大学原子物理知识点

合集下载

原子物理知识点整理归纳

原子物理知识点整理归纳

原子物理知识点整理归纳1、原子的组成?各粒子的发现者?如何发现的?2、汤姆孙是如何证明阴极射线是带负电的?又是如何得出这种带电粒子是原子的组成部分?3、汤姆孙提出的原子模型是什么样?后来被哪种实验事实所否定?4、α粒子散射实验的装置?实验现象?汤姆孙原子模型不能解释此实验中的何种现象?5、卢瑟福针对α粒子散射实验现象提出了什么样的原子模型?6、为什么卢瑟福认为电子一定要绕核旋转?7、卢瑟福是如何猜想出原子核内可能存在着不带电的中子的?8、原子核常用X AZ 来表示,请你讲出各符号的物理意义?为什么有时可简化写成X A呢?9、何为同位素?元素的化学性质决定于什么?10、 叫天然放射现象, 发现天然放射现象,揭开了人类研究 结构的序幕。

通过对天然放射现象的研究,人们发现原子序数 (填≥、<)83的所有元素都有放射线,原子序数 (填≥、<)83的元素有些也具有放射性。

11、放射线有三种:α射线、β射线、γ射线;请分别讲出它们的本质、来源、速度、电离本领、穿透本领、原子核自发地放出某种粒子而转变为 变化叫做原子核的衰变。

13、原子核发生衰变的种类: 。

14、α衰变:α衰变的实质是其元素的原子核同时放出由 质子和 中子组成的粒子(即氦核),每发生一次α衰变,新元素与原元素比较,核电荷数减少 ,质量数减少 ,即X A Z → + He 42。

15、β衰变:β衰变的实质是其元素的原子核内的一个 变成 时放出一个电子,每发生一次β衰变,新元素与原元素比较,核电荷数增加 ,质量数 ,即X A Z→ +e 01。

16、γ衰变:γ衰变是伴随着 和 同时发生的,γ衰变 (改变、不改变)原子核的电荷数和质量数,其实质是放射性原子核在发生α衰变或β衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出光子。

17、半衰期(1)定义:放射性元素的 发生衰变需要的时间。

(2)半衰期的大小由放射性元素的原子核 决定,跟原子所处的 (如压强、温度等)或 (如单质或化合物)无关。

原子物理基本概念知识点总结

原子物理基本概念知识点总结

原子物理基本概念知识点总结一、引言原子物理是研究物质的基本粒子——原子及其核心的性质和相互作用规律的学科。

本文将对原子物理的基本概念进行总结,包括原子结构、核结构、粒子相互作用等方面的知识点。

二、原子结构1. 原子的组成原子由原子核和核外电子组成。

原子核是正电荷的集中体,由质子和中子组成;核外电子是负电荷的集中体,绕原子核运动。

2. 原子的大小原子的大小通常用原子半径来描述。

原子半径的大小与原子序数相关,同一周期元素的原子半径随着原子序数的增加而减小,同一族元素的原子半径随着原子序数的增加而增大。

3. 原子的质量原子的质量主要由原子核的质量决定。

原子核质量由质子和中子的质量之和决定,而电子质量较小可以忽略不计。

三、核结构1. 核的组成核由质子和中子组成,质子数决定元素的性质,中子数影响原子是否稳定。

2. 质子数和中子数元素的质子数即为其原子序数,不同元素的质子数不同。

同一元素的质子数在不同的原子中保持不变,但中子数可能不同,这样的原子称为同位素。

3. 核反应和放射性核反应是核内质子和中子的重新组合或分解过程,可以引起核能的释放,包括裂变和聚变两种形式。

某些核素具有不稳定性,会自发地发生放射衰变,释放出射线和粒子,这种性质称为放射性。

四、粒子相互作用1. 电磁相互作用电磁相互作用是电荷间的相互作用,包括静电力和电磁感应力。

原子核内的质子受到静电力的作用,使核能够保持稳定。

2. 核力和弱力核力是质子和质子,中子和中子之间的相互作用力,使得原子核内的粒子能够相互吸引,维持核的结构稳定。

弱力是一种负责放射性衰变的力,可以改变核粒子的类型。

3. 强力强力是原子核内质子和中子之间的相互作用力,是目前已知的最强的相互作用力,使得原子核内的质子和中子能够紧密结合。

五、结论通过本文的总结,我们对原子物理的基本概念有了更深入的了解。

原子结构、核结构和粒子相互作用是原子物理的重要内容,对于研究物质的特性和性质具有重要的意义。

原子物理知识点总结全

原子物理知识点总结全

原 子 物 理一、卢瑟福的原子模型-—核式结构1.1897年,_________发现了电子.他还提出了原子的______________模型。

2。

物理学家________用___粒子轰击金箔的实验叫__________________。

3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。

实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷;极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构:卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果:A.α粒子穿过金箔时都不改变运动方向B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹C.绝大多数α粒子穿过金箔时有较大的偏转 D 。

α粒子穿过金箔时都有较大的偏转。

例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。

如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。

其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小B .α粒子的电势能先增大后减小C .α粒子的加速度先变小后变大D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。

原子物理学知识点总结

原子物理学知识点总结

原子物理学知识点总结一、理论知识基础1。

离子化合物原子的结构是由原子核和电子组成,原子核又由质子和中子组成,而质子与中子又可以有不同的结合能状态,但其最稳定的结合方式是结合成带正电荷的原子核,所以质子与中子便有不同的能量状态,而根据原子的能级知识,高能级原子会向低能级原子转变,因此在实验室中经常观察到了同种元素的气态氢化物比其固态氢化物稳定。

除此之外,原子的能级状态还与其带电的状态有关。

如上述气态氢化物因为同种元素的原子核带同种电荷,因此它们的结合能最大,所以也就更加稳定。

而根据电荷守恒,气态非金属元素的阳离子由于失去一个电子,所以其结合能比其阴离子小,因此更加稳定。

2。

共价化合物 2。

共价化合物1。

配位化合物配位化合物是含有共用电子对的分子。

其实质是在形成配位键时,电子云必须重新排布。

两种元素的原子只有各自得到两个电子才形成稳定的配位键,因此元素原子的核电荷数等于零,它们的原子彼此形成的是共价键。

2。

配位多面体( NaFeCl3, Cl2)配位多面体指的是元素间形成配位键时,有四个原子与另一元素形成四个共价键的情况。

配位多面体是平面正方形的对角线围城的封闭区域,该区域具有平行于对角线的一组相互垂直的平面,因此每条边长为1, 3。

1。

钠原子Na的结合能比较低,与水作用放出大量的热,水的结合能比钠的低,放出的热也少,反应速度很快,这说明钠原子只能和活泼金属反应,那么钠原子能否与活泼金属钠和碱反应呢?从微观角度来看,一般认为钠原子具有8电子,和氯原子的外层电子差不多,但钠原子比氯原子小,所以钠原子的能级与氯原子相近,故钠原子也只能与活泼金属反应。

2。

锂原子Li与活泼金属反应的时候能放出大量的热,这些热是由Li原子内层2电子与2个原子核形成共价键的热运动放出的,可见锂原子内部能级比较高,所以锂原子也不容易与活泼金属反应。

2。

锂原子Li的结合能比钠原子小,所以Li能与活泼金属锂发生置换反应, 2Li+3H2O=LiCl2+2H2↑,或者2Li+Li2O2=Li2CO3+2H2↑。

原子物理知识点详细汇总

原子物理知识点详细汇总

第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。

本章简单介绍一些关于原子和原子核的基本知识。

§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。

1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。

1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。

电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。

由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。

原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。

如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。

为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。

2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。

原子物理知识点总结

原子物理知识点总结

第17章 光电效应 波粒二象性一.能量子(1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子的大小:ε=h ν,其中ν是电磁波的频率,h 称为普朗克常量.h =6.63×10-34 J ·s. 二、光电效应 1.光电效应现象光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子. 2.光电效应实验规律(1)每种金属都有一个极限频率.(2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是瞬时的. (4)光电流的强度与入射光的强度成正比. 3.爱因斯坦光电效应方程(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=h ν,其中h 是普朗克常量,其值为6.63×10-34 J ·s. (2)光电效应方程:E k =h ν-W 0.其中h ν为入射光的能量,E k 为光电子的最大初动能,W 0是金属的逸出功. 4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c .(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.(3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功.5.由E k -ν图象(如图)可以得到的信息 (1)极限频率:图线与ν轴交点的横坐标νc .(2)逸出功:图线与E k 轴交点的纵坐标的绝对值E =W 0. (3)普朗克常量:图线的斜率k =h . 6.用光电管研究光电效应(两条线索 ①通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大. ②通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. 三、光的波粒二象性与物质波 1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应和康普顿效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。

原子物理常考知识点

原子物理常考知识点

原子物理常考知识点一、光电效应:物体在光的照射下发射电子的现象;发射出的电子称光电子,照射的光叫光子。

1、条件:入射光的频率大于被照物体的极限频率;与光照强度无关,与光照时间无关;即:入射光的频率小于被照物体的极限频率的话,无论多大强度,无论多长的照射时间,都不会产生光电效应。

2、光电效应方程E km=hν-W0h:普朗克常量;ν:光子的频率;hν:光子的能量;E km:发射出光电子的初动能;W0:克服原子核引力做功(逸出功);即:照射光子的能量一部分用来克服原子核做功(逸出功),余下的部分转化为光电子的动能。

二:氢原子的能级1、氢原子能自发的从高能级向低能级跃迁,跃迁时放出光子的能量等于初末两能级的能量之差,能放出的光谱条数如能级3跃迁到能级2:1条能级2跃迁到能级1:1条能级3跃迁到能级1:1条合计:3条2、若吸收的光子能量恰好等于某两级能量之差,则从低能级向高能级跃迁;注:吸收的能量必须等于初能级与末能级的能量之差,否则不跃迁。

如处在能级2(-3.40ev)要向能级3(-1.51ev)跃迁,吸收的能量必.须.是-1.51ev—(-3.40ev)=1.89ev三、几种常见的微粒质子:11H;电子:0-1e;中子:10n ;α粒子:42He;氘核:21H ;氚核:31H 三种射线:α射线:放出α粒子(带正电);β射线:放出电子(带负电);γ射线:放出光子(不带电)四、原子核的衰变α衰变:A Z X→A-4Z-2Y+42He;放出α粒子;如:211H+210n→42He;β衰变:A Z X→A Z+1Y+0-1e ;放出电子如:10n→11H+0-1e半衰期:放射性元素的原子核有半数发生衰变所需的时间:如:某原子核的半衰期为8天,经过8天,衰变一般,剩下一半,在经过8天(即16天)后,又衰变剩下的这一半的一半,还余下1/4,再经过8天,剩下1/8,依次下去,每经过半衰期衰变余下一半中的一半五:爱因斯坦质能方程质能方程:一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即E=mc2m:物体的总质量;c:光速方程的含义是:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减小,质量也减小.①核子在结合成原子核时出现质量亏损Δm,其能量也要相应减少,即ΔE =Δmc2.②原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2.六、几个核反应方程四种核反应:衰变、人工转变、裂变、聚变注:1、核反应过程一般都不是可逆的,所以核反应方程只能用单向箭头表示反应方向,而不能用等号连接2、核反应过程遵循质量数守恒及电荷数守恒而不是质量守恒,即:左右两边的质量数总和相等,左右两边的电荷数(质子数)总和相等,核反应过程前后的总质量一般会发生变化(质量亏损)且释放出核能.。

(完整版)原子核物理知识点归纳详解

(完整版)原子核物理知识点归纳详解

原子核物理重点知识点第一章 原子核的基本性质1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。

(P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。

(P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。

(P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。

(P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命长于0.1s 激发态的核素称为同质异能素。

(P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。

2、影响原子核稳定性的因素有哪些。

(P3~5)核内质子数和中子数之间的比例;质子数和中子数的奇偶性。

3、关于原子核半径的计算及单核子体积。

(P6)R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径单核子体积:A r R V 3033434ππ==4、核力的特点。

(P14)1.核力是短程强相互作用力;2.核力与核子电荷数无关;3.核力具有饱和性;4.核力在极短程内具有排斥芯;5.核力还与自旋有关。

5、关于原子核结合能、比结合能物理意义的理解。

(P8)结合能:),()1,0()()1,1(),(),(2A Z Z Z A Z c A Z m A ZB ∆-∆-+∆=∆= 表明核子结合成原子核时会释放的能量。

比结合能(平均结合能):A A Z B A Z /),(),(=ε原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。

6、关于库仑势垒的理解和计算。

(P17)1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。

原子物理原子核的结构知识点总结

原子物理原子核的结构知识点总结

原子物理原子核的结构知识点总结原子物理是研究原子和原子核结构的科学,而原子核作为原子的核心部分,其结构及性质对于了解物质的本质和原子核反应具有重要意义。

本文将对原子核的结构知识进行总结,包括原子核的组成、质量数与原子序数、同位素和同位素符号、核子、核力、核衰变等内容。

1. 原子核的组成原子核是由质子和中子组成的。

质子带有正电荷,质量相对较大,中子不带电荷,质量与质子相似。

质子和中子统称为核子,它们以紧密排列的方式组成原子核。

2. 质量数与原子序数原子核的质量数是指原子核中质子和中子的总数,用字母A表示。

原子核的原子序数是指原子核中质子的个数,用字母Z表示。

质量数和原子序数可以唯一确定一个原子核的性质。

3. 同位素和同位素符号同位素是指原子核中质子数相同、中子数不同的核,它们具有相同的原子序数,但质量数不同。

同位素符号表示了一个特定的同位素,符号的左上角为质量数A,左下角为原子序数Z,符号中间为元素的化学符号。

4. 核子核子是组成原子核的基本粒子,包括质子和中子。

质子带有正电荷,其电荷量为基本电荷e,质子数决定了原子核的化学性质。

中子不带电荷,作为质子的“中性伴侣”,其主要作用是增加原子核的质量,稳定原子核的结构。

5. 核力核力是维持原子核的结构稳定的力。

核力是一种非常强大的力,仅作用于极短的距离,其作用范围约为10^-15米。

核力的作用是吸引核子之间的相互作用力,克服了质子之间的电磁排斥力,使得原子核能够保持稳定。

6. 核衰变核衰变是指原子核不稳定的情况下发生的放射性衰变现象。

核衰变可以分为α衰变、β衰变和γ衰变。

α衰变是原子核释放出一个α粒子,变为一个新的原子核。

β衰变分为β+衰变和β-衰变,其中β+衰变是质子转化为中子,同时放射出一个正电子和一个中微子;β-衰变是中子转化为质子,同时放射出一个电子和一个反中微子。

γ衰变是原子核释放出γ射线,不改变原子核的种类和质量。

总结:原子物理原子核的结构是一个复杂而重要的领域。

原子物理知识点

原子物理知识点

原子物理知识点
1. 原子的组成:原子由质子、中子和电子组成;
2. 原子序数:原子核中质子的个数,也是元素在周期表上的位置;
3. 原子量:原子质量真实值的相对数,常用单位为原子质量单位(amu或u);
4. 原子能级:原子核外电子的能量状态,分为基态和激发态;
5. 原子的电子结构:电子分布在不同能级上的方式,遵循泡利不相容原理、洪特规则等规律;
6. 原子光谱:原子吸收或发射光线的分布规律,可用于分析元素组成和结构;
7. 原子反应:原子的核反应,包括裂变和聚变,释放能量;
8. 原子实验:常见的原子物理实验包括电子衍射、原子吸收光谱、光电效应等;
9. 原子化学:涉及原子的化学反应,包括化学反应动力学、催化、电化学等。

原子物理知识点总结

原子物理知识点总结

原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波。

这种辐射与温度有关。

故叫热辐射。

特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温度有关。

2)温度一定时,不同物体所辐射的光谱成分不同。

2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。

若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。

在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。

注意,黑体并不一定是黑色的。

热辐射特点吸收反射特点一般物体辐射电磁波的情况与温度,材料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体辐射电磁波的强度按波长的分布只与黑体温度有关完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。

2)温度升高时,各种波长的辐射强度均增加。

3)温度升高时,辐射强度的极大值向波长较短方向移动。

4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。

普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh=)1063.6(34叫普朗克常量sJh⋅⨯=-。

由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性。

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象。

发射出来的电子叫光电子。

光电效应由赫兹首先发现。

爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9s )。

原子物理复习要点

原子物理复习要点

原子物理学复习要点第一章 原子的核式结构一、学习要点1.原子的质量和大小M A =A N A (g), R ~10-10 m ,N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2.原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论:库仑散射理论公式(会推导):θπεcot 422002Mv Ze b =卢瑟福散射公式: 2sin )Z ()41(4220220θπεσΩ=d Mv e d ,θθπd d sin 2=Ω实验验证:A N n Mv t d dN μρθ=⎪⎭⎫ ⎝⎛∝Ω-- ; )21(,Z ,,2sin 220214,μ靶原子的摩尔质量 (4)微分散射面的物理意义、总截面(5)原子核大小的估计 (会推导): 散射角θ:),2sin 11(Z 2412020θπε+⋅=Mv e r mα粒子正入射:20024Z 4Mv e r m πε= ,m r ~10-15-10-14m二、基本练习1.褚书课本P 20-212.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.9⨯10-10B.3.05⨯10-12C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2.简答题(1)什么是电子?简述密立根油滴实验.(2)简述卢瑟福原子有核模型的要点.(3)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(4)什么是微分散射截面?简述其物理意义.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV ,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .第二章 玻尔氢原子理论一、学习要点:1.氢原子光谱:线状谱、五个线系(记住名称、顺序)、广义巴尔末公式)11(~22n m R -=ν、 光谱项()2nR n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……(3)实验验证:(a )氢原子五个线系的形成)11(Z ~,)4(222232042n m R c h e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等) (1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动e e m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =. 能量2242202Z )41(n e E n μπε-=,里德伯常数变化Mm R R e A +=∞11 重氢(氘)的发现及相关理论计算4.椭圆轨道理论 索末菲量子化条件q q n h n pdq ,⎰=为整数a n nb n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,2220224220 ,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并5空间量子化:(1)旧量子论中的三个量子数n ,m n n =ψϕ,的名称、取值范围、物理量表达式、几何参量表达式名 称 取 值 物理量表达式 几何参量表达式 nn ϕψn(2)空间量子化(ϕP 空间取向)、电子的轨道磁矩(旧量子论)、斯特恩—盖拉赫实验6.玻尔对应原理及玻尔理论的地位二、基本练习(共29题)1.楮书P76--772.选择题(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .n(n-1)/2C .n(n+1)/2D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯mB.0.529×10-10mC. 5.29×10-12mD.529×10-12m(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.57eV(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 B.10 C.1 D.4(11)有速度为1.875m/s 106⨯的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为:A .3.3⨯1015; B.2.4⨯1015 ; C.5.7⨯1015; D.2.1⨯1016.(12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(13)玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(14)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8 B.3∞R /4 C.8/3∞R D.4/3∞R(15)象μ-子(带有一个单位负电荷)通过物质时,有些在核附近的轨道上将被俘获而形成μ-原子,那么μ-原子基态轨道半径与相应的电子轨道半径之比为(μ-子的质量为m=206m e )A.1/206B.1/(206)2C.206D.2062(16)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(17)根据玻尔理论可知,氦离子H e +的第一轨道半径是:A .20a B. 40a C. 0a /2 D. 0a /4(18)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:A.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(19)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:A .54.4 B.-54.4 C.13.6 D.3.4(20)在H e +离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(21)夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化(22)夫—赫实验使用的充气三极管是在:A.相对阴极来说板极上加正向电压,栅极上加负电压;B.板极相对栅极是负电压,栅极相对阴极是正电压;C.板极相对栅极是正电压,栅极相对阴极是负电压;D.相对阴极来说板极加负电压,栅极加正电压(23)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原来的A .4倍 B.3倍 C.9倍 D.16倍(24)氢原子处于基态吸收1λ=1026Å的光子后电子的轨道磁矩为原来的( )倍:A .3; B. 2; C.不变; D.93.简答题(1)19世纪末经典物理出现哪些无法解决的矛盾?(1999长春光机所)(2)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.(1998南开大学)(3)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量. (2000南开大学)(4)解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.(5)简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.4.计算题(1)单色光照射使处于基态的氢原子激发,受激发的氢原子向低能级跃迁时可能发出10条谱线.问:①入射光的能量为多少?②其中波长最长的一条谱线的波长为多少?(hc=12400eV·Å)(2)已知一对正负电子绕共同质心转动会形成类似氢原子结构-正电子素.试求:①正电子素处于基态时正负电子间的距离;②n=5时正电子素的电离能(已知玻尔半径0a =0.529Å).(3)不计电子自旋当电子在垂直于均匀磁场B 的平面内运动时,试用玻尔理论求电子动态轨道半径和能级(提示: B v m E e n ⋅-=ϕμ221 ; n me 2 =ϕμ n p =ϕ) (4)氢原子巴尔末系的第一条谱线与He +离子毕克林系的第二条谱线(6→4)两者之间的波长差是多少?(R H =1.09678×10-3 Å, R He =1.09722×10-3 Å)(5)设氢原子光谱的巴耳末系的第一条谱线αH 的波长为αλ,第二条谱线βH 的波长为βλ,试证明:帕邢系的第一条谱线的波长为βαβαλλλλλ-=.(2000.上海大学)(6)一个光子电离处于基态的氢原子,被电离的自由电子又被氦原子核俘获,形成处于2=n 能级的氦离子He +,同时放出波长为500nm 的光子,求原入射光子的能量和自由电子的动能,并用能级图表示整个过程.(1997北京师大)(7)在天文上可观察到氢原子高激发态之间的跃迁,如108=n 与109=n 之间,请计算此跃迁的波长和频率. (1997.中科院)(8) He +离子毕克林系的第一条谱线的波长与氢原子的巴耳末系αH 线相近. 为使基态的He +离子激发并发出这条谱线,必须至少用多大的动能的电子去轰击它?(2001.中科院)(9)试用光谱的精细结构常数表示处于基态的氢原子中电子的速度、轨道半径、氢原子的电离电势和里德伯常数. (1999.中科院)(10)计算氢原子中电子从量子数为n 的状态跃迁到1-n 的状态时所发出谱线的频率. (2001.中科院固体所)第三章 量子力学初步一、学习要点轨道角动量()1,,2,1,0,1-=+=n l l l p l ,l 称为轨道角量子数,轨道角量子数l =0 1 2 3 4 …电 子 态 s p d f g …原 子 态 S P D F G …能量()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……轨道投影角动量()l l l l m m p l l lz ,1,,1,0,,1,,----== ,称轨道磁量子数,表征轨道角动量对外场方向的取向,轨道角动量对外场方向的投影图描述电子空间运动的三个量子数l m l n ,,的名称、取值范围、所表征的物理量表达式二、基本练习(1)按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数n 时,对应的状态数是:A .2n; B.2n+1; C.n 2; D.2n 2(2)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.n 2;B.2n;C.l ;D.2l +1(3)按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.2(2l +1);B.2l +1;C. n;D.n 2(4)按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当nl m 确定后对应的状态数为:A.1;B.2;C.2l +1;D. n(5)试画出2=l 时电子轨道角动量在磁场中空间量子化示意图,并标出电子轨道角动量在外磁场方向z 的投影的各种可能值.(中山大学1993)第四章 碱金属原子一、学习要点1.碱金属原子光谱和能级(1)四个线系:主线系、第一辅线系(漫)、第二辅线系(锐)、柏格曼系(基)共振线、线系限波数、波数表达式(2)光谱项()()222222Z Z n R n R n R n RT l σ-==∆-==**;σ-=∆-=∆-=**Z Z ,ll n n n n (3)起始主量子数Li:n=2 ; Na:n=3 ; K:n=4 ; Rb:n=5 ;Cs:n=6 ; Fr:n=7(4)碱金属原子能级.选择定则1±=∆l(5)原子实极化和轨道贯穿是造成碱金属原子能级与氢原子不同的原因2.电子自旋(1)实验基础与内容:电子除具有质量、电荷外,还具有自旋角动量()21(,1=+=s s s p s 称自旋角量子数)和自旋磁矩B s s e s p m e μμμ3,=-= . 自旋投影角动量21,±==s s sz m m p 称自旋磁量子数 (2)单电子角动量耦合:总角动量()⎪⎪⎩⎪⎪⎨⎧=≠±=+=0,210,21,1l l l j j j p j ,称总角量子数(内量子数、副量子数;总角动量的投影角动量()j j j j m m p j j jz ,1,,1,,----== ,称总磁量子数(3)描述一个电子的量子态的四个量子数:强场:s l m m l n ,,,;弱场:j m j l n ,,,原子态(光谱项)符号 j s L n 12+S 态不分裂, ,,,,G F D P 态分裂为两层3.碱金属原子光谱和能级的精细结构:(1)原因:电子自旋—轨道的相互作用(2)能级和光谱项的裂距;(3)选择定则:1±=∆l ,1,0±=∆j画出锂、钠、钾原子的精细结构能级跃迁图4.氢原子光谱和能级的精细结构:(1)原因:相对论效应和电子自旋-轨道相互作用;(2)狄拉克能级公式;(3)赖曼系第一条谱线和巴尔末线系αH 线的精细分裂(4)蓝姆移动*二.基本练习:1.褚书P1432.选择题:(1)单个f 电子总角动量量子数的可能值为:A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/2(2)单个d 电子的总角动量投影的可能值为:A.2 ,3 ;B.3 ,4 ;C. 235, 215; D. 3/2, 5/2 . (3)已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:A .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;(4)锂原子光谱由主线系.第一辅线系.第二辅线系及柏格曼系组成.这些谱线系中全部谱线在可见光区只有:A.主线系;B.第一辅线系;C.第二辅线系;D.柏格曼系(5)锂原子主线系的谱线在不考虑精细结构时,其波数公式的正确表达式应为: A.nP S -=2~ν; B. S nP 2~→=ν; C .nP S →=2~ν; D .S nP 2~-=ν (6)碱金属原子的光谱项为:A.T=R/n 2; B .T=Z 2R/n 2; C .T=R/n *2; D. T=RZ *2/n *2(7)锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)?A.一条B.三条C.四条D.六条(8)已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为:A .5.38V B.1.85V C.3.53V D.9.14V(9)钠原子基项3S 的量子改正数为1.37,试确定该原子的电离电势:A.0.514V;B.1.51V;C.5.12V;D.9.14V(10)碱金属原子能级的双重结构是由于下列哪一项产生:A.相对论效应B.原子实的极化C.价电子的轨道贯穿D.价电子的自旋-轨道相互作用(11)产生钠的两条黄谱线的跃迁是:A.2P 3/2→2S 1/2 , 2P 1/2→2S 1/2;B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/2(12)若已知K 原子共振线双重成分的波长等于7698.98埃和7664.9埃,则该原子4p 能级的裂距为多少eV ?A.7.4×10-2; B .7.4×10-3; C .7.4×10-4; D .7.4×10-5.(13)对锂原子主线系的谱线,考虑精细结构后,其波数公式的正确表达式应为: A.ν~= 22S 1/2-n 2P 1/2 ν~= 22S 1/2-n 2P 3/2 B. ν~= 22S 1/2→n 2P 3/2 ν~= 22S 1/2→n 2P 1/2C. ν~= n 2P 3/2-22S 1/2 ν~= n 2P 1/2-22S 3/2D. ν~= n 2P 3/2→n 2P 3/2 ν~= n 2P 1/2→n 21/2(14)碱金属原子光谱精细结构形成的根本物理原因:A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化(15)已知钠光谱的主线系的第一条谱线由λ1=5890埃和λ2=5896埃的双线组成,则第二辅线系极限的双线间距(以电子伏特为单位):A.0;B.2.14⨯10-3;C.2.07⨯10-3;D.3.42⨯10-2(16)考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系?A.主线系;B.锐线系;C.漫线系;D.基线系(17)如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:A.0=∆l ;B. 0=∆l 或±1;C. 1±=∆l ;D. 1=∆l(18)碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为:A .32S 1/2.32S 3/2; B.3P 1/2.3P 3/2; C .32P 1/2.32P 3/2; D .32D 3/2.32D 5/2(19)下列哪种原子状态在碱金属原子中是不存在的:A .12S 1/2; B. 22S 1/2; C .32P 1/2; D. 32S 1/2.32D 5/2(20)对碱金属原子的精细结构12S 1/2 12P 1/2, 32D 5/2, 42F 5/2,22D 3/2这些状态中实际存在的是:A.12S 1/2,32D 5/2,42F 5/2;B.12S 1/2 ,12P 1/2, 42F 5/2;C.12P 1/2,32D 5/2,22D 3/2;D.32D 5/2, 42F 5/2,32D 3/2(21)氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于:A.自旋-轨道耦合B.相对论修正和极化贯穿C.自旋-轨道耦合和相对论修正D.极化.贯穿.自旋-轨道耦合和相对论修正(22)对氢原子考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为:A.二条B.三条C.五条D.不分裂(23)考虑精细结构,不考虑蓝姆位移,氢光谱Hα线应具有:A.双线B.三线C.五线D.七线(24)氢原子巴尔末系的谱线,计及精细结构以后,每一条谱线都分裂为五个,但如果再考虑蓝姆位移其谱线分裂条数为:A.五条B.六条C.七条D.八条(25)已知锂原子主线系最长波长为λ1=67074埃,第二辅线系的线系限波长为λ∞=3519埃,则锂原子的第一激发电势和电离电势依次为(已知R =1.09729⨯107m -1)A.0.85eV,5.38eV;B.1.85V ,5.38V;C.0.85V ,5.38VD.13.85eV ,5.38eV(26)钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:A.第一辅线系和基线系B.柏格曼系和锐线系C.主线系和第一辅线系D.第二辅线系和漫线系(27)d 电子的总角动量取值可能为: A. 215,235; B . 23,215; C. 235,263; D. 2,63.简答题(1)碱金属原子能级与轨道角量子数有关的原因是什么?造成碱金属原子精细能级的原因是什么?为什么S 态不分裂, ,,,,G F D P 态分裂为两层?(2)造成氢原子精细能级和光谱的原因是什么?(3)试由氢原子能量的狄拉克公式出发,画出巴尔末系第一条谱线分裂后的能级跃迁图,并写出各自成分的波数表达式(4)在强磁场下描述一个电子的一个量子态一般需哪四个量子数?试写出各自的名称、.取值范围、力学量表达式?在弱磁场下情况如何?试回答上面的问题.(5)简述碱金属原子光谱的精细结构(实验现象及解释).4.计算题(1)锂原子的基态光谱项值T2S=43484cm-1,若已知直接跃迁3P→3S产生波长为3233埃的谱线.试问当被激发原子由3P态到2S态时还会产生哪些谱线?求出这些谱线的波长(R =10972⨯10-3埃-1)(2)已知铍离子Be+主线系第一条谱线及线系限波长分别为3210埃和683埃,试计算该离子S项和P项的量子亏损以及锐线系第一条谱线的波长.(北大1986)(3)锂原子的基态是S2,当处于D3激发态的锂原子向低能级跃迁时,可能产生几条谱线(不考虑精细结构)?这些谱线中哪些属于你知道的谱线系的?同时写出所属谱线系的名称及波数表达式. 试画出有关的能级跃迁图,在图中标出各能级的光谱项符号,并用箭头都标出各种可能的跃迁. (中科院2001)(4)①试写出钠原子主线系、第一辅线系、第二辅线系和伯格曼系的波数表达式.②已知:35.1=∆s ,86.0=∆p,01.0=∆d,求钠原子的电离电势.③若不考虑精细结构,则钠原子自D3态向低能级跃迁时,可产生几条谱线?是哪两个能级间的跃迁?各对应哪个线系的谱线?④若考虑精细结构,则上问中谱线分别是几线结构?用光谱项表达式表示出相应的跃迁.(中科院1998)第五章多电子原子一、学习要点1.氦原子和碱土金属原子:(1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级2.重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.*复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合6.普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等)6.氦氖激光器*二、基本练习1.褚书P168-169习题2.选择题(1)关于氦原子光谱下列说法错误的是:A.第一激发态不能自发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第一激发态能量相差很大;D.三重态与单态之间没有跃迁(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:A.3;B.4;C.6;D.5(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(6)氦原子的电子组态为n1pn2s,则可能的原子态:A.由于n不确定不能给出确定的J值,不能决定原子态;B.为n1pn2s 3D2,1,0和n1pn2s 1D1;C.由于违背泡利原理只存单态不存在三重态;D.为n1pn2s 3P2,1,0和n1pn2s 1P1.(7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线?A.6条;B.3条;C.2条;D.1条.(8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和1s2s3S1是简并态(9)泡利不相容原理说:A.自旋为整数的粒子不能处于同一量子态中;B.自旋为整数的粒子能处于同一量子态中;C.自旋为半整数的粒子能处于同一量子态中;D.自旋为半整数的粒子不能处于同一量子态中.(10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(11)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(12)一个p电子与一个 s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(13)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(14)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(15)硼(Z=5)的B+离子若处于第一激发态,则电子组态为:A.2s2pB.2s2sC.1s2sD.2p3s(16)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(17)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(18)今有电子组态1s2p,1s1p,2d3p,3p3s,试判断下列哪些电子组态是完全存在的:A.1s2p ,1s1pB.1s2p,2d3p C,2d3p,2p3s D.1s2p,2p3s(19)电子组态1s2p所构成的原子态应为:A1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(20)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(21)试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的?A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1C. 1s2p 3P 2 2s2p 3P 2D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1(22)在铍原子中,如果3D 1,2,3对应的三能级可以分辨,当有2s3d 3D 1,2,3到2s2p 3P 2,1,0的跃迁中可产生几条光谱线?A .6 B.3 C.2 D.9(23)有状态2p3d 3P →2s3p 3P 的跃迁:A.可产生9条谱线B.可产生7条谱线C 可产生6条谱线 D.不能发生(24)已知Cl (Z=17)原子的电子组态是1s 22s 22p 63p 5,则其原子态是:A.2P 1/2;B.4P 1/2 ;C.2P 3/2;D.4P 3/2(25) 原子处在多重性为5,J 的简并度为7的状态,试确定轨道角动量的最大值: A. 6; B. 12; C. 15; D. 30(26)试确定D 3/2谱项可能的多重性:A.1,3,5,7;B.2,4,6,8; C .3,5,7; D.2,4,6.(27)某系统中有三个电子分别处于s 态.p 态.d 态,该系统可能有的光谱项个数是:A .7; B.17; C.8; D.18(28)钙原子的能级应该有几重结构?A .双重; B.一、三重; C.二、四重; D.单重3.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则.(2)L-S 耦合的某原子的激发态电子组态是2p3p ,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p 向2p3s 可能产生的跃迁.(首都师大1998)(3)写出两个同科p 电子形成的原子态,那一个能级最低?(4)写出两个同科d 电子形成的原子态,那一个能级最低?(5)写出5个同科p 电子形成的原子态,那一个能级最低?(6)写出4个同科p 电子形成的原子态,那一个能级最低?(7)汞原子有两个价电子,基态电子组态为6s6s 若其中一个电子被激发到7s 态(中间有6p 态)由此形成的激发态向低能级跃迁时有多少种可能的光谱跃迁?画出能级跃迁图.(8)某系统由一个d 电子和一个2P 3/2原子构成,求该系统可能的光谱项.(9)某系统由spd 电子构成,试写出它的光谱项.(10)碳原子的一个价电子被激发到3d 态,①写出该受激原子的电子组态以及它们在L —S 耦合下形成的原子态; ②画出对应的能级图并说明这些能级间能否发生电偶极跃迁?为什么?第六章 磁场中的原子一、学习要点1.原子有效磁矩 J J P m e g2-=μ, )1(2)1()1()1(1++++-++=J J S S L L J J g (会推导) 2.外磁场对原子的作用:(1)拉莫尔进动圆频率(会推导): B m e g eL 2=ω(2)原子受磁场作用的附加能量:B g M B E B J J μμ=⋅-=∆附加光谱项()1-m 7.464~,~4B mc eB L L g M mc eB g M T J J ≈===∆ππ 能级分裂图(3)史—盖实验;原子束在非均匀磁场中的分裂B J g M v L dz dB m s μ221⎪⎭⎫ ⎝⎛-=,(m 为原子质量) (4)塞曼效应:光谱线在外磁场中的分裂,机制是原子磁矩与外磁场的相互作用,使能级进一步的分裂所造成的. 塞曼效应的意义①正常塞曼效应:在磁场中原来的一条谱线分裂成3条,相邻两条谱线的波数相差一个洛伦兹单位L ~Cd 6438埃 红光1D 2→1P 1氦原子 66781埃 1D 2→1P 1②反常塞曼效应:弱磁场下:Na 黄光:D 2线 5890埃 2P 3/2→2S 1/2(1分为6);D 1线5896埃 2P 1/2→2S 1/2(1分为4)Li ( 2D 3/2→2P 1/2)格罗春图、相邻两条谱线的波数差、能级跃迁图选择定则 )(1);(0);(1+-+-=∆σπσJ M 垂直磁场、平行磁场观察的谱线条数及偏振情况③帕邢—贝克效应:强磁场中反常塞曼效应变为正常塞曼效应()()B M M B E B S L S L μμμ2+=⋅+-=∆ ,()L M M SL ~2~∆+∆=∆ν,1,0,0±=∆=∆L S M M ()L L ~,0,~~~0-+=νν (5)顺磁共振、物质的磁性二、基本练习1.楮书P1972.选择题(1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; C.2; D.3(2)正常塞曼效应总是对应三条谱线,是因为:A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同;C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁(3)B 原子态2P 1/2对应的有效磁矩(g =2/3)是 A. B μ33; B. B μ32; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ∆除正比于B 之外,同原子状态有关的因子有:A.朗德因子和玻尔磁子B.磁量子数、朗德因子C.朗德因子、磁量子数M L 和M JD.磁量子数M L 和M S(5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A ;)(0);(1πσ±=∆J M B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现;C. )(0σ=∆J M ,)(1π±=∆J M ;D. )(0);(1πσ=∆±=∆S L M M(6)原子在6G 3/2状态,其有效磁矩为:A .B μ315; B. 0; C. B μ25; D. B μ215- (7)若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:A .1和2/3; B.2和2/3; C.1和4/3; D.1和2(8)由朗德因子公式当L=S,J≠0时,可得g 值:A .2; B.1; C.3/2; D.3/4(9)由朗德因子公式当L=0但S≠0时,可得g 值:A .1; B.1/2; C.3; D.2(10)如果原子处于2P 1/2态,它的朗德因子g 值:A.2/3; B.1/3; C.2; D.1/2(11)某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:A .2个; B.9个; C.不分裂; D.4个(12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:A.4D 3/2分裂为2个;B.1P 1分裂为3个;C.2F 5/2分裂为7个;D.1D 2分裂为4个(13)如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:A.3个B.2个C.4个D.5个(14)态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?A.3个B.5个C.2个D.4个(15)钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:A.3条B.6条C.4条D.8条(16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2P 3/2)在磁场中发生塞曼效应,光谱线发生分裂,沿磁场方向拍摄到的光谱线条数为A.3条B.6条C.4条D.9条(17)对钠的D 2线(2P 3/2→2S 1/2)将其置于弱的外磁场中,其谱线的最大裂距max~ν∆和最小裂距min~ν∆各是 A.2L 和L/6; B.5/2L 和1/2L; C.4/3L 和2/3L; D.5/3L 和1/3L(18)使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂B.3条C.5条D.7条(19)(1997北师大)对于塞曼效应实验,下列哪种说法是正确的?A .实验中利用非均匀磁场观察原子谱线的分裂情况;B .实验中所观察到原子谱线都是线偏振光;C .凡是一条谱线分裂成等间距的三条线的,一定是正常塞曼效应;D .以上3种说法都不正确.3.计算题。

3-5原子物理知识点

3-5原子物理知识点

波粒二象性 一、能量量子化1.热辐射:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。

(辐射强度按波长的分布情况随温度而有所不同;(热辐射不一定需要高温,任何温度下都能发生热辐射,只是温度低时辐射弱,温度高时辐射强.在一定温度下,不同物体所辐射的光谱的成分有显著不同.)2.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

(黑体实际上是不存在的,只是一种理想情况;黑体看上去不一定是黑的;黑体同其他物体一样也在辐射电磁波,黑体的辐射规律最为简单,黑体辐射强度只与温度有关.)3.黑体辐射的实验规律①一般材料的物体,辐射电磁波的情况,除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。

随着温度的升高,一方面,各种波长的辐射强度都有增加另一方面,辐射强度的极大值向波长较短的方向移动.4.②维恩公式:在短波区与实验非常接近,在长波区则与实验偏离很大.③瑞利(金斯)公式:在长波区与实验基本一致,但在短波区与实验严重不符,由理论得出的荒谬结果被称为“紫外灾难”.5.(1)普朗克的假说:能的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.(2)能量子公式:ε=h ν,其中ν是电磁波的频率,h 称为普朗克常量h =6.626×10-34J ·s.(一般取h =6.63×10-34J ·s)(3)能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.这种现象叫能量的量子化.(4)①借助于能量子的假说,普朗克得出了黑体辐射的强度按波长分布的公式,与实验符合之好令人击掌叫绝.②普朗克在1900年把能量子列入物理学,正确地破除了“能量连续变化”的传统观念,成为新物理学思想的基石之一。

二、光的粒子性6.光电效应:当光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。

原子物理知识点总结全

原子物理知识点总结全

原 子 物 理一、卢瑟福的原子模型——核式构造1.1897年,_________发现了电子.他还提出了原子的______________模型.2.物理学家________用___粒子轰击金箔的实验叫__________________。

3.实验结果: 绝大局部α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____.4.实验的启示:绝大多数α粒子直线穿过,说明原子部存在很大的空隙; 少数α粒子较大偏转,说明原子部集中存在着对α粒子有斥力的正电荷;极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式构造:卢瑟福依据α粒子散射实验的结果,提出了原子的核式构造:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,以下四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式构造模型。

如图1-1所示表示了原子核式构造模型的α粒子散射图景。

图中实线表示α粒子的运动轨迹。

其中一个α粒子在从a 运动到b 、再运动到c 的过程中〔α粒子在b 点时距原子核最近〕,以下判断正确的选项是〔 〕 A .α粒子的动能先增大后减小B .α粒子的电势能先增大后减小C .α粒子的加速度先变小后变大D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级1.玻尔提出假说的背景——原子的核式构造学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式构造将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。

原子物理前三章总结知识点

原子物理前三章总结知识点

原子物理前三章总结知识点第一章:原子结构原子是物质的基本单位,由原子核和围绕核运动的电子构成。

原子核由质子和中子组成,质子带正电荷,中子不带电荷。

电子带负电荷,其质量远小于质子和中子。

根据量子力学的原理,电子围绕原子核运动的轨道是分立的,不同轨道对应不同能级,每个轨道能容纳不同数量的电子。

原子的质量主要来自于原子核,而原子的大小和化学性质则主要由外部的电子决定。

第二章:原子核的特性原子核是原子的中心部分,其质子数和中子数决定了元素的化学性质和同位素的特性。

原子核的直径约为10^-15米,其密度非常大,几乎占据整个原子的质量。

原子核的质子数和中子数决定了原子的质量数,而元素的化学性质主要由其质子数决定。

原子核还具有强相互作用力和弱相互作用力,它们决定了原子核的稳定性和放射性衰变特性。

第三章:基本粒子的性质在原子物理中,我们还需要了解一些基本粒子的性质。

目前已知存在六种夸克,它们是构成质子和中子的基本粒子。

另外,还存在三种带电轻子,它们是电子、μ子和τ子。

此外,还存在四种中微子,它们几乎没有质量和电荷,对弱相互作用起主要作用。

基本粒子的性质对于我们理解物质的基本结构和相互作用有重要意义。

总结以上讨论,原子物理是一门涉及原子和基本粒子结构、性质及相互作用的重要学科。

通过对原子结构、原子核的特性和基本粒子的性质的研究,我们可以更深入地了解物质的本质和相互作用规律。

这对于解决一些基本问题,如能源供给、材料制备和环境保护等具有重要意义。

希望通过学习原子物理的知识,我们能更好地理解自然界的规律,推动科学技术的发展和人类社会的进步。

原子物理知识点

原子物理知识点

原子物理知识点原子物理指的是关于原子和分子的物理学研究。

原子是由带有正电荷的原子核和带有负电荷的电子组成的,其大小约为 10^-10 米。

原子物理研究的主要内容包括原子结构、核物理,以及原子和分子的物理和化学性质等方面。

1. 原子结构原子的结构主要由原子核和电子组成。

原子核由带有正电荷的质子和带有负电荷的中性子组成,质子和中性子合称为核子。

中性的原子核直径约为 10^-15 米,比原子半径约大10^4 倍。

电子是质量极小的粒子,其轨道围绕在原子核外部,根据波粒二象性理论可以将电子看做既有粒子特征,也有波动特征的物体。

电子的轨道可以用量子力学的波函数来描述,其中每个轨道对应一定的能量,越靠近原子核的轨道能量越低。

原子结构的核心概念是能级,即原子中的电子具有可以带有的能量级别。

2. 原子核物理原子核中带有正电荷的质子之间的相互作用力是比较复杂的,其力源来自于电荷和核力。

电荷相互作用力是简单的静电相互作用,但是在α衰变中,则是核力从中发挥作用,并且质子与中性子的相互作用也需要核力的作用。

此外,核力对于比质子和中子的数量更大的物体来说也非常重要。

核物质的质量密度所需要距离或所占的体积十分的小,因此核物质对于能量传输具有高度的效率。

核物理学中的原子核反应是指两个或多个原子核相互作用以形成新型核的过程。

这类反应可以具有放出大量的核能,可以用于核能的利用。

3. 原子和分子的物理和化学性质原子和分子在物理和化学性质上都具有非常关键的作用。

许多材料的不同物理性质,通常可以通过原子和分子之间的相互作用来解释并预测。

例如,材料的熔化温度和固化温度、晶体的结构和性质、某些分子的光学性质等。

在化学过程中,原子和分子参与了大量的化学反应过程。

化学反应通常涉及原子之间的共用电子对,所谓的化学键。

不同的元素之间的结合方式可以改变物质的性质和成分。

例如,将氧气和氢气转化为水,可以使能量在不同的形式之间传递。

同时,原子和分子之间的化学反应也广泛地应用于多种工程和生物学领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试前突击整理哦~ 免挂可供参考,求高分勿用
原子核式模型考点
Rutherford核式模型
散射公式:
有库伦散射公式:(点到点)
定义 库伦因子α
则有
面到点:(微分散射截面公式)
瞄向d σ的α粒子都被散射到d Ω立体角内,瞄向d σ的α粒子越多,被散射到d Ω立体角内的α粒子越多 面到面(Rutherford 公式)
α
πεπεE Ze mv Ze a 1422
114202
20
02=
=22θctg
a b =
面积为A ,厚度为t ,单位体积所含原子数为N
氢原子光谱和波尔模型考点 对于氢原子的Rydberg 公式:
波尔模型:
电子只能在一系列分立的轨道上绕核运动,且不辐射电磁波,能量稳定。

原子在不同定态之间跃迁,吸收或发射能量。

2
202
2
04412sin ⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Ωmv Ze Nnt d dn πεθH 221,2,3,1
111,2,3,m R n m m n νλ=⎛
⎫≡=- ⎪
-=⎝⎭K %
K 2
011,2,3,24πn n
e E n r ε=-
=K
电子定态轨道角动量满足量子化条件:
e n n m r v n =h
轨道半径:
2
1,2,3,n n c r n a v n n α===K
(非相对论近似) 氢原子的定态能量:
Rydberg 常数:
)11()4(22
23204
2n m c h e m e -=πεπ
hc
E E m n -=ν~
量子力学初步考点:
普朗克的能量子假说和黑体辐射公式: 普朗克公式:
3
02
21
(,)1h kT
h r T c
e
νπνν=
⋅-
康普顿效应验证了光的粒子性 静止质量和能量的关系:
德布罗意物质波
1924年,de Broglie 将Einstein 的光量子概念推广,提出了物质波的概念。

所有的粒子都具有波动性,所有的波都具有粒子性 波函数:
微观体系的波粒二象性,可以用统计的观点理解 用波的表达式描述粒子的行为
()
247
1
e 2
3
02π 1.097373110m
4πm e
R h c
ε-∞=
=⨯
波的强度或复振幅,反映的是粒子在时刻t、空间点P处出现、或被发现的几率或几率幅,复振幅就是几率波幅
则经典意义下的描述波动的函数或复振幅就成了量子意义下描述粒子分布几率的函数—波函数
这是波动性的物理含义
态叠加原理:
双缝干涉实验
研究通过缝而到达接收屏的电子的状态
通过狭缝1的电子在接收屏上有一个分布函数,即波函数,记为Ψ1;概率分布为I1= |Ψ1||Ψ1|
通过狭缝2的电子在接收屏上有一个分布函数,即波函数,记为Ψ2;概率分布为I2= |Ψ2||Ψ2|
则电子通过两个狭缝的分布函数为Ψ=Ψ1 +Ψ2
也可以说,通过狭缝1的电子的状态为Ψ1;通过狭缝2的电子的状态为Ψ2;
定态Schrödinger方程问题,就是求解势能不随时间改变条件下的Schrödinger方程
不确定原理:
单电子原子的解: 单电子原子的波函数:
n ,l ,m 是量子数,为本征态的标志 计算核外电子到原子核的平均距离:
量子数的物理解释
主量子数:n 单电子原子的能级
1,2,3
,
,0,1,2
1n n l n ==
-
为正整数且对于每一个,1,,1,0,1,1,l l m l l l l =--+--为0或正整数
对于每一个,2
02
1(1){1[1]}2n a l l Z n +=+-2
42Ze n πε=
2
2222
2
222
0422e e m c Z m c Z e E c n
n απε⎛⎫⇒=-=- ⎪⎝⎭h
由S 方程,n 只能取分立正整数值,E 只能取分立值;原子的总能量取决于n ,n 给定,原子的总能量就确定了,n 称为主量子数。

,0,1,21n l n =-L 对于每一个
,,1,1,0,1,1,l m l l l l =--+--L L 对于每一个
轨道角动量量子数
2
01
,4137e
c απε=≈h 精细结构常数
不同的状态可以具有相同的能量--简

磁量子数:
用一组量子数描述原子的状态:
轨道磁矩:
21l Z l m
+对于具有相同量子数的角动量,它在轴的分量有
个不同e
e
l
m
eL
m L e iA 22=
==ττμ
Zeeman效应
当光源放在外磁场中,其原子所发出的光谱线发生分裂,原来的一条谱线分裂为多条,且均为偏振光—塞曼效应。

电子的自旋:
基态氢原子的自旋:
电子自旋与轨道运动的相互作用:
具有自旋磁距的电子处在由于轨道运动而产生的磁场中附加自旋的能量为:
轨道运动的磁场:
cos s E B μθ∆=-
自旋—轨道耦合能 关于总角动量:
电子因其轨道运动而感受到一与轨道角动量成正比的磁场,且B 与L 同向23
011124e Ze B L m c r πε=r
v
多重态结构的原子态的符号表示
d S L J S L dt ⇒+=+r r r
r v ()=0,定义:J 自旋-轨道相互作用是原子内部的作用力,所以原子在不受外力距的情形下,
是一个守恒量
为使磁矩与角动量间有统一的关系式:
单电子原子的Land è因子:
2
l s j g L J g S J g J ⋅+⋅=v v v
v
运算:
2222
S J L S J +-⋅=
v v 2222
L J S L J +-⋅=
v
v
原子光谱的精细结构
原子核的自旋
I I i =原子核自旋角动量的大小是
为整数或半整数,是核的自旋量子数。

跃迁选择定则
多电子原子考点
电子组态:
LSLSL
LS耦合
电子组态2p3d所形成的原子态(LS耦合)
JJ耦合。

相关文档
最新文档