或“点差法”进行整体运算求解. 【考点】参数方程与普通方程的互化、直线与圆的位置关系23.【答案】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图象如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图象如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5. 【考点】含绝对值不等式的解法,函数图象。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
2016年高考文科数学全国3卷(附答案)
A. {4,8}
B. {0,2,6}
C.{0,2,6,10}
) D. {0,2,4,6,8,10}
_______年
-
线 封
( 2)若 z
4
z
3i ,则
z
(
)
密
____________________
-
A.1 ( 3)已知向量 BA
: 校-
A. 30
B. 1
13 ( , ) , BC
22 B. 45
43 C. i
________
-
:-
绝密★启用前
2016 年普通高等学校招生全国统一考试
文科数学 全国 III 卷
(全卷共 12 页)
号-
学
-
____________________
-
-
线 封 密 -
(适用地区:广西、云南、四川 ) 注意事项:
1. 本试卷分第 I 卷( 选择题 )和第 II 卷( 非选择题 )两部分。 2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
( yi y) 2 0.55 ,≈ 2.646.
i1
i1
i1
参考公式: r
n
(ti t )( yi y)
i1
,
n
n
(ti t ) 2 (y i y) 2
i1
i1
回归方程 y a bt 中斜率和截距的最小二乘估计公式分别为:
n
(ti t )( yi y)
b
i1 n
,a=y bt .
(ti t )2
i1
;.
2018年高考真题文科数学全国卷3试题+答案
2018年高考真题文科数学全国卷3试题+答案2018年高考真题文科数学全国卷3试题及参考答案一、选择题(本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项符合)1.已知集合A = {x|x-1≥0},B = {x|x2-3x+2≥0},则AB = {1.2}。
答案:C解析:由A得,x≥1,所以B = {x|x2-3x+2≥0} ={x|1≤x≤2},所以AB = {1.2}。
2.(1+i)(2-i) = 3+i。
答案:D解析:原式 = (1+i)(2-i) = 2+2i-i-i2 = 2+i+1 = 3+i,故选D。
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是□。
答案:A4.若sinα = 3/8,则cos2α = 7/9.答案:B解析:cos2α = 1-2sin2α = 1-2(9/64) = 7/32,化简得cos2α= 7/9,故选B。
5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为0.4.答案:B解析:设事件A为只用现金支付,事件B为只用非现金支付,则P(A∪B) = P(A)+P(B)-P(AB),因为P(A) = 0.45,P(AB) = 0.15,P(A∪B) = 1-0.15 = 0.85,所以P(B) = 0.85-0.45 = 0.4,故选B。
6.函数f(x) = sinx/(1+tanx)的最小正周期为π/10.答案:C解析:由已知可得f(x) = sinx/(1+tanx) = sinx/(1+sinx/cosx) = sinx/(cosx+sinx) = sinx/sin(π/4+x),所以f(x)的最小正周期为T = π/10,故选C。
2016-2018年全国卷高考文科数学试题附答案
在直角坐标系 xOy 中,曲线 C1 的方程为 y k x 2 .以坐标原点为极点, x 轴正半轴 为极轴建立极坐标系,曲线 C2 的极坐标方程为 2 2 cos 3 0 . (1)求 C2 的直角坐标方程; (2)若 C1 与 C2 有且仅有三个公共点,求 C1 的方程. 23.[选修 4—5:不等式选讲](10 分)
设抛物线 C:y2 2x ,点 A2,0 , B 2 ,0 ,过点 A 的直线 l 与 C 交于 M , N 两点.
(1)当 l 与 x 轴垂直时,求直线 BM 的方程; (2)证明:∠ABM ∠ABN .
5
21.(12 分)
已知函数 f x aex ln x 1 . (1)设 x 2 是 f x 的极值点,求 a ,并求 f x 的单调区间; (2)证明:当 a ≥ 1 时, f x≥ 0 .
频数
1
5
13
10
16
5
(1)在答题卡上作出使用了节水龙头 50 天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于 0.35 m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,同一组 中的数据以这组数据所在区间中点的值作代表.) 20.(12 分)
C. 0
D. 2 , 1,0 ,1,2
2.设 z
1i 1 i
2i ,则
z
A.0
B.
1 2
C.1
D. 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解
该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比
文数高考试题全国卷3(含答案) 甄选
最新2016年文数高考试题全国卷3(含答案) (优选.)rd绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学(3)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =(A ){48},(B ){026},,(C ){02610},,,(D ){0246810},,,,,(2)若43i z =+,则||zz = (A )1(B )1-(C )43+i 55(D )43i 55-(3)已知向量BA →=(12,BC →=12),则∠ABC =(A )30°(B )45° (C )60°(D )120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A)815(B)18(C)115(D)130(6)若tanθ=13,则cos2θ=(A)45-(B)15-(C)15(D)45(7)已知4213332,3,25a b c===,则(A)b<a<c (B) a<b<c (C) b<c<a (D) c<a<b(8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6(9)在ABC中,B=1,,sin43BC BC A π=边上的高等于则(A)310(B)1010(C)55(D)31010(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18365+(B)54185+(C)90(D)81(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B)9π2(C)6π(D)32π3(12)已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C 的离心率为(A )13(B )12(C )23(D )34第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设x ,y满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.(14)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.(15)已知直线l:60x +=与圆x2+y2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD|= .(16)已知f (x )为偶函数,当0x ≤时,1()x f x e x --=-,则曲线y = f (x )在点(1,2)处的切线方程式_____________________________.二. 解答题:解答应写出文字说明,证明过程或演算步骤. 三.(17)(本小题满分12分)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式.(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑721()0.55ii y y =-=∑,≈2.646.参考公式:12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -(19)(本小题满分12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点. (I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.(20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.(21)(本小题满分12分) 设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4—1:几何证明选讲如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
B.
3
C.
4
6
12.设 A , B , C , D 是同一个半径为 4 的球的球面上四点, △ABC 为等边三角形且其 面积为 9 3 ,则三棱锥 D ABC 体积的最大值为 A. 12 3 B. 18 3 C. 24 3 D. 54 3
13.已知向量 a (1, 2) , b (2, 2) , c (1, ) .若 c
n(ad bc)2 P( K 2 k ) 0.050 0.010 0.001 附: K , . (a b)(c d )(a c)(b d ) k 3.841 6.635 10.828
2
4
(12 分) 19.
所在平面垂直, M 是 CD 上异于 C , D 的 如图,矩形 ABCD 所在平面与半圆弧 CD
5.若某群体中的成员只用现金支付的概率为 0.45,既用现金支付也用非现金支付的概率为 0.15,则不用现金支付的概率为 A.0.3 6.函数 f ( x ) A. B.0.4 C.0.6 D.0.7
4
tan x 的最小正周期为 1 tan 2 x B. 2
C.
D. 2
7.下列函数中,其图像与函数 y ln x 的图像关于直线 x 1 对称的是 A. y ln(1 x ) B. y ln(2 x ) C. y ln(1 x ) D. y ln(2 x )
(1)证明: k
1 ; 2
( 2 ) 设 F 为 C 的 右 焦 点 , P 为 C 上 一 点 , 且 FP FA FB 0 . 证 明 :
2 | FP || FA | | FB | .
(12 分) 21.
16.已知函数 f ( x ) ln( 1 x x ) 1 , f ( a ) 4 ,则 f ( a ) ________. (12 分) 17.
2
a5 4a3 . 等比数列 {an } 中, a1 1 ,
(1)求 {an } 的通项公式; (2)记 S n 为 {an } 的前项和.若 S m 63 ,求 m . (12 分) 18. 某工厂为提高生产效率, 开展技术创新活动, 提出了完成某项生产任务的两种新的生产 方式.为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产 任务的工作时间(单位:min)绘制了如下茎叶图:
2016-2018 全国 III 卷文数
2018 全国 III 卷 2-10
2017 全国 III 卷 11-16
2016 全国 III 卷 17-26
1
2018 高考文科数学(全国卷Ⅲ)
1.已知集合 A { x | x 1 0} , B {0,1, 2} ,则 A B A. {0} 2. (1 i)(2 i) A. 3 i B. 3 i C. 3 i D. 3 i B. {1} C. {1, 2} D. {0,1, 2}
2a b ,则 ________.
3
14.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价, 该公司准备进行抽样调查, 可供选择的抽样方法有简单随机抽样、 分层抽样和系统抽样, 则最合适的抽样方法是________.
2 x y 3 0 , 1 15.若变量 x ,y 满足约束条件 x 2 y 4 0 , 则 z x y 的最大值是________. 3 x 2 0.
Hale Waihona Puke 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图 中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长 方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A.
8 9
1 ,则 cos 2 3
B.
7 9
C.
7 9
D.
8 9
ax 2 x 1 已知函数 f ( x ) . ex
(1)求曲线 y f ( x ) 在点 (0, 1) 处的切线方程; (2)证明:当 a 1 时, f ( x ) e 0 . 22.选修 4—4:坐标系与参数方程](10 分) 在平面直角坐标系 xOy 中,⊙O 的参数方程为 倾斜角为 的直线与 ⊙O 交于 A ,B 两点. (1)求 的取值范围; (2)求 AB 中点 P 的轨迹的参数方程.
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超 过 m 和不超过 m 的工人数填入下面的列联表:
超过 m 第一种生产方式 第二种生产方式
不超过 m
(3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
10. 已知双曲线 C: 距离为 A. 2
x2 y2 1(a 0 , b 0) 的离心率为 2 ,则点 (4, 0) 到 C 的渐近线的 a 2 b2
B.
C.
3 2 2
D. 2 2
11.△ABC 的内角 A , B , C 的对边分别为, , .若 ABC 的面积为 A.
a 2 b2 c2 ,则 C 4
点. (1)证明:平面 AMD ⊥ 平面 BMC ; (2)在线段 AM 上是否存在点 P ,使得 MC ∥平面 PBD ?说明理由.
(12 分) 20. 已 知 斜 率 为 的 直 线 与 椭 圆 C:
x2 y2 1 交 于 A , B 两 点 . 线 段 AB 的 中 点 为 4 3
M (1, m)(m 0) .
2 2
8.直线 x y 2 0 分别与轴, y 轴交于 A , B 两点,点 P 在圆 ( x 2) y 2 上,则
△ ABP 面积的取值范围是
2
A. [2, 6]
4 2
B. [4,8]
C. [ 2,3 2]
D. [2 2,3 2]
9.函数 y x x 2 的图像大致为