浙教版初中数学八年级上册 第一章 三角形的初步知识 专题复习(二)三角形的全等条件的探究课件 精品

合集下载

浙教版八年级上册 第一章 《三角形的初步知识》 全等三角形复习

浙教版八年级上册 第一章 《三角形的初步知识》 全等三角形复习
A
为了制作一个“美观”,“匀称”的
B
D 风筝,木工师傅只需保持AB=AD,
BC=CD即可.
这个情境让你想到了什么数学知识?
C
浙教版八年级上册
第一章 《三角形的初步知识》
全等三角形复习
挖掘“隐含条件”
已知△ABC和△ADE位置如图所示, AB=AD,AC=AE,∠BAE=∠DAC. (1)求证:△ABC≌△ADE;
(2)图形扩充后,你还能找到 其它的全等三角形吗?
转化“间接条件”
H
F
G
如图,已知△ABC中, ∠BAC=90°, AB=AC, 点D为边BC上的点,以AD为边作△ADE,∠DAE=90° AD=AE,连结CE.
试判断CE与BD的位置关系,并说明理由.
A
E
B
D
C
如图,已知△ABC中, ∠BAC=90°,ABA=BA=CA=C3,
点D为直边线BCB上C的上一的点,以AD为边作△ADE,∠DAE=90° AD=AE,连结CE.
当CD 2 2时, 求D..E.的长.
E
A
E
A
B
D
C
B
C
D
如图,已知△ABC中, ∠BAC=90°, AB=AC,点D
为△ABC内一点,以AD为边作△ADE,使∠DAE=90°
,AD=AE=3,连结CD,当∠ADC=135°,CD=6时,
试探索BM,BD,CE之间的数量关系.
如图,已知等边△ABC,以C为顶点的∠DCE=120°,
且CD=CE,F为AD中点,若CF=2,则四边形BFEC的面
积为
.
B
D
F
A
C
E
求BD的长.

浙教版八年级上册三角形初步知识复习

浙教版八年级上册三角形初步知识复习
2、边角边(SAS):有两边及其夹角对应相等的两个 三角形全等。
3、角边角 (ASA) :有两角及其夹边对应相等的两 个三角形全等。 4、角角边(AAS):有两角及一角的对边对应相 等的两个三角形全等。
1、如图所示,:已知AC=AD,请你添加一个条件——,
使得△ABC≌△ABD
思路
隐含条件AB=AB
l
∴CA=CB
2、角平分线的性质:
角平分线上点到角两边距离相等.
几何表述:
C
∵AP平分∠BAC
P
PB⊥AB,PC ⊥AC,
A
B
∴PB=PC
基础训练
18、如图,△ABC中,DE垂直平分AC,AE=3
cm, △ABD的周长是9cm,则△ABC的周长是
__1__5_c_m_.
!!!注意单位
A E
B
D
C
8、如图,已知△ABC中,∠B=45°, ∠C=75°,AD是BC边上的高,AE是∠BAC的 平分线,∠DAE=( A)度。
A、15
B、30 C、45 D、25
A
B ED C
基础训练
9、能把一个三角形分成面积相等的两部 分是三角形的( A )
A、中线 B、高线 C、角平分线 D、过一边的中点且和这条边垂 直的直线
已 找另一边 (SSS) 知 两 边
找夹角 (SAS)
变式1:如图,已知∠C=∠D,请你添加一个条件————,
使得△ABC≌△ABD 思路
隐含条件AB=AB


一 这边为 边 角的对边
找任一角(AAS)


变式2:如图,已知∠CAB=∠DAB,请你添加一个条件————
,使得△ABC≌△ABD

浙教版八年级上数学知识点

浙教版八年级上数学知识点

浙教版八年级上数学知识点第一章 三角形的初步知识 复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类: (2)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A 三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形21DC BAD CB ADC BA3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线.=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:是△ABC 的BC 上的高线.⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180?;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

【浙教版】八年级数学上第1章《 三角形的初步知识》期末复习(含答案)

【浙教版】八年级数学上第1章《 三角形的初步知识》期末复习(含答案)

期末复习(一) 三角形的初步知识01 知识结构三角形的初步知识⎩⎪⎪⎪⎨⎪⎪⎪⎧三角形的概念⎩⎪⎨⎪⎧三边关系内角和定理及其推论三角形的中线、高线、角平分线定义与命题⎩⎪⎨⎪⎧命题的组成命题的分类全等图形→全等三角形⎩⎪⎨⎪⎧全等三角形的性质全等三角形的判定角平分线的性质定理线段垂直平分线的性质定理尺规作图02 重难点突破重难点1 三角形的三边关系【例1】 (萧山区期中)已知等腰三角形两条边的长分别是3和6,则它的周长是( B ) A.12 B.15 C.12或15 D.15或18 【方法归纳】 判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段.在已知等腰三角形的两边长求其周长时,需注意:(1)一定要利用分类讨论思想列举出三角形的三边长;(2)一定要利用三角形的三边关系检验列举出的三边长是否能围成三角形.1.(海宁新仓中学期中)两根木棒的长分别是5 cm 和7 cm ,要选择第三根木棒,将它们首尾相接钉成一个三角形,则第三根木棒长的取值可以是( B )A.2 cmB.4 cmC.12 cmD.13 cm重难点2 三角形形内角和定理及其推论 【例2】 如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( A)A.15°B.17.5°C.20°D.22.5°【方法归纳】在计算与三角形有关的角度时,首先应判断出要求角与所在三角形中已知角之间的关系,再合理选用三角形的内角和定理或外角的性质求角度,同时在解题时要注意角平分线的定义.平行线的性质等知识的运用.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( C )A.28°B.38°C.48°D.88°重难点3三角形的三条重要线段【例3】如图,AD是△ABC的中线,点E为AD的中点,点F为BE的中点,S△ABC=41,则S△BFC=41 4.【思路点拨】根据三角形面积公式得S△BFC=S△EFC,S△AEC=S△DEC,S△AEB=S△DEB,S△ABD=S△ADC,从而S△BFC=14S△ABC.3.在△ABC中,AC=5 cm,AD是△ABC中线,若△ABD的周长比△ADC的周长大2 cm,则BA=7_cm.4.(1)如图所示,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数;(2)在(1)中,若∠A=α,∠B=β(α≠β),其他条件不变,求∠CDF的度数.(用含α和β的代数式表示)解:(1)根据题意,在△ABC中,∠A=40°,∠B=72°,所以∠ACB=68°.因为CE平分∠ACB,所以∠ACE=34°.所以∠CED=∠A+∠ACE=74°.因为CD⊥AB,DF⊥CE,且∠ECD为公共角,所以∠CDF=∠CED=74°.(2)由(1)可知,∠CDF =∠CED =∠A +∠ACE ,∠ACE =180°-α-β2.所以∠CDF =180°+α-β2.重难点4 线段垂直平分线与角平分线的性质【例4】 如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,交AC 于点E ,DE 垂直平分AB 于点D ,求证:BE +DE =AC .证明:∵∠ACB =90°, ∴AC ⊥BC .∵ED ⊥AB ,BE 平分 ∠ABC , ∴CE =DE ,∵DE 垂直平分AB , ∴AE =BE .∵AC =AE +CE ,∴BE +DE =AC . 【方法归纳】 在利用线段垂直平分线的性质求线段长度时,通常是根据线段垂直平分线的性质得到线段相等,再根据相等线段之间的转换,得到所求线段的长.5.如图,在△ABC 中,∠BAC >90°,AB 的垂直平分线MP 交BC 于点P ,AC 的垂直平分线NQ 交BC 于点Q ,连结AP ,AQ ,若△APQ 的周长为20 cm ,则BC 为20cm .第5题图 第6题图6.如图,△ABC 的三条角平分线交于O 点,已知△ABC 的周长为20,OD ⊥AB ,OD =5,则△ABC 的面积为50.重难点5 全等三角形的性质与判定【例5】 已知△ABN 和△ACM 的位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ; (2)求证:∠M =∠N .【思路点拨】 (1)要证BD =CE ,可通过转化证△ABD ≌△ACE ,根据“SAS ”得证;(2)要证∠M =∠N ,可通过转化证△ACM ≌△ABN ,由(1)可知∠C =∠B .因为∠2=∠1,所以∠CAM =∠BAN .再结合AB =AC ,即可根据“ASA ”得证.证明:(1)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS ). ∴BD =CE .(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM .由(1),得△ABD ≌△ACE , ∴∠B =∠C .在△ACM 和△ABN 中,⎩⎨⎧∠C =∠B ,AC =AB ,∠CAM =∠BAM ,∴△ACM ≌△ABN (ASA ). ∴∠M =∠N .【方法归纳】 三角形全等的证明思路:已知两边⎩⎪⎨⎪⎧找夹角→SAS找另一边→SSS已知一边和一角 ⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS 边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS找夹边的另一角→ASA找边的对角→AAS已知两角⎩⎪⎨⎪⎧找夹边→ASA找任一角的对边→AAS7.(成都中考)如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C =24°,则∠B =120°.第7题图第8题图8.(杭州大江东区期中)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:AE=AF或∠EDA=∠FDA或∠AED=∠AF D.03备考集训一.选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是( C )A.1,2,4B.4,5,9C.4,6,8D.5,5,112.(嵊州校级期中)下列语句不是命题的是( B )A.两直线平行,同位角相等B.作直线AB垂直于直线CDC.若|a|=|b|,则a2=b2D.同角的补角相等3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( D )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE第3题图第4题图4.(杭州大江东区期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( C )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=EC,∠A=∠DD.∠B=∠E,∠A=∠D5.如图,将两根钢条AA′.BB′的中点O连在一起,使AA′.BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( A )A.边角边B.角边角C.边边边D.角角边第5题图第6题图6.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交A B.AC于点D.E,△BEC 的周长是14 cm,BC=5 cm,则AB的长是( B )A.14 cmB.9 cmC.19 cmD.12 cm7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( A )A.3B.4C.6D.5第7题图第8题图8.如图所示,在△ABC中,∠BAC∶∠ABC∶∠BCA=3∶4∶5,BD,CE分别是边AC,AB 上的高,BD,CE相交于点H,则∠BHC的度数为( B )A.120°B.135°C.125°D.130°9.(嵊州期末)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C )A.1个B.2个C.3个D.4个第9题图第10题图10.(杭州大江东区期中)如图,四边形ABCD是正方形,直线a,b,c分别通过A.D.C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( B )A.70B.74C.144D.148二.填空题(每小题4分,共24分)11.如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=121度.第11题图第12题图12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为3.13.如图,已知△ABC的周长为27 cm,AC=9 cm,BC边上中线AD=6 cm,△ABD周长为19 cm,AB=8_cm.14.(杭州萧山区月考)已知三角形的两条边长分别是3 cm和4 cm,一个内角为40°,那么满足这一条件且彼此不全等的三角形共有4个.15.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.16.如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出3个正确的命题.三.解答题(共46分)17.(10分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.18.(12分)如图,AD是△ABC的边BC上的中线,AB=BC,且AD把△ABC的周长分成3和4的两部分,求AC边的长.解:设AB=BC=2x,∵AD是△ABC的边BC上的中线,∴BD=CD=x.若△ABD的周长是3+AD,则2x+x=3,解得x =1.∴AC =4-1=3.若△ABD 的周长是4+AD ,则2x +x =4, 解得x =43.∴AC =3-43=53.综上,AC 边的长为3或53.19.(12分)如图,在△ABC 中,AB =CB ,∠ABC =90°,点D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE .DE .DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.解:(1)证明:在△ABE 和△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (SAS ).(2)∵在△ABC 中,AB =CB ,∠ABC =90°, ∴∠BAC =∠ACB =45°. ∵△ABE ≌△CBD , ∴∠AEB =∠BDC .∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°. ∴∠BDC =75°.20.(12分)(杭州青春中学期末)如图1,AB =4 cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3 cm .点P 在线段AB 上以1 cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图2,将图1中的“AC ⊥AB ,BD ⊥AB ”改为“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm /s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x .t 的值;若不存在,请说明理由.解:(1)当t =1时,AP =BQ =1,BP =AC =3,在△ACP 和△BPQ 中,⎩⎨⎧AP =BQ ,∠A =∠B =90°,AC =BP ,∴△ACP ≌△BPQ (SAS ). ∴∠ACP =∠BPQ .∴∠APC +∠BPQ =∠APC +∠ACP =90°. ∴∠CPQ =90°, 即线段PC 与线段PQ 垂直. (2)①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ ,⎩⎨⎧3=4-t ,t =xt ,解得⎩⎪⎨⎪⎧t =1,x =1. ②若△ACP ≌△BQP ,则AC =BQ ,AP =BP , ⎩⎨⎧3=xt ,t =4-t ,解得⎩⎪⎨⎪⎧t =2,x =32.综上所述,存在⎩⎪⎨⎪⎧t =1,x =1或⎩⎪⎨⎪⎧t =2,x =32,使得△ACP 与△BPQ 全等.。

(完整word版)新浙教版八年级上册数学知识点汇编.docx

(完整word版)新浙教版八年级上册数学知识点汇编.docx

八年级第一学期数学知识点汇编第一章三角形的初步认识一、三角形的基本概念三角形:不在同一条直线上的三条线段首尾相接所组成的图形。

二、三角形的分类:1.按角分:锐角三角形、直角三角形、钝角三角形(定义,区别)。

2.按边分:不等边三角形、等腰三角形、等边三角形。

三、三角形的基本性质1.三角形的内角和是180°。

2.三角形的任何两边的和大于第三边(由两点之间线段最短得到)。

三角形的任何两边的差小于第三边三角形的任何两边之和大于第三边大于两边之差。

应用:知两条确定第三条范围;知三条判断能否组成三角形;知四条及以上3.三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。

三角形的一个外角等于和他不相邻的两个内角的和(教材P7 做一做)。

四、几条重要的线1.三角形的角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和对边中点;三条角平分线都在三角形内且相交于一点;等量关系式∠ 1=∠ 2= 二分之一∠α ;2.三角形的中线:连接一个顶点和它对边的中点的线段;三条中线都在三角形内且相交于一点;等量关系式 AP=BP=二分之一 AB 。

等积三角形;周长差三角形3.三角形的高;从三角形的一个顶点向它对边所在的直线作垂线段。

锐角三角形的三条高在三角形的内部相交于一点。

直角三角形的直角边上的高分别与另一条直角边重合,三条高在三角形的直角顶点处相交于一点。

钝角三角形中,夹钝角两边上的高都在三角形的外部,三条高在三角形的外部相交于一点。

会带来面积问题、直角、直角三角形4.线段的垂直平分线(中垂线):垂直并平分一条线段的直线。

中垂线性质:线段的中垂线上的点到线段两端点的距离相等。

逆定理:到线段两端的距离相等的点在这条线段的垂直平分线上。

5.角平分线的性质定理:角平分线上的点到角两边的距离相等。

逆定理:角的内部,到角两边距离相等的点在这个角的平分线上。

五、全等三角形1.全等图形:能够完全重合的两个图形。

浙教版数学八年级上册第一章三角形的初步认识复习课PPT

浙教版数学八年级上册第一章三角形的初步认识复习课PPT

A
O
C
B
线段中垂线的性质: 线段中垂线上的任意一点到线段两个 端点的距离相等
如图,若直线m是线段的垂直平分线, C是直线上的任一点, 则有 CA=CB
三角形中线的性质: 三角形的中线把三角形分成两个 面积相等的三角形
如图,若AD是△ABC中BC边上的中线, 则有 △ABD的面积=△ACD的面积
B
B
C D
c. 三角形的三条角平分线交于三角形内部一点。
3. 三角形具有稳定性,而四边形没有稳定性。 4. 三角形的内角和: 180° 5. 三角形的外角: 三角形一边与另一边的延长线组成的角 三角形的外角和: 360°
6. 三角形的内角与外角之间的关系:
三角形的一个外角等于与它不相邻的两个内 角的和。 三角形的一个外角大于与它不相邻的任何一 个内角。
A
Bห้องสมุดไป่ตู้
O l1
C
l3
l2
如图,在△ABC中, AD是△BAC的角平分线, DE是△ABD的高线, ∠C=90 度。若DE=2, BD=3,求线段BC的长。 A E B D C
(要求写出完整的解题过程)
有 A, B ,C 三农户准备一起挖一口井,使它 到三农户家的距离相等. 这口井应挖在何处? 请在图中标出井的位置,并说明理由.
三角形的性质
(1)边上的性质:
三角形的两边之和大于第三边
三角形的两边之差小于第三边 (2)角上的性质: 三角形三内角和等于180度
三角形的一个外角等于和它不相邻的两个内角之和。 三角形的一个外角大于任何一个和它不相邻的内角。
练一练:
1、下列每组分别是三根小木棒的长度,用它们能摆成 三角形吗?(单位:厘米。填“能”或“不能”) ( 1 ) 3, 4, 5( 能 ) (2)8,7,15(不能 ) (3)13,12,20( 能 ) (4)5,5,11(不能 ) 3、三角形按内角的大小分为三类:①锐角三角形; ②直角三角形;③钝角三角形。 根据下列条件判断它们是什么三角形? (1)三个内角的度数是1:2:3( 直角三角形 ) (2)两个内角是50°和30°( 钝角三角形 )

(完整word版)浙教版八年级上册知识点总结

(完整word版)浙教版八年级上册知识点总结

第一章三角形的初步知识三角形1、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形等边三角形 三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

注:三角形具有稳定性。

2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

4、三角形的面积 三角形的面积=21×底×高 注:同底等高的三角形面积相等。

三角形中的主要线段1、三角形中的主要线段有:三角形的角平分线、中线和高线。

2、这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。

并且对这三条线段必须八年级知识点总结明确三点:(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。

(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。

而三角形的高线在当△ABC是锐角三角形时,三条高都是在三角形内部,钝角三角形的高线中有两个垂足落在边的延长线上,这两条高在三角形的外部,直角三角形中有两条高恰好是它的两条直角边。

(3)在画三角形的三条角平分线、中线、高时可发现它们都交于一点。

在以后我们可以给出具体证明。

今后我们把三角形三条角平分线的交点叫做三角形的内心,三条中线的交点叫做三角形的重心,三条高的交点叫做三角形的垂心。

浙教版八年级上册数学知识点

浙教版八年级上册数学知识点

浙教版八年级上册数学知识点在八年级上册的数学学习中,我们将接触到众多重要的知识点,为后续的数学学习打下坚实的基础。

接下来,让我们一同来梳理这些关键的知识。

第一章:三角形的初步知识三角形是最基本的几何图形之一。

首先,我们要了解三角形的定义,即由不在同一直线上的三条线段首尾顺次相接所组成的图形。

三角形的内角和定理是一个重要的知识点,三角形的内角和为180°。

我们可以通过剪拼法或推理证明来理解这一定理。

三角形的外角性质也不容忽视。

三角形的一个外角等于与它不相邻的两个内角的和,且三角形的外角大于任何一个与它不相邻的内角。

在判断三条线段能否构成三角形时,只需满足任意两边之和大于第三边,任意两边之差小于第三边即可。

全等三角形也是这一章的重点。

全等三角形的对应边相等,对应角相等。

全等三角形的判定方法有“SSS”(边边边)、“SAS”(边角边)、“ASA”(角边角)、“AAS”(角角边)以及“HL”(斜边、直角边,仅适用于直角三角形)。

第二章:特殊三角形等腰三角形具有独特的性质。

等腰三角形的两腰相等,两底角相等。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。

等边三角形是特殊的等腰三角形,它的三条边都相等,三个角都等于 60°。

直角三角形中,有一个重要的定理——勾股定理。

如果直角三角形的两条直角边长分别为 a、b,斜边长为 c,那么 a²+ b²= c²。

直角三角形的性质也很多,比如直角三角形两锐角互余;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

第三章:一元一次不等式不等式的基本性质是解决不等式问题的基础。

例如,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变。

解一元一次不等式的一般步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项、系数化为 1 等。

浙教版八年级数学上册第一章三角形的初步知识第1章三角形的初步知识

浙教版八年级数学上册第一章三角形的初步知识第1章三角形的初步知识

B、3㎝ D、无法判断
H
B
D
G C
变式:如图AD是△ABC的中线,DH⊥AB于H,
DG⊥AC于G,AB=7㎝,AC=6㎝,
DH=3㎝,则DG的长是(

H
A G
B
D
C
10、如图,B、C、D在同一直线上, ∠ACB=∠ECD=60 °,AC=BC,EC=CD. 连结BE,AD,分别交AC,CE于点M,N. (1)试说明△ACD≌△BCE的理由; (2)请写出图中其它所有相等的线段,并选择其中一对说明理由.
13、如图, 请在△ABC中找一点P,使P到AB、BC 的距离相等,并且到点A、点C的距离也相等.
在∠B的平 分线上
在AC的垂直 A 平分线上
B
C
第一章三角形的初步认识
一、概念和表示法 二、三角形边的性质 三、三角形的内角和外角(三角形按内角的类型分类)
四、三角形的角平分线、中线和高 五、全等三角形
1、概念和表示法 3、基本尺规作图 a、作角平分线 d、两边夹角
2、三角形全等的条件
b、作一个角等于已知角 C、给定三边
e、两角夹边
f、作线段的垂直平分线
(4)作BC边上的中垂线MN
A
B
8、在△ABC中,∠ABC与∠ACB的角平分线相交于点D, 且∠A=50°,则∠BDC=___________。
A
D
B
C
9、如图AD是△ABC的角平分线,DH⊥AB于H, A DG⊥AC于G,AB=7㎝,AC=6㎝,
DH=3㎝,则DG的长是( )
A、4㎝
C、7 2

六、角平分线的性质、线段垂直平分线的性质 七、其他
1、下列各组数不可能是一个三角形的边长的是( )

浙教版-8年级-上册-数学-第1章《三角形的初步知识》-分节知识点

浙教版-8年级-上册-数学-第1章《三角形的初步知识》-分节知识点
注意单独的△没有意义;△ABC 的三边可以用大写字母 AB、BC、AC 来表示,也可以用小写字母 a、b、c 来表示, 边 BC 用 a 表示,边 AC、AB 分别用 b、c 表示。 要点二、三角形的内角和 1、三角形内角和定理:三角形的内角和为 180°。 要点诠释:应用三角形内角和定理可以解决以下三类问题: ① 在三角形中已知任意两个角的度数可以求出第三个角的度数; ② 已知三角形三个内角的关系,可以求出其内角的度数; ③ 求一个三角形中各角之间的关系。 要点三、三角形的分类
这样的推理过程叫做证明。
-3-
2、证明表述格式 1、证明几何命题时,表述格式一般如下: (1)按题意画出图形; (2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论; (3)在“证明”中写出推理过程。 要点诠释: 1、在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线。
△ABC 与△DEF 全等,记作△ABC≌△DEF,其中点 A 和点 D,点 B 和点 E,点 C 和点 F 是对应顶点;AB 和 DE, BC 和 EF,AC 和 DF 是对应边;∠A 和∠D,∠B 和∠E,∠C 和∠F 是对应角。
1、按角分类:
要点诠释: ① 锐角三角形:三个内角都是锐角的三角形; ② 钝角三角形:有一个内角为钝角的三角形。 要点四、三角形的三边关系 1、定理:三角形任意两边之和大于第三边. 要点诠释: (1)理论依据:两点之间线段最短;
-1-
(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,
浙教版 8 年级上册数学第 1 章《三角形的初步知识》-分节知识点
一、认识三角形
要点一、三角形的定义 1、由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 要点诠释: (1)三角形的基本元素: ① 三角形的边:即组成三角形的线段; ② 三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③ 三角形的顶点:即相邻两边的公共端点。 (2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”; (3)三角形的表示:三角形用符号“△”表示,顶点为 A、B、C 的三角形记作“△ABC”,读作“三角形 ABC”,

【浙教版】八年级上数学期末知识点复习

【浙教版】八年级上数学期末知识点复习

(二)知识概念1.三角形的内角和三角形内角和定理:三角形的内角和为180°.三角形外角性质:三角形的一个外角等于与它不相邻的两个内角的和.要点:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2.三角形的分类:按角分类:全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS").“全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“角边角”:两角和它们的夹边对应相等的两个三角形全等((可以简写成“角边角”或“ASA"').全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS“)要点:①如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;②可以从已知出发,看已知条件确定证哪两个三角形全等;②由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;④如果以上方法都行不通,就添加辅助线,构造全等三角形.六、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.第二章特殊三角形(一)知识框架(二)知识概念1.图形的轴对称(1).图形轴对称的定义及其性质如果把一个图形沿着一条直线折叠后,直线两侧的部分能够互相重合,那么这两个图形叫做轴对称图形.这条直线叫做对称轴.性质:对称轴垂直平分连结两个对称点的线段.图形的轴对称:一般的,由一个图形变为另一个图形,并使这两个图形沿某一条直线折叠后能够互相重合,这样的图形改变叫做图形的轴对称,这条直线叫做对称轴.成轴对称的两个图形是全等形.(2).利用轴对称的性质求两点之间的最短距离已知点A,B(A,B)在直线的同侧,和直线a,在直线上求作一点c,使AC+BC的距离和最小.(将军饮马问题)作法:1.作点A关于直线a的对称点A';2.连接AB,交直线a与点C;3.连接AC.点C就是所求作的点.注意:①轴对称图形与图形的轴对称是两个不同的概念,轴对称图形是指一个图形的两个部分,也就是说,一条直线把一个图形(比如一个等腰三角形)分成两个部分,这两个部分之间的关系;而图形的轴对称是指两个图形之间的关系,比如两个全等的等腰直角三角形.②对称轴的实质是一条直线,向两方无限延伸的.③两点之间的最短距离要分情况讨论,看这两点是否在某一条直线的同侧还是异侧.2、等腰三角形及等边三角形的性质与判定(1).等腰三角形的定义及其对称性有相等两边的三角形叫做等腰三角形.三边相等的三角形叫做等边三角形.等腰三角形是轴对称图形,对称轴只有一条,就是顶角的平分线或是底边的高、中线.等边三角形也是轴对称图形,对称轴有三条,等边三角形是特殊的等腰三角形.(2).等腰三角形的性质与判定定理性质1:等腰三角形的两个底角相等(简称“在同一三角形中,等边对等角”)﹒推论:等边三角形的各个内角都等于60°;性质2:等腰三角形的顶角平分线、底边上的中线和高互相重合(简称“等腰三角形三线合一”).等腰三角形的判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角(简称“在同一三角形中,等角对等边”).等边三角形的判定定理:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.要点:(二)知识概念1、不等式(1).不等式:用符号“<”(或“<),“>”(或“>”),≠连接的式子叫做不等式.要点:①不等式的解:能使不等式成立的未知数的值叫做不等式的解.②不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表(二)知识概念1、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)...,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),...用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.2.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形'与‘数'联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:1x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为y,到y轴的距离为x.②x轴上两点A(X1,0)、B(x2,O)的距离为AB=|x1-x2/;y轴上两点C(o,y1)、D(O,y2)的距离为CD=ly1-y2l.③平行于x轴的直线上两点A(x1,y)、B(xz,y)的距离为AB=lx1-x2l;平行于y轴的直线上两点C(x,y1)、D(x,yz)的距离为CD=ly1-y2l.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补三、坐标方法的简单应用(1).用坐标表示地理位置①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(⑴)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.)知识概念的相关概念,在一个变化过程中.如果有两个变量x与y,并且对于x的每一个确定的值,唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.y是x的函数时y=b,那么b叫做当自变量为a时的函数值.函数的表示方法有三种:解析式法象法.函数的相关概念数的一般形式为y=k+b,其中k、b是常数,k=0.特别地,当b=0时,一次函数kx(k≠0),是正比例函数.函数的图象及性质、函数的图象自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点,就是这个函数的图象.=kx+b可以看作由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当一次函数y=kx+b的图象和性质的影响:y=kx+b从左向右的趋势(及倾斜角α的大小——倾斜程度)),b决、b一起决定直线y=kx+b经过的象限.l:y=k,x+b,和l:y=kx+b,的位置关系可由其系数确定:k≠k,l与l,相交行;k=k,,且b=b,l1与l2重合;。

新浙教版八年级上册数学 三角形的初步认识复习

新浙教版八年级上册数学 三角形的初步认识复习

课题三角形的初步认识复习【知识精读】1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;3. 角平分线定理的应用例3. 如图3,∠B=∠C=90°,M是BC的中点,DM平分∠ADC。

求证:AM平分DAB。

4. 全等三角形的应用(1)构造全等三角形解决问题例4. 已知如图4,△ABC是边长为1的等边三角形,△BDC是顶角(∠BDC)为120°的等腰三角形,以D为顶点作一个60°的角,它的两边分别交AB于M,交AC于N,连结MN。

求证:∆AMN的周长等于2。

直BD 的延长线于E ,AE BD =2。

求证:BD 平分∠ABC例2. 某小区结合实际情况建了一个平面图形为正三角形的花坛。

如图7,在正三角形ABC 花坛外有满足条件PB =AB 的一棵树P ,现要在花坛内装一喷水管D ,点D 的位置必须满足条件AD =BD ,∠DBP =DBC ,才能使花坛内全部位置及树P 均能得到水管D 的喷水,问∠BPD 为多少度时,才能达到上述要求?边上的中线,过C作CF⊥AE,垂足【实战模拟】1. 填空:等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm,则这个等腰三角4.△ABC为等腰直角三角形,D、E、F分别为AB、BC、AC边上的中点,则图1中共有_____个等腰直角三角形.BADCFBACE BADC(1) (2) (3)5.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需要用______根.6.△ABC 中,∠ACB=90°,CD ⊥AB ,垂足是D ,E 是AB 的中点,如果AB=10,BC=5,•那么CE=_______,∠A=_____,∠B=______,∠DCE=______,DE=_______.7.如图2所示,在Rt △ABC 中,CD 是斜边上的中线,CE 是高.已知AB=10cm ,DE=2.5cm ,则∠BDC=________度,S △BCD =_______cm 2.8.如图3所示,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,则∠DBC=_______. 9.E 、F 分别是Rt △ABC 的斜边AB 上的两点,AF=AC ,BE=BC ,则∠ECF=______. 10.在△ABC 中,∠B=2∠C ,AD ⊥AC ,交BC 于D ,若AB=a ,则CD=________.11.如果一个长为10m 的梯子,斜靠在墙上,•梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,请猜测梯子底端滑动的距离是否会超过1m ,•并加以说明..cBADCEw w w .c z s x .c o m .c B AD C 12.如图所示,已知:AB=BC=AC ,CD=DE=EC ,求证:AD=BE .13.如图所示,已知:Rt △ABC 中,∠C=90°,AC=BC ,AD 是∠A 的平分线. 求证:AC+CD=AB .。

浙教版8年级(上册)《三角形初步知识》复习

浙教版8年级(上册)《三角形初步知识》复习

DCBA《三角形的初步认识》复习讲义 知识点1:认识三角形。

1、三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的顶点:三个顶点。

3、三角形的边:组成三角形的三条线段。

4、三角形的内角:每两条边所组成的角(简称三角形的角)。

三角形的顶点、边和角为三角形的三要素。

【例1】(1)如图1,点D 在△ABC 中,写出图中所有三角形: ; (2)如图1,线段BC 是△ 和△ 的边;(3)如图1,△ABD 的3个内角是 ,三条边是 。

【例2】如图2,D 是△ABC 的边BC 上的一点,则在△ABC 中∠C 所对的边是 , 在△ACD 中∠C 所对的边是 ,在△ABD 中边AD 所对的角是 , 在△ACD 中边AD 所对的角是 。

知识点2:三角形三边的关系: 三角形任意两边之和大于第三边,三角形任意两边之差小于第三边 【例3】判断:哪组线段首尾相接可以组成三角形?① 3cm ,4cm ,5cm ② 8cm ,7cm ,15cm ③ 12cm ,12cm ,20cm ④ 5cm , 5cm ,11cm知识点3、三角形内角和 :定理:三角形内角和等于180°。

【例4】一个三角形的三个内角分别为x ,x-10,x+10(x>10°),•则这个三角形三个内角的度数分别为多少?【例5】在△ABC 中,∠A :∠B=5:7,∠C-∠A=10°,则∠C=________知识点4、三角形外角定理:DCBA1、一般地,三角形的一个外角等于与它不相邻的两个内角之和。

2、三角形的一个外角大于与它不相邻的任意一个内角。

【例6】如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列正确的有()①∠5=∠1+∠4 ②∠3=∠1+∠6 ③∠1+∠4+∠6=180°④∠2+∠3+∠5=360°⑤∠3=∠1+∠7 ⑥∠2+∠3+∠7=360°⑦∠2=∠4+∠6 ⑧∠2=∠4+∠7第6题图第7题图第8题图【例7】如图,∠1、∠2、∠3的大小关系为()【例8】如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()【学生练习题1】1、如图,在△ABC中,∠C=30°,若沿图中虚线剪去∠C,则∠1+∠2等于 .2、有四条线段,它们的长分别是2cm、3cm、4cm、5cm,以其中的三条线段为边长,共可组成几种不同的三角形.3、在长方形ABCD中,如图,E为AB上一点,连结DE、EC,∠ADE=40°,∠BCE=60°,求∠1、∠2、∠3的度数.知识点6:三角形角平分线、中线和高的概念1、三角形中的三条线段的概念:三角形中的量重要线段概念图形表示法三角形的角平分线在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段。

浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理一、三角形(一)三角形的基本概念1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的边:组成三角形的三条线段叫做三角形的边。

3、三角形的顶点:相邻两边的公共端点叫做三角形的顶点。

4、三角形的内角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。

(二)三角形的分类1、按角分类锐角三角形:三个角都是锐角的三角形。

直角三角形:有一个角是直角的三角形。

钝角三角形:有一个角是钝角的三角形。

2、按边分类不等边三角形:三条边都不相等的三角形。

等腰三角形:有两条边相等的三角形。

等边三角形:三条边都相等的三角形。

(三)三角形的三边关系1、三角形任意两边之和大于第三边。

2、三角形任意两边之差小于第三边。

(四)三角形的内角和定理三角形三个内角的和等于 180°。

(五)三角形的外角1、三角形的一边与另一边的延长线所组成的角,叫做三角形的外角。

2、三角形的一个外角等于与它不相邻的两个内角的和。

3、三角形的一个外角大于与它不相邻的任何一个内角。

二、特殊三角形(一)等腰三角形1、等腰三角形的性质等腰三角形的两腰相等。

等腰三角形的两底角相等(等边对等角)。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。

有两边相等的三角形是等腰三角形。

有两个角相等的三角形是等腰三角形(等角对等边)。

(二)等边三角形1、等边三角形的性质等边三角形的三条边都相等。

等边三角形的三个角都相等,并且每个角都等于 60°。

2、等边三角形的判定三条边都相等的三角形是等边三角形。

三个角都相等的三角形是等边三角形。

有一个角是 60°的等腰三角形是等边三角形。

(三)直角三角形1、直角三角形的性质直角三角形两直角边的平方和等于斜边的平方(勾股定理)。

直角三角形的两个锐角互余。

在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SSS SAS ASA AAS
的面 哪前 几为 种止 证, 法我
们 学 过 了 三 角 形 全 等
三个角对应相等的两个三角形全等吗?
三个角对应相等的两个三角形不一定全等
两边和其中一边的对角对应相等的两 个三角形全等吗?
\
==
两边和其中一边的对角对应相等的两个三
角形不一定全等
例1.(1)如图所示,:已知AC=AD,请你添加一个条
1.如图,∠1=∠2, ∠ADC=∠AEB,试说明: AB=AC A
12
D O
B
E C
【拓展创新】
2.如图,已知∠ABC=∠CDE=∠ACE==19200°°,AB=CD
求证:AC=CE A
E
A
B
B
C
E
C
D
D
【能力提升】
3 .求证:三角形一边上的中线小于 其他两边之和的一半.
方法总结:
1. 结合题中条件和结论,选择恰当方法。 2. 全等是说明线段或角相等的重要方法之一。 说明时注意:

使得△ABC≌△ABD
思路Βιβλιοθήκη 隐含条件AB=AB已
夹角的另一边(SAS)

一 这边为角的邻边 夹边的另一角(ASA)

一 角
找边的另一角(AAS)
(2)如图所示:已知∠B=∠C,请你添加一个条件

使得△ABE≌△ACD
思路
∠A为公共角
A
找夹边(ASA) 已 知 两 角
找对边(AAS)
D
E
B
C
【学以致用】

,使得△ABC≌△ABD
思路
隐含条件AB=AB
找另一边 (SSS)
已 知 两 边
找夹角 (SAS)
变式1:如图,已知∠C=∠D,请你添加一个条件

使得△ABC≌△ABD
思路
隐含条件AB=AB
已 知 一 这边为角的对边 边 一 角
找任一角(AAS)
变式2:如图,已知∠CAB=∠DAB,请你添加一个条件
义务教育课程标准实验用书 数学(浙教版)
八年级上册
三角形的全等条件的探究
——《第一章 三角形的初步知识》专题复习(二)
你认识这个图形吗? 可以用来做什么?
可以作出这个三角形的高吗?
构造新图形:
充分利用△ABC的边、角、顶点,再作一 个三角形与△ABC全等,构成一个新的图形。
【要求:(1)有一定的美观性;(2)在图 形下面写上“全等”的依据;(3)至少3种。】
①观察结论中的线段或角,在哪两个可能全等的三角形中。
②分析已有条件,欠缺条件,选择判定方法。
③公共边,公共角以及对顶角一般都是题中隐含的条件。
布置
作业
●完成学案《复习题》
每个人都会有自己的特长。一个人做某些事 其他事做的更好。但许多人从未找到最适合 的事情,其根本原因往往是他们没有进行足 思考。如果你对一切都随遇而安,那总是会 天你会后悔莫及的。心,只有一颗,不要装 多。人,只有一生,不要追逐的太累。心灵 悦,来自精神的富有;简单的快乐,来自心 知足。家,很平淡,只要每天都能看见亲人 脸,就是幸福的展现。爱,很简单,只要每 会彼此挂念,就是踏实的温暖。幸福并不缥 在于心的感受。爱并不遥远,在于两心知的
相关文档
最新文档