2021年新高考数学模拟试题及答案

合集下载

2021年新高考全国一卷数学模拟试卷及答案解析

2021年新高考全国一卷数学模拟试卷及答案解析

2021年新高考全国一卷数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)
1.(5分)如果复数m2+i
1+mi
是纯虚数,那么实数m等于()
A.﹣1B.0C.0或1D.0或﹣1
2.(5分)已知集合A={x|x2﹣4x﹣12<0},则∁R A=()
A.{x|x≤﹣2或x≥6}B.{x|﹣2≤x≤6}
C.{x|﹣6<x≤2}D.{x|x≤﹣6或x≥2}
3.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,则一年的总运费与总存储费用和最小为()
A.60万元B.160万元C.200万元D.240万元
4.(5分)设α∈R,则“a<﹣1”是“a2﹣5a﹣6>0”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
5.(5分)函数y=(x3﹣x)•3|x|的图象大致是()
A.B.
C.D.
6.(5分)武汉疫情爆发后,某医院抽调3名医生,5名护士支援武汉的三家医院,规定每家医院医生一名,护士至少一名,则不同的安排方案有()
A.900种B.1200种C.1460种D.1820种
7.(5分)2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,
第1 页共19 页。

数学模拟试题二含解析

数学模拟试题二含解析
10。 如图,正方体 的棱长为1,线段 上有两个动点E、F,且 ,则下列结论中正确的是( )
A. 线段 上存在点E、F使得 B. 平面ABCD
C. 的面积与 的面积相等D. 三棱锥A-BEF的体积为定值
【答案】BD
【解析】
【分析】
根据异面直线的定义可判断A;根据线面平行的判定定理可判断B;根据三角形的面积公式可判断C;利用直线平行平面,直线上的点到面的距离相等以及椎体的体积公式可判断D。
【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路",“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.
故甲的另一句“乙走桃花峪登山线路"正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.
A。 B。 C。 D.
【答案】D
【解析】
分析:根据直线的垂直,即可求出tanα=3,再根据二倍角公式即可求出.
详解:因为l1⊥l2,所以sinα﹣3cosα=0,
所以tanα=3,
所以sin2α=2sinαcosα=
故选D.
点睛:本题考查了两直线的垂直,以及二倍角公式,本题利用了sin2θ+cos2θ=1巧妙的完成弦切互化.常用的还有三姐妹的应用,一般 , ,这三者我们成为三姐妹,结合 ,可以知一求三.
15. 函数 的部分图象如图所示,则 __;将函数 的图象沿x轴向右平移 个单位后,得到一个偶函数的图象,则 ____.
【答案】 (1). (2)。
【解析】
【分析】
根据图象求得周期,利用周期计算公式求得 ;根据 ,即可求得 ;再求得平移后的函数解析式,根据奇偶性,列出等式,则 可得.

2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

(8)立体几何(文)——2021年高考数学真题模拟试题专项汇编1.【2021年新高考Ⅰ卷,3】已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2B.22C.4D.422.【2021年新高考Ⅱ卷,4】卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度指卫星到地球表面的最短距离).把地球看成一个球心为O ,半径为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步轨道卫星的点的纬度的最大值记为α.该卫星信号覆盖的地球表面面积22π(1cos )S r α=-(单位:2km ),则S 占地球表面积的百分比为( ) A.26%B.34%C.42%D.50%3.【2021年北京卷,4】某四面体的三视图如图所示,该四面体的表面积为( )33+ B.1213+3 4.【2021年浙江卷,4】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A.32B.3C.322D.325.【2021年新高考Ⅱ卷,5】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则四棱台的体积为( ) A.5623B.562C.282D.28236.【2021年浙江卷,6】如图,已知正方体1111ABCD A B C D -,,M N 分别是1A D ,1D B 的中点,则( )A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B7.【2021年北京卷,8】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10<mm ),中雨(10mm —25mm ),大雨(25mm —50mm ),暴雨(50mm —100mm ),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )A.小雨B.中雨C.大雨D.暴雨8.【2021年全国乙卷(文),10】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A.π2B.π3C.π4D.π69.【2021年全国甲卷(文),14】已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__________.10.【2021年上海卷,9】已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,点C 为下底底面圆周上的一个动点,点C 绕着下底底面旋转一周,则ABC △面积的取值范围为____________.11.【2021年全国乙卷(文),16】以图①为正视图,在图②③④③中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为___________(写出符合要求的一组答案即可).12.【2021年全国乙卷(文),18】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.13.【2021年安徽怀宁模拟,18】如图,在三棱柱111ABC A B C -中,侧面11AAC C ⊥底面11,2,ABC AA AC AC AB BC ====,且AB BC ⊥,O 为AC 的中点.(1)求证:平面11A B O ⊥平面1BCA ;(2)若点E 在1BC 上,且//OE 平面1A AB ,求三棱锥1E A BC -的体积.14.【2021年广西桂林模拟(文),18】如图所示,在三棱锥A BCD -中,侧棱AB ⊥平面BCD ,F 为线段BD 中点,Q 为线段AB 中点,2π3BCD ∠=,3AB =,2BC CD ==.证明:(1)CF ⊥平面ABD ; (2)求点D 到平面QCF 的距离.15.【2021年全国甲卷(文),19】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形.2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥,(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.答案以及解析1.答案:B解析:本题考查圆锥的侧面展开图.设圆锥的底面半径为r ,母线长为l .由题意可得2ππr l =,所以222l r ==. 2.答案:C解析:由题意可知,6400cos 0.1536000640036000r r α==≈++,所以从同步卫星上可望见的地球的表面积222π(1cos )2π(10.15)S r r α=-≈-,此面积与地球表面积之比约为222π(10.15)100%42%4πr r -⨯≈.3.答案:A解析:画正方体,删点,剩下的4个点就是三棱锥的顶点,如图:1333311(11)2S +=⨯⨯⨯+=表. 4.答案:A解析:本题考查几何体的三视图.该几何体是高为1的四棱柱,其底面为三个全等的直角边为1的等腰直角三角形拼成的梯形,面积为32,故其体积是32. 5.答案:D解析:本题考查棱台的体积.将正四棱台1111A B C D ABCD -补成四棱锥P ABCD -,作PO ⊥底面ABCD 于点O ,交平面1111A B C D 于点1O ,则棱台1111A B C D ABCD -的体积1111P ABCD P A B C D V V V --=-.由题意,11112142PA PO A B PA PO AB ====,易知,4PA =,22AO =22224(22)22PO PA AO --=,所以12PO =,则1322(44)223P ABCD V -=⨯⨯⨯,1111142(22)23P A B C D V -=⨯⨯,所以棱台1111A B C D ABCD -的体积111132242282P ABCD P A B C D V V V --=-==.6.答案:A解析:本题考查空间的线线关系与线面关系.易知1A D ⊥平面1ABD ,故11A D D B ⊥,排除B ,C 项;连接1AD ,可知//MN AB ,所以//MN 平面ABCD ,A 项正确;因为AB 不垂直于平面11BDD B ,//MN AB ,所以直线MN 不垂直于平面11BDD B ,D 项错误.7.答案:B解析:由相似的性质可得,小圆锥的底面半径2002502r ==,故231π5015050π3V =⨯⨯⨯=⋅小圆锥,积水厚度3250π12.5π100V h S ⋅===⋅大小圆锥圆,属于中雨,故选B. 8.答案:D解析:本题考查立体几何中的线面关系及解三角形的应用.如图,记正方体的棱长为a ,则1111112AD C B A C B D a ====,所以1122B P PC a ==,221162BP B P B B a =+=.在1BC P 中,由余弦定理得22211113cos 22PB C B PC PBC PB C B +-∠==⋅,所以1π6PBC ∠=.又因为11//AD BC ,所以1PBC ∠即为直线PB 与1AD 所成的角,所以直线PB 与1AD 所成的角为π6.9.答案:39π解析:本题考查圆锥的体积与侧面积.由题可得圆锥的体积21π12π30π3V r h h ===,可得52h =,故圆锥的母线22132l r h +,所以圆锥的侧面积π39πS rl ==. 10.答案:5]解析:本题主要考查空间几何体.上顶面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABCSAB CM =⨯⨯,根据题意,AB 为定值2,所以ABCS 的大小随着CM 长短的变化而变化.当点M 与点O 重合时,22125CM OC ==+=,取得最大值,此时12552ABCS =⨯⨯=.当点M 与点B 重合时,CM 取最小值2,此时12222ABCS=⨯⨯=.综上所述,ABCS 的取值范围为[2,5].11.答案:②⑤或③④解析:本题考查几何体的三视图.由高度可知,侧视图只能为②或③.当侧视图为②时,则该三棱锥的直观图如图1,平面PAC ⊥平面ABC ,2PA PC ==,5BA BC =2AC =,此时俯视图为⑤;当侧视图为③时,则该三棱锥的直观图如图2,PA ⊥平面ABC ,1PA =,5AC AB ==2BC =,此时俯视图为④.12.答案:(1)因为PD ⊥底面ABCD ,AM ⊂底面ABCD , 所以PD AM ⊥.又因为PB AM ⊥,PD PB P ⋂=,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD .因为AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由PD ⊥底面ABCD ,所以PD 即为四棱锥P ABCD -的高,DPB 是直角三角形. 由题可知底面ABCD 是矩形,1PD DC ==,M 为BC 的中点,且PB AM ⊥.设2AD BC a ==,取CD 的中点为E ,CP 的中点为F ,连接MF ,AF , EF ,AE ,可得//MF PB ,//EF DP ,那么AM M F ⊥,AM F 为直角三角形,且12EF =,2144AE a =+,21AM a =+,222142AF EF AE a =++因为DPB 是直角三角形,所以根据勾股定理得224BP a =+,则2242a MF +=.由AM F 是直角三角形,可得222AM MF AF +=,解得22a =, 所以底面ABCD 的面积22S a ==,则四棱锥P ABCD -的体积11221333V S h =⋅⋅=⨯⨯-.13.答案:(1)1111,//,AB BC AB A B BC A B ⊥∴⊥,在1A AC 中,112AA AC AC ===,O 是AC 的中点,1AO AC ∴⊥,又平面11AAC C ⊥平面ABC ,平面11AAC C平面ABC AC =,1A O ∴⊥平面ABC .BC ⊂平面1,ABC AO BC ∴⊥. 111,A B AO ⊂平面111111,A B O A B AO A =,BC ∴⊥平面11A B O , 又BC ⊂平面1BCA ,∴平面1BCA ⊥平面11A B O .(2)如图,连接1B C ,设1B C 与1BC 交于点E ,连接1,OE AB , 易得1//OE AB ,1AB ⊂平面11,ABB A OE ⊄平面11ABB A ,//OE ∴平面11ABB A ,∴满足条件的E 为1BC 的中点.11111 1122E A BCC A BC B A CC V V V ---==三棱锥三棱锥三棱锥21133212346=⨯⨯⨯⨯=, 故三棱锥1E A BC -的体积为36.14.答案:(1)AB ⊥平面BCD ,CF ,BD ⊂平面BCD ,AB CF ∴⊥,AB BD ⊥.2BC CD ==,F 为BD 中点,CF BD ∴⊥.又CF AB ⊥,AB BD B =,AB ,BD ⊂平面ABD ,CF ∴⊥平面ABD .(2)在三棱锥Q DCF -中,设D 到平面QFC 距离为d . Q DCF D QCF V V --=,1133DCFQCFQB Sd S ∴⋅⋅=⋅⋅,DCFQCFQB S d S ⋅∴=.1112π322sin 2223DCFDCBSS ==⨯⨯⨯⨯=,2π44222cos 233BD =+-⨯⨯⨯.AB BD ⊥,3AB =,Q ,F 分别为AB ,BD 的中点.22912212ADAB BD QF ++∴====.QCF 中,π2cos 13CF ==,235422CQ ⎛⎫=+ ⎪⎝⎭,21QF =. 25211244cos 55212QCF +-∴∠==⨯⨯,21sin QCF ∴∠=. 152121122QCFS∴=⨯⨯=. 33372221d ∴==.15.答案:(1)如图,取BC 的中点为M ,连接EM .由已知易得//EM AB ,2AB BC ==,1CF =,112EM AB ==,11//AB A B , 由11BF A B ⊥得EM BF ⊥,又易得EM CF ⊥,BF CF F ⋂=,所以EM ⊥平面BCF , 故1111121132323F EBC E FBC V V BC CF EM --==⨯⨯⨯=⨯⨯⨯⨯=三棱锥三棱锥.(2)连接1A E ,1B M ,由(1)知11//EM A B , 所以ED 在平面11EMB A 内.在正方形11CC B B 中,由于F ,M 分别是1CC ,BC 的中点,所以1tan 2CF CBF BC ∠==,111tan 2BM BB M BB ∠==, 且这两个角都是锐角,所以1CBF BB M ∠=∠, 所以111190BHB BMB CBF BMB BB M ∠=∠+∠=∠+∠=︒, 所以1BF B M ⊥,又11BF A B ⊥,1111B M A B B ⋂=,所以BF ⊥平面11EMB A , 又DE ⊂平面11EMB A ,所以BF DE ⊥.。

2021年全国卷Ⅰ高考理科数学模拟试题含答案解析 (10)

2021年全国卷Ⅰ高考理科数学模拟试题含答案解析 (10)

2021年全国卷Ⅰ高考理科数学模拟试题10学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(共12题,每题5分,共60分)1.已知集合A ={x |-1<x <2},B ={x |2x -1≥0},则A ∩B =A.(1,+∞)B.[12,1) C.(12,2) D.[12,2) 2.若复数1-bi 2+i(b ∈R )的实部与虚部相等,则b 的值为A.-6B.-3C.3D.6 3.函数f (x )=2x2+1,x ∈[−1, √2]的值域为A.[2, 8]B.[4, 8]C.[1, 3]D.[2, 3]4.设△ABC,P 0是边AB 上一定点,满足P 0B=14AB,且对于边AB 上任一点P,恒有PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0⃗⃗⃗⃗ ·P 0⃗⃗⃗⃗ ,则A.∠ABC=90°B.∠BAC=90°C.AB=ACD.AC=BC5.定义在R 上的奇函数f (x )连续且可导,若f (x )-f'(x )<x -1恒成立(其中f'(x )为f (x )的导函数),则A.f'(0)<1B.f (-1)+f'(-1)<0C.f (1)<f (0)<f (-1)D.f (-1)<f (0)<f (1)6.在2019年亚洲杯前,某商家为了鼓励中国球迷组团到阿联酋支持中国队,制作了3种不同的精美海报,每份“中国队球迷礼包”中随机装入一份海报,集齐3种不同的海报就可获得中国队在亚洲杯上所有比赛的门票.现有4个球迷组成的球迷团(每人各买一份球迷礼包),则他们能获得该门票的概率为A.1027B.49C.59D.17277.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若α⊥γ,β⊥γ,则α∥βB.若m ∥α,n ∥α,则m ∥nC.若m ⊥α,n ⊥α,则m ∥nD.若m ∥α,m ∥β,则α∥β8.若执行如图的程序框图,则输出i 的值等于A.2B.3C.4D.59.在等差数列{a n }中,若a 1+a 2+a 3=36,a 11+a 12+a 13=84,则a 5+a 9=A.30B.35C.40D.4510.已知椭圆x 2a 2+y 2b 2=1(a >b >0),以原点O 为圆心的圆(圆的半径小于b )的面积为4π,且经过椭圆的焦点,P 为椭圆上任意一点,Q 为圆上任意一点,若P ,Q 两点间的距离的最小值为1,则椭圆的离心率为A.2√1313 B.√1313C.√32 D.12 11.下列区间中,函数f (x )=7sin(x -π6)单调递增的区间是A.(0,π2)B.(π2,π)C.(π,3π2)D.(3π2,2π)12.如图,已知圆柱OO 1的轴截面是边长为2的正方形,A 1,B 1,C 1是圆O 1的三等分点,BB 1∥AA 1∥OO 1,那么异面直线AC 1与OB 所成角的大小为A.30°B.45°C.60°D.90°第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(共4题,每题5分,共20分)13.曲线f (x )=e x 2-e x (e 是自然对数的底数)在x =1处的切线方程为 . 14.已知数列{a n }与{b n }满足a n =2b n +3(n ∈N ∗),若{b n }的前n 项和为S n =32(3n −1)且λa n >b n +36(n −3)+3λ对一切n ∈N ∗恒成立,则实数λ的取值范围是 . 15.某公司为确定明年投入某产品的广告支出,对近5年的年广告支出m 与年销售额t (单位:百万元) 进行了初步统计,得到下列表格中的数据:经测算,年广告支出m 与年销售额t 满足线性回归方程t ^=6.5m +17.5,则p = .16.已知某双曲线的渐近线方程为3x ±2y =0,且该双曲线经过点(2,-3√2),则该双曲线的实轴长为 .三、解答题(共7题,共70分)17.(本题12分)在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos∠B ,2cos 2∠C 2-1),n =(c ,b -2a ),且m ·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD ⃗⃗⃗⃗⃗ =DB⃗⃗⃗⃗⃗⃗ ,|CD ⃗⃗⃗⃗⃗ |=√7,c =2√3,求△ABC 的面积. 18.(本题12分)如图,棱柱ABCD −A 1B 1C 1D 1的底面是菱形.侧棱长为5,平面ABCD ⊥平面A 1ACC 1,AB =3√3,∠BAD =60°,点E 是ΔABD 的重心,且A 1E =4.(1)求证:平面A 1DC 1∥平面AB 1C ; (2)求棱柱ABCD −A 1B 1C 1D 1的体积.19.(本题12分)某省在高考改革试点方案中规定:从2017年秋季高中入学的新生开始,不分文理科;从2020年开始,高考总成绩由语、数、外三门统考科目和物理、化学等六门选考科目构成.将每门选考科目考生的原始成绩从高到低依次划分为A,B+,B,C+,C,D+,D,E 共8个等级,参照正态分布的原则,确定各等级人数所占比例分别为3%,7%,16%,24%,24%,16%,7%,3%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100],[81,90],[71,80],[61,70],[51,60],[41,50],[31,40],[21,30]八个分数区间,得到考生的等级成绩.某校高一年级共2 000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中物理考试原始成绩基本服从正态分布N (60,132). (1)求该校高一年级学生的物理原始成绩在区间(47,86)的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,X 表示这3人中某门选考科目的等级成绩在区间[61,80]的人数,求X 的分布列和数学期望.附:若随机变量ξ~N (μ,σ2),则P (μ-σ<ξ≤μ+σ)≈0.682 7,P (μ-2σ<ξ≤μ+2σ)≈0.954 5,P (μ-3σ<ξ≤μ+3σ)≈0.997 3.20.(本题12分)已知以F 为焦点的抛物线C :y 2=2px (p >0)过点P (1,-2),直线l 与C 交于A ,B 两点,M 为AB 的中点,O 为坐标原点,且OM ⃗⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =λOF⃗⃗⃗⃗⃗ . (1)当λ=3时,求点M 的坐标; (2)当OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =12时,求直线l 的方程.21.(本题12分)已知函数f (x )=(x −1)e x +ax 2,e 为自然对数的底数.(1)若函数f (x )在(1,f(1))处的切线方程为y =−ex +a +e ,求实数a 的值; (2)讨论f (x )的单调性.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。

2021高考数学 高考模拟卷含答案

2021高考数学 高考模拟卷含答案

3Z22021 高考模拟卷数学本卷满分150 分,考试时间120 分钟一、单项选择题:本题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足(2 + i)z =1- 2i ,其中i 为虚数单位,则z =()A.1 B.-1 C.i D.-i2.设集合A ={x ∈Z x2 -3x - 4 > 0},B ={x | e x-2 <1},则以下集合P 中,满足P ⊆ (C A) B 的是()A.{-1, 0,1, 2}B.{1, 2} C.{1} D.{2}3.已知非零向量a 、b ,若a = b ,a ⊥(a - 2b),则a 与b 的夹角是()πA.6π2πB.C.3 35πD.64.为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2 种主食、3 种素菜、2 种大荤、4 种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有()A.48 种B.36 种C.24 种D.12 种5.已知函数y = f (x) 的图象如图所示,则此函数可能是()A. f (x) =sin 6x2-x - 2xB. f (x) =sin 6x2x - 2-xC. f (x) =cos 6x2-x - 2xD. f (x) =cos 6x2x - 2-x6.已知函数f (x) =x2 +a ln x ,a > 0 ,若曲线y =最小的,则a =()f (x) 在点(1,1) 处的切线是曲线y = f (x) 的所有切线中斜率A.12B.1 C.D.27.若双曲线C :y2-x2=1与双曲线C :x2-y2=的渐近线相同,则双曲线C 的离心率为()1 3 a 6 9 1 122a 5 9 A.10 2B. 15 3C.5 2D.3 38. 对 n ∈ N * ,设 x n 是关于 x 的方程 nx 3 + 2x - n = 0 的实数根,a n = [(n +1)x n ](n = 2, 3,...) ,其中符号[x ] 表示不超过x 的最大整数,则 a 2 + a 3 +a 2020= ( )2019A .1011B .1012C .2019D .2020二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求,全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.9. 某人退休前后各类支出情况如下,已知退休前工资收入为 8000 元月,退休后每月储蓄的金额比退休前每月储蓄的金额少 1500 元,则下面结论中正确的是( )A. 该教师退休前每月储蓄支出 2400 元B. 该教师退休后的旅行支出是退休前旅行支出的 3 倍C. 该教师退休工资收入为 6000 元月D. 该教师退休后的其他支出比退休前的其他支出少10.已知 a > 0 , b > 0 ,且 a 2 + b 2 = 1 ,则( )A . a + b ≤B . 1< 2a -b< 22C .log 2 + log 2 ≥ - 12D . a 2 - b 2 > -111. 北斗卫星导航系统是中国自行研制的全球卫星导航系统,可在全球范围内为各类用户提供全天候、全天时、高 精度、高定位、导航、授时服务,2020 年 7 月 31 日上午,北斗三号全球卫星导航系统正式开通,北斗导航能实现“天地互通”的关键是信号处理,其中某语言通讯的传递可以用函数 f ( x ) = cos x + cos 5x + cos 9x 近似模拟其信号, 则下列结论中正确的是()A .函数 f ( x ) 的最小正周期为πB .函数 f ( x ) 的图象关于点⎛ - π , 0 ⎫对称2 ⎪ ⎝ ⎭b0 0 C. 对任意 x ∈ R ,都有 f '(π - x ) = f '(x ) D. 函数 f '( x ) 的最小值为-312.如图,在长方体 ABCD - A 1B 1C 1D 1 中, AA 1 = AB = 4 , BC = 2 ,M 、N 分别为棱C 1D 1 ,CC 1 的中点,则下列说法正确的是()A .A 、M 、N 、B 四点共面B .平面 ADM ⊥ 平面CDD 1C 1C . B 1M 与 BN 所成角60︒D . BN / / 平面ADM三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知幂函数 y = f (x )的图象过点⎛ 2,1 ⎫,则曲线 y = f (x )在点(1,1) 处的切线方程为4 ⎪ ⎝ ⎭ r r r r14.平面内,不共线的向量 a , b 满足| a + b |=| 2a - b |,且| a |=| a - 2b | ,则 a , b 的夹角的余弦值为.15.某校进行体育抽测,小明与小华都要在50m 跑、跳高、跳远、铅球、标枪、三级跳远这 6 项运动中选出 3 项进行测试,假设他们对这 6 项运动没有偏好,则他们选择的结果至少有 2 项相同的概率为. 16.已知圆 M :( x - x )2 + ( y - y )2 = 8 ,点T (-2,4) ,从坐标原点O 向圆 M 作两条切线OP , OQ ,切点分别为 P , Q ,若切线OP , OQ 的斜率分别为 k 1 , k 2 , k 1k 2 = -1,则 OM 为定值 ,TM 的取值范围为.四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.(本小题 10 分)在① bc = 4 ,② a cos B = 1 ,③ sin A = 2sin B 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求C 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角 A ,B ,C 的对边分别为a ,b ,c ,且b cos C = 1,c sin A = 2sin C , .注:如果选择多个条件分别解答,按第一个解答计分. 18.(本小题 12 分)2 3 3nn n nn已知数列{a }的各项均为正数,记数列{a }的前 n 项和为 S ,数列{a 2 } 的前 n 项和为T ,且3T = S 2 + 2S , n ∈ N * . nnn(1) 求 a 1 的值; (2) 求数列{a n }的通项公式.19.(本小题 12 分)如图,在正三棱柱 ABC - A 1B 1C 1 中, AB =, A 1 A = 2 , D , E , F 分别为线段 AC ,A 1 A , C 1B 的中点.(1) 证明: EF // 平面 ABC ;(2) 求直线C 1B 与平面 BDE 所成角的正弦值.20.(本小题 12 分)利用简单随机抽样的方法,从某校高一年级男生体验表格中抽取 20 名同学的胸围 x (cm ) 与肺活量 y (ml ) 的样本, 计算平均值 x = 80.5 , y = 4030 ,并求出线性回归方程为 y ˆ = 32.26x + a . 高一男生胸围与肺活量样本统计表胸围70 75 80 85 82 73 77 7385 72肺活量 3700 4600 4000 4300 4400 3400 3200 38004400 3500 胸围70 83 7891 817491 76 10490肺活量 3600450037004100470037004600400047003700(1) 求 a 的值;(2) 求样本 y 与 x 的相关系数 r ,并根据相关性检验的临界值表,判断有无99% 把握认为肺活量与胸围线性关系是有意义的(精确到0.001 );(3) 将肺活量不低于 4500ml 视为大肺活量,用样本大肺活量的频率作为全校高一男生大肺活量的概率,求从本校高一年级任意抽取4 名男同学,恰有两名是大肺活量的概率.n∑( i =1nx i- x ) ( y i- y ) 2∑2i =1n2∑( x i- x )( y i- y ) (参考公式及数据:b ˆ =i =1,r = ∑( x i- x )i =1∑( x i- x )( y i- y )i =1,≈ 38 ,≈ 2040 .)附:相关性检验的临界值表n - 2检验水平0.050.01 160.4680.59017 0.456 0.575 18 0.4440.561 19 0.433 0.549 200.4230.53721.(本小题 12 分)如图所示,已知椭圆 x a 2y 2+ = 1(a > b > 0) 的离心率为 b 22 ,一条准线为直线 x =(1)求椭圆的标准方程;(2)A 为椭圆的左顶点,P 为平面内一点(不在坐标轴上),过点 P 作不过原点的直线 l 交椭圆于 C ,D 两点(均不与点 A 重合),直线 AC ,AD 与直线 OP 分别交于 E ,F 两点,若OE = OF ,证明:点 P 在一条确定的直线上运nn∑( x i- x ) i =1202∑ 20 (y - y i )2i =12 22+ + - Z 动.22.(本小题 12 分)设函数 f (x ) = a ⋅ 2x - 2- x (a ∈ R )(1) 若函数 y = f (x ) 的图象关于原点对称,函数 g (x ) = f (x ) + 3,求满足 g (x ) = 0 的 x 的值;20 0(2) 若函数 h (x ) = f (x ) + 4x+ 2 - x 在 x ∈[0,1] 的最大值为-2 ,求实数 a 的值.一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足(2 + i ) z = 1- 2i ,其中i 为虚数单位,则 z = ( )A .1B . -1 【答案】DC . iD . -i【详解】解:由(2 + i ) z = 1- 2i ,得 z =1- 2i = (1- 2i)(2 - i) = -5i = - i ,2 i (2 i)(2 i) 5故选:D2.设集合 A = {x ∈ Z x 2 - 3x - 4 > 0}, B = {x | e x -2 < 1},则以下集合 P 中,满足 P ⊆ (C A)B 的是( )A .{-1, 0,1, 2}B .{1, 2} C .{1} D .{2}【答案】C 【详解】集合 A = {x ∈ Z x 2- 3x - 4 > 0},解得 A = {x ∈ Z x > 4 或 x < -1},B = {x | e x -2 < 1},解得 B = {x | x < 2} ,则ðZ A ={-1, 0,1, 2,3, 4} ,3 3 ( )所以(ðZ A )⋂ B = {-1, 0,1, 2, 3, 4}⋂{x | x < 2} = {-1, 0,1}, 对比四个选项可知,只有 C 符合 P ⊆ (ðZ A ) ⋂ B .3. 已知非零向量 a 、b ,若 a =b , a ⊥ (a - 2b ),则 a 与b 的夹角是()π A. 6π2πB.C .335π D . 6【答案】A【详解】设 a 与b 的夹角为θ,a =b , a ⊥ (a - 2b ),2则 a ⋅ a - 2b = a 2 - 2a ⋅ b = a 2 - 2 a ⋅ b cos θ= 3 b - 2 2 b cos θ= 0 ,可得cos θ=,2Q 0 ≤θ≤π,∴θ= π.64. 为响应国家“节约粮食”的号召,某同学决定在某食堂提供的 2 种主食、3 种素菜、2 种大荤、4 种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有( )A .48 种B .36 种C .24 种D .12 种【答案】B 【详解】解:由题意可知,分三步完成:第一步,从 2 种主食中任选一种有 2 种选法;第二步,从 3 种素菜中任选一种有 3 种选法;第三步,从 6 种荤菜中任选一种有 6 种选法,根据分步计数原理,共有 2⨯ 3⨯ 6 = 36 不同的选取方法, 故选:B5. 已知函数 y =f (x ) 的图象如图所示,则此函数可能是()3 32x ⨯ a x2a 对于 B , - ==对于 C , - ==对于D , - = =A. f (x ) =sin 6x 2- x - 2x B. f (x ) = sin 6x 2x - 2- x C. f (x ) = cos 6x 2- x - 2x D. f (x ) =cos 6x2x - 2- x【答案】D【详解】由函数图象可得 y =f (x ) 是奇函数,且当 x 从右趋近于 0 时, f (x ) > 0 ,对于 A ,当 x 从右趋近于 0 时, sin 6 x > 0 , 2- x < 2x ,故 f (x ) < 0 ,不符合题意,故 A 错误;sin (-6x ) sin 6x f ( x ) = f (x ) ,∴ f ( x ) 是偶函数,不符合题意,故 B 错误; 2- x - 2x 2x - 2- xcos (-6 x ) cos 6x f ( x ) = f (x ) ,∴ f ( x ) 是偶函数,不符合题意,故 C 错误; 2x - 2- x 2x - 2- xcos (-6 x ) cos 6x f ( x ) = - f (x ) ,∴ f ( x ) 是奇函数,当 x 从右趋近于 0 时,cos 6x > 0 ,2x > 2- x , 2- x - 2x 2- x - 2x∴ f ( x ) > 0 ,符合题意,故 D 正确.6. 已知函数 f (x ) = x2+ a ln x , a > 0 ,若曲线 y = 最小的,则a =( )f (x ) 在点(1,1) 处的切线是曲线 y =f (x ) 的所有切线中斜率A . 12【答案】DB .1C .D .2【详解】因为 f (x ) = x 2 + a ln x ,定义域为(0, +∞) , 所以 f '(x ) = 2x + a,x由导数的几何意义可知:当 x = 1 时 f '(x ) 取得最小值,因为 a > 0 , x > 0 ,所以 f '(x ) = 2x + a≥ 2 = 2 ,x 当且仅当 2x = a即 a = 2x 2 时 f '(x ) 取得最小值, x又因为 x = 1 时 f '(x ) 取得最小值,所以 a = 2 ⨯12 = 2 , 7. 若双曲线C : y 2 - x 2 = 1与双曲线C : x 2- y2= 的渐近线相同,则双曲线C 的离心率为( )1 3 a 6 91 12 23 + 23 n +1 =15A.102 B.153C.52D.33【答案】B【详解】C y2 x2 3因为双曲线1 :3-a=1的渐近线方程为y =±x ,a2双曲线C2 :6-y29=1的渐近线方程为y =±3x ,2又这两双曲线的渐近线相同,所以3=3,解得a = 2 ,a 2所以双曲线C1 的离心率e =.38.对n ∈N * ,设x n 是关于x 的方程nx3 + 2x -n = 0 的实数根,a n = [(n +1)x n ](n = 2, 3,...) ,其中符号[x] 表示不超过x 的最大整数,则a2+a3+a2020 =()2019A.1011 B.1012 C.2019 D.2020 【答案】A【详解】设函数f (x)=nx3 + 2x -n ,则f '(x)= 3nx2 + 2 ,当n 时正整数时,可得f '(x)> 0 ,则f (x)为增函数,因为当n ≥ 2 时,f (n) =n ⨯ (nn +1)3 + 2 ⨯ (nn +1) -n=n⋅(-n2 +n +1) < 0 ,(n+1)3且f (1)= 2 > 0 ,所以当n ≥ 2 时,方程nx3 + 2x -n = 0 有唯一的实数根x 且x ∈( n,1) ,n n n +1 所以n < (n +1)x n <n +1, a n = [(n +1)x n ] =n ,因此a2+a3+a2020 =1 (2 +3 +4 ++ 2020) =1011.2019 2019二、多项选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5 分,部分选对的得 3 分,有选错的得0 分.9.某人退休前后各类支出情况如下,已知退休前工资收入为8000 元月,退休后每月储蓄的金额比退休前每月储蓄的金额少1500 元,则下面结论中正确的是()x2aA. 该教师退休前每月储蓄支出 2400 元B. 该教师退休后的旅行支出是退休前旅行支出的 3 倍C. 该教师退休工资收入为 6000 元月D. 该教师退休后的其他支出比退休前的其他支出少【答案】ACD 【详解】 解:退休前工资收入为 8000 元/ 月,每月储蓄的金额占30% ,则该教师退休前每月储蓄支出8000⨯ 30% = 2400元,故 A 正确;该教师退休后每月储蓄的金额比退休前每月储蓄的金额少 1500 元,则该教师退休后每月储蓄的金额为 900 元,设该教师退休工资收入为x 元/ 月,则 x 15% = 900 ,即 x = 6000 元/ 月,故 C 正确;该教师退休前的旅行支出为8000 ⨯ 5% = 400 元,退休后的旅行支出为6000⨯15% = 900 元,∴该教师退休后的旅行支出是退休前旅行支出的 2.25 倍,故 B 错误;该教师退休前的其他支出为8000 ⨯ 20% = 1600 元,退休后的其他支出为6000 ⨯ 25% = 1500 元,∴该教师退休后的其他支出比退休前的其他支出少,故 D 正确. 故选:ACD .10.已知 a > 0 , b > 0 ,且 a 2 + b 2 = 1 ,则( )A . a + b ≤B . 1< 2a -b< 22C .log 2 + log 2 ≥ - 12D . a 2 - b 2 > -1【答案】ABD 【详解】a 2 +b 2 ≥ 2ab ,∴2(a 2 + b 2 )≥ (a + b )2,∴(a + b )2≤ 2 ,又a > 0,b > 0,∴ a + b ≤ 2, 故A 正确;bab 5 9 a > 0 , b > 0 ,且 a 2 + b 2 = 1 ,∴0 < a < 1, 0 < b < 1,∴ -1 < a - b < 1,∴ 1< 2a -b < 2 ,故B 正确;2 a 2 - b 2 > -b 2 > -1,故D 正确;C 等价于log ≥ - 1 ,即 1 log ab ≥ - 1 , log ab ≥ -1, 2 2 2 2 22等价于 ab ≥ 1 ,但当 a = 3 , b = 4 时,满足条件 a > 0 , b > 0 ,且 a 2 + b 2 = 1 , ab = 12 < 1,故 C 错误;2 5 5 25 211. 北斗卫星导航系统是中国自行研制的全球卫星导航系统,可在全球范围内为各类用户提供全天候、全天时、高 精度、高定位、导航、授时服务,2020 年 7 月 31 日上午,北斗三号全球卫星导航系统正式开通,北斗导航能实现“天地互通”的关键是信号处理,其中某语言通讯的传递可以用函数 f ( x ) = cos x + cos 5x + cos 9x 近似模拟其信号, 则下列结论中正确的是()A .函数 f ( x ) 的最小正周期为πB .函数 f ( x ) 的图象关于点⎛ - π , 0 ⎫对称2 ⎪C. 对任意 x ∈ R ,都有 f '(π - x ) = f '(x ) ⎝ ⎭D. 函数 f '( x ) 的最小值为-3【答案】BCD 【详解】A. 因为 y = cos x , y =cos 5x , y = cos 9x 的周期分别是 2π, 2π, 2π ,其最小公倍数为2π,所以函数函数 f (x ) 的最小 5 9 5 9正周期为2π,故错误;cos (- 5π)cos (- 9π)B. 因为 f (- π) = cos (-π)+ 2 + 2 = 0 ,故正确;2 2 5 9C. f '(x ) = -sin x - sin 5 x -sin 9x = f '(π-x ) ,故正确;D. f '(π)= -sin π- sin 5π- sin 9π = -3 ,故正确; 2 2 2 212.如图,在长方体 ABCD - A 1B 1C 1D 1 中, AA 1 = AB = 4 , BC = 2 ,M 、N 分别为棱C 1D 1 ,CC 1 的中点,则下列说法正确的是()A .A 、M 、N 、B 四点共面B .平面 ADM ⊥ 平面CDD 1C 1C . B 1M 与 BN 所成角60︒D . BN / / 平面ADM 【答案】BC 【详解】对于 A ,由图显然 AM 、BN 是异面直线,故 A 、M 、N 、B 四点不共面,故 A 错误;对于 B ,由题意 AD ⊥ 平面CDD 1C 1 , AD ⊂平面 ADM ,故平面 ADM ⊥ 平面CDD 1C 1 ,故 B 正确; 对于 C ,取 CD 的中点 O ,连接 BO 、ON ,可知△BON 为等边三角形,且四边形 BB 1MO 为矩形,BO / / B 1M 所以 B 1M 与 BN 所成角60︒ ,故 C 正确;对于 D , BN / / 平面 AA 1D 1D ,显然 BN 与平面 ADM 不平行,故 D 错误;三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知幂函数 y = f (x )的图象过点⎛ 2,1 ⎫,则曲线 y = f (x )在点(1,1) 处的切线方程为4 ⎪ ⎝ ⎭【答案】 2x + y - 3 = 0【详解】设 f ( x ) = x α,将⎛ 2,1 ⎫代入, 2α= 1,解得α= -2 ,4 ⎪ 4⎝ ⎭∴ f ( x ) = x -2 ,则 f '( x ) = -2x -3 ,∴ f '(1) = -2 , 则切线方程为 y -1 = -2(x -1) ,即 2x + y - 3 = 0 . r r r r14.平面内,不共线的向量 a , b 满足| a + b |=| 2a - b |,且| a |=| a - 2b | ,则 a , b 的夹角的余弦值为.【答案】222 2b 2 2 55 k 1x 0 - y 01 + k 21 k2 x 0 - y 01 + k 222 6 6 6 6 43 C C 3 3 0 0 2 0 2 0 0 0 【详解】r r r r r r r r r r r 2解:由| a + b |=| 2a - b | 得| a + b |2 =| 2a - b |2 ⇒ 2a ⋅b = a ,2 由| a |=| a - 2b | ,故| a |2 =| a - 2b |2⇒ a ⋅b = b ,2 2所 以 a = 2b ⇒ a = b ,cos < 2 a ⋅b b 所以 a ,b >= = = = , 2 a b a b 2 b15.某校进行体育抽测,小明与小华都要在50m 跑、跳高、跳远、铅球、标枪、三级跳远这 6 项运动中选出 3 项进行测试,假设他们对这 6 项运动没有偏好,则他们选择的结果至少有 2 项相同的概率为.1【答案】2【详解】由题意,两人在 6 项运动任选 3 项的选法: C 3C 3= 400种,小明与小华选出 3 项中有 2 项相同的选法: C 2C 1C 1= 180 种, 小明与小华选出 3 项中有 3 项相同的选法: C 3= 20 种,C 2C 1C 1 + C 3 ∴他们选择的结果至少有 2 项相同的概率为 P = 6 4 3 6 6 6= 1, 216.已知圆 M : ( x - x )2+ ( y - y )2= 8,点T (-2, 4) ,从坐标原点O 向圆 M 作两条切线OP , OQ ,切点分别为 P , Q ,若切线OP , OQ 的斜率分别为 k 1 , k 2 , k 1k 2 = -1,则 OM 为定值 ,TM 的取值范围为.【答案】4 ⎡2 - 4, 2 + 4⎤⎣ ⎦ 【详解】由题意可知,直线OP : y = k 1 x , OQ : y = k 2 x , 因为直线OP , OQ 与圆 M 相切, 所以= 2 2 , = 2 ,两边同时平方整理可得 k2 (8 - x 2) + 2k x y + 8 - y 2= 0 ,11 0 0k 2 (8 - x 2 ) + 2k x y + 8 - y 2 = 0 ,5 5 0 00 0 01 20 0nn n nn所以 k , k 是方程k 2(8 - x 2) + 2kx y + 8 - y2 = 0(k ≠ 0) 的两个不相等的实数根,所以 k 1k 2 8 - y 2= 0 8 - x 2.又 k 1k 2 = -1,8 - y 2所以8 - x 2= -1 ,即 x 2+ y 2= 16 ,则 OM = 4 ;又 TO = = 2 ,根据圆的性质可得,所以 TO - 4 ≤ TM ≤ TO + 4 ,即 2 - 4 ≤ TM ≤ 2 5 + 4 .四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.在① bc = 4 ,② a cos B = 1 ,③ sin A = 2sin B 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求C 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角 A ,B ,C 的对边分别为a ,b ,c ,且b cos C = 1,c sin A = 2sin C , .注:如果选择多个条件分别解答,按第一个解答计分. 【详解】若选①,bc =4,由于 c sin A =2sin C ,利用正弦定理可得 ac =2c ,可得 a =2,因为 b cos C =1,1 可得 cos C = ba 2 +b 2 -c 2=2abπ,整理可得 2a =a 2+b 2﹣c 2,解得 b =c =2,所以 C = .3若选②,a cos B =1,因为 c sin A =2sin C ,由正弦定理可得 ca =2c ,解得 a =2,1 π 所以 cos B =2 ,由 B ∈(0,π),可得 B = 3,又 b cos C =1,可得 a cos B =b cos C ,由余弦定理可得 a •a 2 + c 2 -b 2 2ac =b • a 2 + b 2 - c 2 2abπ ,整理可得b =c ,所以 C =B = . 3若选③,sin A =2sin B ,由正弦定理可得 a =2b ,又 c sin A =2sin C ,由正弦定理可得 ca =2c ,可得 a =2,所以 b =1, 又因为 b cos C =1,可得 cos C =1,又 C ∈(0,π), 所以这样的 C 不存在,即问题中的三角形不存在.18.已知数列{a }的各项均为正数,记数列{a }的前 n 项和为 S ,数列{a 2 } 的前 n 项和为T ,且3T = S 2 + 2S , n ∈ N *.nnn(1) 求 a 1 的值;x 2+ y 2 0 0 4 + 162 3 3n +n+n+n n a (2) 求数列{a n }的通项公式.【详解】(1)由 3T 1= S 2+2S 1,得 3 a 2= a 2+2a 1,即 a 2-a 1=0.因为 a > 0 ,所以 a = 1 ;11111 1(2)因为 3T n = S 2+2S n ,① 所以 3T n 1= S2+2S n 1, ② ②-①,得 3 a 2= S2- S 2+2a n 1,即 3 a 2=(S n +a n 1)2- S 2 +2a n 1.因为a > 0 , 所以 a n +1=S n +1, ③ 所以 a n +2=S n +1+1, ④④-③,得 a n +2-a n +1=a n +1,即 a n +2=2a n +1,所以当 n ≥2 时,a n +1a n=2,又由3T = S 2 + 2S ,得 3(1+ a 2 )=(1+a 2)2+2(1+a 2),即 a 2- 2a = 0 ,2222 22因为 a > 0 ,所以 a = 2 ,所以 a 2=2,所以对任意的 n ∈N *,都有a n +1= 2 成立, 22 1 n所以数列{a }的通项公式为 a = 2n -1.19.如图,在正三棱柱 ABC - A 1B 1C 1 中, AB =, A 1 A = 2, D , E , F 分别为线段 AC , A 1 A ,C 1B 的中点.(1) 证明: EF // 平面 ABC ;(2) 求直线C 1B 与平面 BDE 所成角的正弦值.【详解】(1) 如图,取 BC 的中点G ,连结 AG , FG .a2 333 3在BCC 1 中,因为 F 为C 1B 的中点,所以 FG //C C , FG = 1C C .12 1在三棱柱 ABC - A 1B 1C 1 中, A 1 A //C 1C , A 1 A = C 1C ,且 E 为 A 1 A 的中点, 所以 FG //EA , FG = EA . 所以四边形 AEFG 是平行四边形. 所以 EF //AG .因为 EF ⊄ 平面 ABC , AG ⊂平面 ABC , 所以 EF // 平面 ABC .(2) 以 D 为坐标原点,如图所示建立空间直角坐标系,因为 AB =,所以 BD = 1,所以 D (0, 0, 0) , B (0,1, 0) , C ⎛ 3 , 0, 2 ⎫ , E ⎛ - 3 , 0,1⎫,1 3 ⎪ 3 ⎪ ⎝ ⎭ ⎝ ⎭⎛ ⎫ ⎛ ⎫所以 BC 1 = 3 , -1, 2 ⎪ , DB = (0,1, 0) , DE = - 3 , 0,1⎪ , ⎝ ⎭ ⎝ ⎭设平面 BDE 的一个法向量为n = (a , b , c ) ,3 3 3 3 n∑( i =1nx i- x ) ( y i- y ) 2∑2i =1n2⎧DB ⋅ ⎧b = 0 则⎨ n = 0 ⎪ ,即, ⎩DE ⋅ = 0 ⎨- 3 a + c = 0 n ⎪⎩ 3取 a = 3 ,则c = 1,所以 n = ( 3, 0,1) ,n ⋅ BC 11 + 2所以cos < n , B C 1 >== = 8 , | n | | BC 1 | 4 ⋅16 3直线C 1B 与平面 BDE 所成角为θ,则θ与< n , BC 1 > 或它的补角互余,所以sin θ= cos < n , BC 1 > =n ⋅ BC 1= . n ⋅ BC 18 20.利用简单随机抽样的方法,从某校高一年级男生体验表格中抽取 20 名同学的胸围 x (cm ) 与肺活量 y (ml ) 的样本,计算平均值 x = 80.5 , y = 4030 ,并求出线性回归方程为 yˆ = 32.26x + a . 高一男生胸围与肺活量样本统计表胸围70 75 80 85 82 73 77 7385 72肺活量 3700 4600 4000 4300 4400 3400 3200 38004400 3500 胸围70 83 7891 817491 76 10490肺活量 3600450037004100470037004600400047003700(1) 求 a 的值;(2) 求样本 y 与 x 的相关系数 r ,并根据相关性检验的临界值表,判断有无99% 把握认为肺活量与胸围线性关系是有意义的(精确到0.001 );(3) 将肺活量不低于 4500ml 视为大肺活量,用样本大肺活量的频率作为全校高一男生大肺活量的概率,求从本校高一年级任意抽取4 名男同学,恰有两名是大肺活量的概率.∑( x i- x )( y i- y ) (参考公式及数据:b ˆ =i =1,r = ∑( x i- x )i =1∑( x i- x )( y i- y )i =1,≈ 38 ,≈ 2040 .)附:相关性检验的临界值表nn∑( x i - x )i =1202∑ 20 (y - y i )2i =14 44n - 2检验水平0.050.01 160.4680.59017 0.456 0.575 18 0.4440.561 19 0.433 0.549 200.4230.537【详解】( 1)由于回归直线: yˆ =32.26x +a 过点(80.5,4030), 所以 a =4030-32.26x 80.5=1433.07.( 2)假设 H 0:变量 x ,y 不具有线性相关关系, 38所以 r =2040⨯ 32.26≈0.601,由相关性检验临界值表知:r 001=0.561,r =0.601>0.561,所以有 99%的把握认为肺活量的大小与胸围具有线性相关关系.( 3)从统计表中可知,20 个样本中不低于 4500m /有 5 个,所以全校高一男生大肺活量的概率为 5 = 120 4设从高一年级任取 4 名男同学,恰有两名男生是大肺活量的概率为ρ,⎛ 1 ⎫2 ⎛ 3 ⎫227 则 p = C 2=. ⎪ ⎪ ⎝ ⎭ ⎝ ⎭128 27所以从高一年级任取 4 名男同学,恰有两名男生是大肺活量的概率为.12821.如图所示,已知椭圆 x a 2 y 2+ = 1(a > b > 0) 的离心率为 b 22 ,一条准线为直线 x = 2 2222 2 2(1)求椭圆的标准方程;(2)A 为椭圆的左顶点,P 为平面内一点(不在坐标轴上),过点 P 作不过原点的直线 l 交椭圆于 C ,D 两点(均不与点 A 重合),直线 AC ,AD 与直线 OP 分别交于 E ,F 两点,若OE = OF ,证明:点 P 在一条确定的直线上运动. 【详解】(1) 设圆的焦距为 2c .因为椭圆的离心率为 2,一条准线为直线 x = , 2所以e = c = , a= ,a 2 c从而 a 2 = 1, c 2= 1 ,从而b 2 = a 2 - c 2= 1.22所以椭圆的标准方程为 x 2 + 2 y 2 = 1 .(2) 因为点 P 不在坐标轴上,所以直线 OP 的斜率存在且不为 0.设直线 CD 的方程为 y = mx + n ,直线 EF 的方程为 y = kx ,设点C (x 1 , mx 1 + n ) ,点 D ( x 2 , mx 2 + n ) ,点 P ( x 0 , y 0 ), 由题设知 A (-1, 0) .因为点 A 、C 不重合,所以直线 AC 的方程为y = mx 1 + n(x +1) . x 1 +1⎧ y = mx 1 + n (x + 1)mx + n 联立⎪ x +1 ,可得点 E 的横坐标 x = 1 . ⎨ 1 ⎪⎩y = kx (k - m )x 1 + k - nE⎩ ⎩ n同理可得点 F 的横坐标 x =mx 2 + n.(k - m )x 2 + k - n因为OE = OF ,所以 x E + x F = 0 ,整理得2m (k - m ) x 1 x 2 + (mk + nk - 2mn ) ( x 1 + x 2 ) + 2n (k - n ) = 0 (*)⎧ y = mx + n 联立⎨x 2 + 2 y 2= 1,可得(2m 2+1) x 2 + 4mnx + 2n 2 -1 = 0 .所以∆ = 4(2m 2 - 2n 2+1)> 0 , x + x = -4mn , x x 2n 2-1 = - ,1 2 2m 2 +11 22m 2+1代入(*)式,有 2m (k - m ) (2n 2-1) - (mk + nk - 2mn ) ⋅ 4mn + 2n (2m 2+1)(k - n ) = 0 ,整理得(n - m )(n + m - k ) = 0 .因为直线 CD 不过点 A ,所以 n - m ≠ 0 ,因而 n + m - k = 0 .联立⎧ y = mx + n ,可得(k - m )x = n .⎨y = kx因为直线 CD 不过原点,所以 n ≠ 0 ,因而 k - m ≠ 0 .所以 x 0 =k - m= 1 ,因而点 P 在直线 x = 1 上运动22.设函数 f (x ) = a ⋅ 2x - 2- x (a ∈ R )(1) 若函数 y = f (x ) 的图象关于原点对称,函数 g (x ) = f (x ) + 3,求满足 g (x ) = 0 的 x 的值;20 0(2) 若函数 h (x ) = f (x ) + 4x+ 2 - x 在 x ∈[0,1] 的最大值为-2 ,求实数 a 的值.【详解】(1)∵ f (x ) 的图象关于原点对称,∴ f (-x ) + f (x ) = 0 ,∴ a ⋅ 2- x - 2- x + a ⋅ 2x - 2x = 0 ,即(a - 1) ⋅ (2- x + 2x )= 0 ,所以 a = 1 ;令 g (x ) = 2x - 2- x+ 3= 0 ,2则 2 ⋅ (2x)2+ 3⋅ (2x )- 2 = 0 ,∴ (2x+ 2)⋅(2 ⋅ 2x-1)= 0 ,又 2x > 0 ,∴ x = -1 ,F所以满足g (x0 )= 0 的x0 的值为x0 =-1 .(2)h(x) =a ⋅ 2x - 2-x + 4x + 2-x ,x ∈[0,1],令2x =t ∈[1, 2] ,h(x) =H (t) =t2+at, t ∈[1, 2] ,对称轴t =-a ,0 2①当1 -a≤3,即a ≥-3 时,2 2Hmax(t) =H (2) = 4 + 2a =-2 ,∴a =-3;②当-a>3,即a <-3 时,2 2Hmax(t) =H (1) = 1+a =-2 ,∴a=-3(舍);综上:实数a 的值为-3 .高考试题年年在变,但考查的内容和知识点是相对稳定的,解答题的考查内容基本是固定的,取得高分一定有规律可找,基础知识+二级结论+ 技巧模板是实现高分的必经途径,这是众多优秀学生检验了无数遍的真理,抓住核心题型集中归类突破,就能举一反三,不必题海战术.学会对题型的总结反思与解题方法的优化,就会突破瓶颈。

2021年新高考数学全国卷模拟(附参考答案和详解)

2021年新高考数学全国卷模拟(附参考答案和详解)

绝密★启用前2021年普通高等学校招生模拟考试(全国卷Ⅰ)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数2(2i)-对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{|3213}A x x =-≤-≤,集合B 为函数lg(1)y x =-的定义域,则A B =( )A.(1,2)B.[1,2]C.[1,2)D.(1,2]3.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( ) A.92-B.0C.3D.1524.使3nx⎛+ ⎝()n +∈N 的展开式中含有常数项的最小的n 为( )A.4B.5C.6D.75.容量为20的样本数据,分组后的频数如下表:A.0.35B.0.45C.0.55D.0.656.已知过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则a =( ) A.12-B.1C.2D.127.命题"存在一个无理数,它的平方是有理数"的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数8.已知50,log ,lg ,510db b a bc >===,则下列等式一定成立的是( )A.d ac =B.a cd =C.c ad =D.d a c =+二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数大于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差10.如果双曲线的离心率51e +=有( )A.双曲线221251x =-是黄金双曲线 B.双曲线22151y -=+是黄金双曲线 C.在双曲线22221x y a b-=中,1F 为左焦点,2A 为右顶点,1(0,)B b ,若11290F B A ∠=,则该双曲线是黄金双曲线D.在双曲线22221x y a b-=中,过焦点2F 作实轴的垂线交双曲线于M ,N 两点,O 为坐标原点,若120MON ∠=,则该双曲线是黄金双曲线11.已知m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列4个命题,其中真命题有( ) A.若m α⊂,n α,则m n B.若m α⊥,n α,则m n ⊥ C.若m α⊥,m β⊥,则αβD.若m α,n α,则m n12.已知()f x 为定义在R 上的偶函数,当0x ≥时,有(1)()f x f x +=-,且当[0,1)x ∈时,2()log (1)f x x =+.给出下列命题,其中正确的命题的为( )A.(2016)(2017)0f f +-=B.函数()f x 在定义域上是周期为2的周期函数C.直线y x =与函数()f x 的图像有1个交点D.函数()f x 的值域为(1,1)-第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。

2021届高考高三模拟考试数学试题

2021届高考高三模拟考试数学试题

2021届高考高三模拟考试数学试题1、已知集合A={x|-2≤x<4},B={x|-5<x≤3},则A∩B=()A、{x|-5<x<4}B、{x|-5<x≤-2}C、{x|-2≤x≤3}D、{x|3≤x<4}答案:C2、“a>1”是“(a-1)(a-2)<0”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件答案:B3、已知变量x,y之间的一组数据如下表:若y关于x的线性回归方程为ŷ=ax+b,则a=()x。

y3.2.54.35.46.4.5A、0.1B、0.2C、0.35D、0.45答案:D4、已知a,b为不同直线,α,β为不同平面,则下列结论正确的是()A、XXX⊥α,b⊥a,则b//αB、若a,b∥α,a//β,b//β,则α//βC、若a//α,b⊥β,a//b,则α⊥βD、若α∩β=b,XXXα,a⊥b,则α⊥β答案:C5、高一某班有5名同学报名参加学校组织的三个不同社区服务小组,每个小组至多可接收该班2名同学,每名同学只能报一个小组,则报名方案有()A、15种B、90种C、120种D、180种答案:B6、已知α∈(π,π),tanα=-3,则sin(α-π/4)等于()A、-5/24πB、-3/5C、3/5D、5/24π答案:B7、随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益。

假设某放射性同位素的衰变过程中,其含量N(单位:XXX)与时间t(单位:天)满足函数关系N(t)=P(t)P,其中P为t=0时该放射性同位素的含量。

已知t=15时,该放射性同位素的瞬时变化率为-10ln2,则该放射性同位素含量为4.5贝克时衰变所需时间为()A、20天B、30天C、45天D、60天答案:C8、定义运算⊕:①对∀m∈R,m⊕m=m;②对∀m,n,p∈R,(m⊕n)⊕p=p⊕(mn)+m⊕p+n⊕p。

2021届新高考全国100所名校高考模拟示范卷(一)数学试题(word版,含解析)

2021届新高考全国100所名校高考模拟示范卷(一)数学试题(word版,含解析)

2021年普通高等学校招生全国统一考试数学模拟测试一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,2z i i =-+则z= A.2-iB.1-2iC.-1+2iD.-2+i 2.已知集合2{|30},{2,2}A x x x a B =-+==-,若A∩B={2},则A ∪B=A.{-2,1,2}B.{-2,-1,2}C.{-2,3,2}D.{-2,2}3.62()x x-的展开式的常数项为 A.-120 B.-60 C.120 D.604.某实验室针对某种新型病毒研发了一种疫苗,并在500名志愿者身上进行了人体注射实验,发现注射疫苗的志愿者均产生了稳定的免疫应答。若这些志愿者的某免疫反应蛋白M 的数值X(单位:mg/L)近似服从正态分布2(15,),N σ且X 在区间(10,20)内的人数占总人数的19,25则这些志愿者中免疫反应蛋白M 的数值X 不低于20的人数大约为A.30B.60C.70D.140 5.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念。星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗。到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念。天体的明暗程度可以用星等或亮度来描述。两颗星的星等与亮度满足12212.5(lg lg )m m E E -=-,其中星等为i m 的星星的亮度为(1,2).i E i =已知"角宿一"的星等是0.97,"水委一"的星等是0.47.“水委一”的亮度是"角宿一"亮度的r 倍,则与r 最接近的是(当|x|较小时,2101 2.3 2.7x x x ≈++)A.1.56B.1.57C.1.58D.1.596.已知圆C:22(3)(3)9x y -++=,直线l:(m+1)x+(2-m)y-3m=0,则当圆心C 到直线l 的距离最大时,直线l 被圆C 所截得的弦长为A.4 .25B .23C .27D7.如图,在四棱锥P-ABCD 中,PD ⊥平面ABCD,底面ABCD 是梯形,2//,,43AB CD BCD AB π∠==,PD=BC=CD=2,则四棱锥P-ABCD 的外接球的表面积为A.16πB.18πC.20πD.24π8.已知抛物线2:2(0)C y px p =>的焦点为F(1,0),准线为l,过焦点F 的直线交抛物线C 于点A 、B(A 在x 轴上方),且点A 的横坐标为3,D 是y 轴正半轴上一点,O 为坐标原点,∠ODA 的角平分线过AF 的中点,则点D 的坐标为A.(0,2) 53.(0,)2B C.(0,3) .(0,33)D二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。9.已知曲线C:221.x y a b+= A.若C 是双曲线,则ab<0B.若a>0,C 是离心率为2的双曲线,则3b a =- C.若ab>0,则C 是椭圆D.若C 是离心率为12的椭圆,则34b a = 10.已知()cos()(0,0,0)f x A x B A ωϕωϕπ=++>><<,其部分图象如图所示,M 、N 分别为最高点、最低点,则A.A=7B.B=29 .4C πϕ= D.f(11)=32.511.如图,平面α∩平面β=直线l,点A,C ∈α,点B,D ∈β,且A 、B 、C 、D ∉l,点M 、N 分别是线段AB 、CD 的中点。A.当直线AC 与BD 相交时,交点一定在直线l 上B.当直线AB 与CD 异面时,MN 可能与l 平行C.当A 、B 、C 、D 四点共面且AC//l 时,BD//lD.当M 、N 两点重合时,直线AC 与l 不可能相交12.已知数列{}n a 的通项公式是2,n n a =1a 和2a 之间插入1个数11,x 使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n n n x x x ,使121,,,,,n nn n n n a x x x a +成等差数列。这样得到新数列{}:n b 1112212233132334,,,,,,,,,a x a x x a x x x a …,记数列{}n b 的前n 项和为,n S 则836.A a b =B.112132n n n n n n n a x x x a n -++++++=⋅ 38.320C b = 45.6401D S =三、填空题:本题共4小题,每小题5分,共20分。把答案填在答题卡中的横线上。13.若向量a =(1,2),b -a =(-2,1),则a ·b =____.14.若函数21()7ln 2f x x x a x =-++在x=2处取极值,则a=____ ,f(x)的极大值为____.15.已知正实数a,b,c 满足22243,a b c +=则2c c a b +的最小值为____. 16.如图,在△ABC 中,,3BAC A π∠=B=3,AC=2,点D 为边BC 上一个动点,将△ABD 沿AD 翻折,使得点B到达B '的位置,且平面AB D '⊥平面ACD.当CD=_____时,B C '到最小值。四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)在3210,9,3a S b ==<-①②③这三个条件中任选一个,补充在下面问题中。设n S 为各项均为正数的数列{}n a 的前n 项和,满足____2,36nn n a a S b +=+是否存在实数b,使得数列{}n a 成为等差数列?若存在,求出b 和数列{}n a 的通项公式;若不存在,请说明理由。(注:如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)第七次全国人口普查是指中国在2020年开展的全国人口普查,普查标准时点是2020年11月1日零时,将彻查人口出生变动情况以及房屋情况。普查对象是普查标准时点在中华人民共和国境内的自然人以及在中华人民共和国境外但未定居的中国公民,不包括在中华人民共和国境内短期停留的境外人员。普查主要调查人口和住户的基本情况,内容包括:姓名、公民身份证号码、性别、年龄、民族、受教育程度、行业、职业、迁移流动、婚姻生育、死亡、住房情况等。普查登记方式全程电子化方式普查,由普查员使用手机上门入户登记或由普查对象通过互联网自主填报。某机构调查了100位居名的普查登记方式,数据统计如下表,部分数据缺失 普查员使用手机上门入户登记 通过互联网自主填报 年龄不超过40岁10 a 年龄超过40岁b 15已知从调查的居民中任取一人,其年龄不超过40岁的概率比其年龄超过40岁的概率大110. (1)求a,b 的值;(2)是否有99%的把握认为年龄与普查登记方式有关?附:22()()()()()n ad bc a b c K d a c b d -=++++其中n=a+b+c+d.P(K 2≥k 0) 0.050 0.010 0.001K 0 3.841 6.635 10.82819.(本小题满分12分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知28sin 72cos2.2B C A -+-=(1)求A;(2)若7,a =b+c=5,求BC 边上的高.20.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,∠ACB=90°,1,.AC BC AB AA ==D 、E 分别是1CC 、1BB 的中点.(1)证明:1C E ⊥平面ACB 1;(2)求二面角1C AB D --的余弦值.21.(本小题满分12分)已知12F F 、分别为椭圆C:22184x y +=的左、右焦点,点M 是椭圆C 上异于左、右顶点的一点,过点1F 作12F MF ∠的外角平分线的垂线交2F M 的延长线于P 点.(1)当M 点在椭圆C.上运动时,求P 点的轨迹方程E.(2)设点N(t,0)(t≠0),过点N 作一条斜率存在且不为0的直线l 交椭圆C 于A,B 两点,点B 关于x 轴的对称点为B '直线AB '交x 轴于点T,O 是坐标原点,求证:|ON|·|OT|为定值.22.(本小题满分12分)已知函数2()ln 1.f x x x =-+(1)求曲线y= f(x)在点(1,f(1))处的切线方程;(2)若方程f(x)=b 有两个实数根12,,x x 且12,x x <证明:2112.x x b -<-。

2021年全国高考数学模拟试卷(三)(5月份)

2021年全国高考数学模拟试卷(三)(5月份)

2021年全国高考数学模拟试卷(三)(5月份)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|9﹣x2>0},B={x|0<x﹣1≤3},则(∁R A)∩B=()A.(﹣3,4]B.[3,4]C.[﹣3,3)D.(3,4]2.(5分)若复数z满足z﹣iz=3i+4,则|z|=()A.B.C.D.53.(5分)已知点P(,),O为坐标原点,线段OP原点O时针旋转,到达线段OP1,则点P1的坐标为()A.(,)B.(,)C.(,)D.(,)4.(5分)设数列{a n}的前n项和为S n,若a n=,则S99=()A.7B.8C.9D.105.(5分)命题“∀x>2,x2+2>6”的否定()A.∃x≥2,x2+2>6B.∃x≤2,x2+2≤6C.∃x≤2,x2+2>6D.∃x>2,x2+2≤66.(5分)在平面直角坐标系中,四点坐标分别为A(2,0),B(3,2﹣),C(1,2+),D(4,a),若它们都在同一个圆周上,则a的值为()A.0B.1C.2D.7.(5分)《九章算术》是中国古代的一部数学著作,著作中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶”.现有一个刍甍如图所示,四边形ABCD是边长为4的正方形,△ADE与△BCF是等边三角形,EF∥AB,AB=2EF,则该刍甍的外接球的半径为()A.B.C.D.8.(5分)若不等式lnx≤ax+b恒成立,则2a+b的最小值为()A.2B.3C.ln2D.5二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得2分。

9.(5分)下列说法正确的是()A.若,,为平面向量,∥,∥,则∥B.若,,为平面向量,⊥,⊥,则∥C.若||=1,||=2,()⊥,则在方向上的投影为﹣D.在△ABC中,M是AB的中点,=3,BN与CM交于点P,=+,则λ=2μ10.(5分)若正实数a,b满足a+b=2,则下列说法正确的是()A.ab的最大值为1B.的最大值为2C.a2+b2的最小值为1D.2a2+b2的最小值为11.(5分)在(x2+x+1)3(x2+)2的展开式中,下列说法正确的是()A.x4的系数为16B.各项系数和为108C.无x5项D.x2的系数为812.(5分)若函数f(x)=,g(x)=xf(x),则下列说法正确的是()A.f(x)为周期函数,无最小正周期B.g(x)为单调函数C.∀x1,x2∈R,∃x3∈R满足g(x3)=成立D.∀x1∈R,∃x2∈R满足g2(x2)=g(x1)三、填空题:本题共4小题,每小题5分,共20分。

2021年全国新高考卷数学试题含答案

2021年全国新高考卷数学试题含答案

2021年全国新高考卷数学试题含答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知集合A={x|0<x<3},B={x|x≤2},则A∩B等于()A. {x|0<x<2}B. {x|0<x≤2}C. {x|0≤x<3}D. {x|0≤x≤2}3. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 44. 若复数z满足|z|=1,则z的共轭复数z的模等于()A. 0B. 1C. 2D. z5. 下列函数中,在区间(0,+∞)上单调递减的是()A. y = e^xB. y = ln(x)C. y = x^2D. y = 1/x二、判断题(每题1分,共5分)1. 两个平行线的斜率相等。

()2. 若矩阵A可逆,则其行列式值不为0。

()3. 任何两个实数的和都是实数。

()4. 二项式展开式中,各项系数的和等于2的n次方。

()5. 函数y = x^3在区间(∞,+∞)上单调递增。

()三、填空题(每题1分,共5分)1. 若向量a=(1,2),b=(1,3),则向量a与向量b的夹角余弦值为______。

2. 在等比数列{bn}中,若b1=2,公比q=3,则b6=______。

3. 若函数f(x)=3x^24x+1,则f'(x)=______。

4. 三角形内角和为______。

5. 圆的标准方程为(xa)^2+(yb)^2=r^2,其中圆心坐标为______。

四、简答题(每题2分,共10分)1. 简述函数的极值的定义。

2. 什么是排列组合?请举例说明。

3. 请写出余弦定理的公式。

4. 简述概率的基本性质。

5. 举例说明平面向量的线性运算。

五、应用题(每题2分,共10分)1. 已知函数f(x)=x^22x+1,求f(x)的最小值。

2. 设有4个红球,3个蓝球,求从中任取3个球,恰有2个红球的概率。

安徽省黄山市2021届高三上学期第一次模拟数学(理)试卷 Word版含解析

安徽省黄山市2021届高三上学期第一次模拟数学(理)试卷 Word版含解析

2021年安徽省黄山市高考数学一模试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z满足方程Z2+2=0,则z=()A.±i B.± C.﹣i D.﹣2.函数f(x)=lgx ﹣的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,10)3.“tanx=”是“x=2kπ+(k∈Z)”成立的()A.充分不必要条件 B.必要不充分条件C.充分条件 D.既不充分也不必要条件4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点之间的距离不小于该正方形边长的概率为()A. B. C. D.5.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ36.已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A. B. C. D.7.如图1,已知点E、F、G分别是棱长为a的正方体ABCD﹣A1B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,点P到平面MNQ的距离为()A. a B. a C. a D. a8.数列{a n}满足a n+1=,若a1=,则a2021=()A. B. C. D.9.己知函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是()A.(﹣∞,﹣2)∪(0,2] B.(﹣2,0)∪(﹣2,2] C.(﹣2,2] D.(0,+∞)10.由无理数引发的数学危机始终连续到19世纪.直到1872年,德国数学家戴德金从连续性的要求动身,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试推断,对于任一戴德金分割(M,N),下列选项中,不行能成立的是()A. M没有最大元素,N有一个最小元素B. M没有最大元素,N也没有最小元素C. M有一个最大元素,N有一个最小元素D. M有一个最大元素,N没有最小元素三、填空题(本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置上)11.在极坐标系中,点P(2,)到极轴的距离为.12.已知两点A(1,0),B(l,1),O为坐标原点,点C在其次象限,且∠AOC=135°,设=+λ(λ∈R),则λ的值为.13.已知x>0,y>0,且2y+x﹣xy=0,若x+2y﹣m>0恒成立,则实数m 的取值范围是.14.执行如图所示的程序框图,则输出结果S的值为.15.在直角坐标系中,定义两点P(x1,y l),Q(x2,y2)之间的“直角距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有以下命题:①若P,Q是x轴上两点,则d(P,Q)=|x1﹣x2|;②已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;③原点O到直线x﹣y+l=0上任意一点P的直角距离d(O,P)的最小值为;④若|PQ|表示P、Q两点间的距离,那么|PQ|≥d(P,Q);其中为真命题的是(写出全部真命题的序号).三、解答题(本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内)16.己知=(sin(θ﹣),﹣1),=(﹣1,3)其中θ∈(0,),且∥.(1)求sinθ的值;(2)已知△ABC 中,∠A=θ,BC=2+1,求边AC的最大值.17.四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点(1)求证:QP⊥AC;(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长.18.甲、乙两人参与某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙只能答对其中的5道题,规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分低于o分时记为0分(即最低为0分),至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.19.已知函数f(x)=lnx+cosx﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值:(2)若对任意n∈N*,都有a n+2n2≥0成立,求a1的取值范围.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.21.已知函数f(x)=ax﹣1﹣1n x.(1)若f(x)≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2)求证:对任意的x∈N*,<e(其中e为自然对数的底,e≈2.71828).2021年安徽省黄山市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z满足方程Z2+2=0,则z=()A.±i B.± C.﹣i D.﹣考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:设z=a+bi(a,b∈R),由于复数z满足方程Z2+2=0,可得a2﹣b2+2+2abi=0,利用复数相等即可得出.解答:解:设z=a+bi(a,b∈R),∵复数z满足方程Z2+2=0,∴(a+bi)2+2=0,∴a2﹣b2+2+2abi=0,∴,解得,∴z=.故选:A.点评:本题考查了复数的运算法则、复数相等,属于基础题.2.函数f(x)=lgx ﹣的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,10)考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:由函数的连续性及f(2)=lg2﹣=lg2﹣lg<0,f(3)=lg3﹣lg>0;从而推断.解答:解:函数f(x)=lgx ﹣在定义域上连续,f(2)=lg2﹣=lg2﹣lg<0,f(3)=lg3﹣lg>0;故f(2)f(3)<0;从而可知,函数f(x)=lgx ﹣的零点所在的区间是(2,3);故选C.点评:本题考查了函数的零点的判定定理的应用,属于基础题.3.“tanx=”是“x=2kπ+(k∈Z)”成立的()A.充分不必要条件 B.必要不充分条件C.充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:三角函数的求值;简易规律.分析:依据三角函数的性质结合充分条件和必要条件的定义进行推断即可.解答:解:若tanx=,则x=kπ+,k∈Z,则“tanx=”是“x=2kπ+(k∈Z)”成立的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的推断,比较基础.4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点之间的距离不小于该正方形边长的概率为()A. B. C. D.考点:几何概型.专题:概率与统计.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,其中4条长度为1,4条长度为,两条长度为,满足这2个点之间的距离不小于该正方形边长的有4+2=6条,∴所求概率为P==.故选:A点评:本题考查概率的计算,列举出满足条件的基本大事是关键.5.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3考点:正态分布曲线的特点及曲线所表示的意义.专题:数形结合.分析:正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比其次和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.解答:解:∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比其次和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到其次个图象的σ比第三个的σ要小,故选D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和外形的影响,是一个基础题.6.已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A. B. C. D.考点:双曲线的简洁性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:由及c2=a2+b2,得的取值范围,设一条渐近线与实轴所成的角为θ,可由tanθ=及0<θ<探求θ的取值范围.解答:解:∵e,∴2≤≤4,又∵c2=a2+b2,∴2≤≤4,即1≤≤3,得1≤≤.由题意知,为双曲线的一条渐近线的方程,设此渐近线与实轴所成的角为θ,则,即1≤tan θ≤.∵0<θ<,∴≤θ≤,即θ的取值范围是.故答案为:C.点评:本题考查了双曲线的离心率及正切函数的图象与性质等,关键是通过c2=a2+b2将离心率的范围转化为渐近线的斜率的范围.7.如图1,已知点E、F、G分别是棱长为a的正方体ABCD﹣A1B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,点P到平面MNQ的距离为()A. a B. a C. a D. a考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:可先由俯视图的特征推断出M,Q的位置,再求点到平面MNQ的距离即可.解答:解:∵点E、F、G分别是棱长为a的正方体ABCD﹣A1 B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,∴当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,M与D重合,Q与E重合,N在线段AG上,此时点P到平面MNQ的距离等于点P到侧面AA1D1D的距离,∴点P到平面MNQ的距离等于正方体的棱长a.故选:D.点评:本题考查点到平面的距离的求法,是基础题,解题时要认真审题,留意空间思维力量的培育.8.数列{a n}满足a n+1=,若a1=,则a2021=()A. B. C. D.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:依据数列的递推关系得到数列为周期数列即可得到结论.解答:解:由递推数列可得,a1=,a2=2a1﹣1=2×﹣1=,a3=2a2=2×=,a4=2a3=2×=,a5=2a4﹣1=2×﹣1=,…∴a5=a1,即a n+4=a n,则数列{a n}是周期为4的周期数列,则a2021=a503×4+3=a3=,故选:B点评:本题主要考查递推数列的应用,依据递推关系得到数列{a n}是周期为4的周期数列是解决本题的关键.9.己知函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是()A.(﹣∞,﹣2)∪(0,2] B.(﹣2,0)∪(﹣2,2] C.(﹣2,2] D.(0,+∞)考点:二次函数的性质.专题:函数的性质及应用.分析:不论t为何值,对于任一实数x,f(x)与g(x)的值至少有一个为正数,所以对t分类争辩,即t=0、t=2、t>2,t<﹣2 争辩f(x)与g(x)的值的正负,排解即可得出答案.解答:解:函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.△=16﹣4×(2﹣t)×1=8+4t,①当t=0时,f(x)=0,△>0,g(x)有正有负,不符合题意,故排解C.②当t=2时,f(x)=2x,g(x)=﹣4x+1,符合题意,③当t>2时,g(x)=(2﹣t)x2﹣4x+l.f(x)=tx,当x取﹣∞时,f(x0)与g(x0)都为负值,不符合题意,故排解D④当t<﹣2时,△<0,∴g(x)=(2﹣t)x2﹣4x+l>0恒成立,符合题意,故B不正确,故选:A点评:本题考查一元二次方程的根的分布与系数的关系,考查分类争辩思想,排解转化思想,是中档题.10.由无理数引发的数学危机始终连续到19世纪.直到1872年,德国数学家戴德金从连续性的要求动身,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试推断,对于任一戴德金分割(M,N),下列选项中,不行能成立的是()A. M没有最大元素,N有一个最小元素B. M没有最大元素,N也没有最小元素C. M有一个最大元素,N有一个最小元素D. M有一个最大元素,N没有最小元素考点:集合的表示法.专题:计算题;集合.分析:由题意依次举例对四个命题推断,从而确定答案.解答:解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x <},N={x∈Q|x ≥};则M没有最大元素,N也没有最小元素;故B正确;M有一个最大元素,N有一个最小元素不行能,故C不正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;故选C.点评:本题考查了同学对新定义的接受与应用力量,属于基础题.三、填空题(本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置上)11.在极坐标系中,点P(2,)到极轴的距离为.考点:简洁曲线的极坐标方程.专题:坐标系和参数方程.分析:本题可以利用公式求出点的平面直角坐标,从而得到它在平面直角坐标系中与x轴的距离,即得到点P(2,)到极轴的距离.解答:解:∵在极坐标系中,点P(2,),∴ρ=2,.将极点与平面直角坐标系的原点重合,极轴与x 轴重合,正方向全都,建立平面直角坐标系,设P (x,y),则,.∴它在平面直角坐标系中与x轴的距离为:.∴到点P(2,)到极轴的距离为:.故答案为:.点评:本题考查了极坐标化成平面直角坐标,本题难度不大,属于基础题.12.已知两点A (1,0),B(l,1),O为坐标原点,点C在其次象限,且∠AOC=135°,设=+λ(λ∈R),则λ的值为.考点:平面对量的基本定理及其意义.专题:平面对量及应用.分析:由已知条件设出C点坐标(x0,﹣x0),所以求出向量的坐标带入即可求出λ.解答:解:依据已知条件设C(x0,﹣x0);∴由得:(x0,﹣x0)=(1,0)+λ(1,1);∴;∴解得.故答案为:.点评:考查依据∠AOC=135°能设出C(x0,﹣x0),由点的坐标求出向量的坐标,以及向量坐标的加法及数乘的坐标运算.13.已知x>0,y>0,且2y+x﹣xy=0,若x+2y﹣m>0恒成立,则实数m 的取值范围是m<8 .考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质可得x+2y==2(y﹣1)++4≥8,而x+2y﹣m>0恒成立,可得m<(x+2y)min.即可得出.解答:解:∵x>0,y>0,且2y+x﹣xy=0,∴x=>0,解得y >1.∴x+2y==2(y ﹣1)++4≥+4=8,当且仅当y=2,x=4时取等号.∴(x+2y )min=8.∵x+2y﹣m>0恒成立,∴m<(x+2y)min=8.故答案为:m<8.点评:本题考查了变形利用基本不等式的性质、恒成立问题的等价转化方法,属于基础题.14.执行如图所示的程序框图,则输出结果S的值为﹣.考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求S=cos+cos+…+cos的值,依据条件确定最终一次循环的n值,再利用余弦函数的周期性计算输出S的值.解答:解:由程序框图知:算法的功能是求S=cos+cos+…+cos的值,∵跳出循环的n值为2021,∴输出S=cos+cos+…+cos,∵cos+cos+cos+cos+cos+cos =cos+cos +cos﹣cos﹣cos﹣cos=0,∴S=cos+cosπ=﹣.故答案为:﹣.点评:本题考查了循环结构的程序框图,关键框图的流程推断算法的功能是关键.15.在直角坐标系中,定义两点P(x1,y l),Q(x2,y2)之间的“直角距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有以下命题:①若P,Q是x轴上两点,则d(P,Q)=|x1﹣x2|;②已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;③原点O到直线x﹣y+l=0上任意一点P的直角距离d(O,P)的最小值为;④若|PQ|表示P、Q两点间的距离,那么|PQ|≥d(P,Q);其中为真命题的是①②④(写出全部真命题的序号).考点:命题的真假推断与应用.专题:简易规律.分析:先依据直角距离的定义分别表示出所求的问题的表达式,然后依据确定值的性质进行判定即可.解答:解:①若P,Q是x轴上两点,则y1=y2=0,所以d(P,Q)=|x1﹣x2|,正确;②已知P(2,3),Q(sin2α,cos2α)(a∈R),则d(P,Q)=|2﹣sin2α|+|3﹣cos2α|=1+cos2α+2+sin2α=4为定值,正确;③设P(x,y),O(0,0),则d(0,P)=|x1﹣x2|+|y1﹣y2|=|x|+|y|=|x|+|x+1|,表示数轴上的x到1和0的距离之和,其最小值为1,故不正确;④若|PQ|表示P、Q两点间的距离,那么|PQ|=,d(P,Q)=|x1﹣x2|+|y1﹣y2|,由于2(a2+b2)≥(a+b)2,所以|PQ|≥2d(P,Q),正确;.故答案为:①②④.点评:本题考查两点之间的“直角距离”的定义,确定值的意义,关键是明确P(x1,y1)、Q(x2,y2)两点之间的“直角距离”的含义.三、解答题(本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内)16.己知=(sin (θ﹣),﹣1),=(﹣1,3)其中θ∈(0,),且∥.(1)求sinθ的值;(2)已知△ABC中,∠A=θ,BC=2+1,求边AC的最大值.考点:平面对量共线(平行)的坐标表示;正弦定理.专题:平面对量及应用.分析:(1)利用向量共线定理由∥,可得=.由于θ∈(0,),∈,即可得出.变形sinθ=.(2)在△ABC 中,由正弦定理可得:,代入可得AC=3sinB,利用sinB≤1,即可得出.解答:解:(1)∵∥,∴=1,即=.∵θ∈(0,),∴∈.∴=.∴sinθ==+==.(2)在△ABC 中,由正弦定理可得:,∴=,∴AC=3sinB,当且仅当sinB=1,即时取等号,∴边AC的最大值是3.点评:本题考查了向量共线定理、正弦定理、三角函数的单调性,考查了计算力量,属于基础题.17.四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点(1)求证:QP⊥AC;(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长.考点:二面角的平面角及求法;棱锥的结构特征.专题:空间位置关系与距离;空间角.分析:(1)由已知得PD⊥AC,AC⊥BD,从而AC⊥平面PDBQ,由此能证明AC⊥PQ.(2)设AC和BD的交点为O,连结OP,OQ,则∠POD是二面角P﹣AC﹣D的平面角,∠POQ是二面角P﹣AC﹣Q的平面角,∠POQ=120°,由此利用余弦定理能求出QB.解答:(1)证明:∵PD⊥面ABCD,AC⊂面ABCD,∴PD⊥AC,又菱形ABCD中,两对角线垂直,即AC⊥BD,又BD∩PD=D,∴AC⊥平面PDBQ,∴AC⊥PQ.(2)解:△PAC和△QAC都是以AC为底的等腰三角形,设AC和BD的交点为O,连结OP,OQ,则∠POD是二面角P﹣AC﹣D的平面角,由tan,得二面角P﹣AC﹣B大小120°,∴点Q与点P在平面ABCD的同侧,如图所示,∴∠POQ是二面角P﹣AC﹣Q的平面角,∴∠POQ=120°,在Rt△POD中,OP=,设QB=x,则Rt△OBQ中,OQ=,在直角梯形PDBQ中,PQ==,在△POQ中,由余弦定理得PQ==6﹣4x,故6﹣4x>0,且3x2﹣16x+5=0,解得x=,即QB=.点评:本题考查异面直线垂直的证明,考查线段长的求法,是中档题,解题时要认真审题,留意空间思维力量的培育.18.甲、乙两人参与某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙只能答对其中的5道题,规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分低于o分时记为0分(即最低为0分),至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.考点:互斥大事的概率加法公式;相互独立大事的概率乘法公式;离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望;(2)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立大事,即可求得结论.解答:解:(1)乙答题所得分数为X,则X的可能取值为0,15,30.P(X=0)=+=P(X=15)==P(X=30)==乙得分的分布列如下X 0 15 30PEX=0×+15×+30×=(2)由已知甲、乙至少答对2题才能入选,记甲入选为大事A,乙入选为大事B,则P(A)=+=+=,P ()=1﹣=由(1)知:P(B)=P(X=15)+P(X=30)=,P ()=1﹣=,所求概率为P=1﹣P ()=点评:本题考查概率的计算,考查互斥大事的概率,考查离散型随机变量的分布列与期望,确定变量的取值,计算其概率是关键.19.已知函数f(x)=lnx+cosx ﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf ′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值:(2)若对任意n∈N*,都有a n+2n2≥0成立,求a1的取值范围.考点:数列与函数的综合;利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:点列、递归数列与数学归纳法.分析:(1)求函数的导数,得到数列的递推关系式,依据数列{a n}是等差数列的通项公式进行求解即可求a1的值:(2)求出数列{a n}的通项公式,利用不等式a n+2n2≥0恒成立.利用参数分别法进行求解即可.解答:解:f′(x)=﹣sinx ﹣+,则f ′()=4;故a n+1+a n=πf ′()+3=4n+3,(1)若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd,则a n+1+a n=a1+(n﹣1)d+a1+nd=2a1+(2n﹣1)d=4n+3,解得d=2,a1=.(2)由a n+1+a n=4n+3,a n+2+a n+1=4n+7,两式相减得a n+2﹣a n=4,故数列{a2n﹣1}是首项为a1,公差为4的等差数列,数列{a2n}是首项为a2,公差为4的等差数列,又a1+a2=7,∴a2=7﹣a1,∴a n =.①当n为奇数时,a n=2n﹣2+a1,由a n+2n2≥0成立,即2n﹣2+a1+2n2≥0,转化为a1≥﹣2n2﹣2n+2,恒成立,设f(n)=﹣2n2﹣2n+2=﹣(n+)2+,∴f(n)max=f(1)=﹣2,∴a1≥﹣2.②当n为偶数时,a n=2n+3﹣a1,由a n+2n2≥0成立,即2n+3﹣a1+2n2≥0,转化为﹣a1≥﹣2n2﹣2n﹣3,恒成立,设g(n)=﹣2n2﹣2n﹣3=﹣(n+)2﹣,∴g(n)max=g(2)=﹣15,∴﹣a1≥﹣15.即a1≤15,综上﹣2≤a1≤15,即a1的取值范围是[﹣2,15].点评:本题主要考查等差数列的通项公式的应用已经递推数列的应用,考查同学的运算和推理力量,求出数列的递推关系是解决本题的关键.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)依据离心率,短轴右端点为A,M(1,0)为线段OA的中点,求出几何量,即可求椭圆Γ的方程;(Ⅱ)分类争辩,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简,若∠PNM=∠QNM,则k PN+k QN=0,即可得出结论.解答:解:(Ⅰ)由已知,b=2,又,即,解得,所以椭圆方程为.…(4分)(Ⅱ)假设存在点N(x0,0)满足题设条件.当PQ⊥x轴时,由椭圆的对称性可知恒有∠PNM=∠QNM,即x0∈R;…(6分)当PQ与x轴不垂直时,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简得:(k2+2)x2﹣2k2x+k2﹣8=0 设P(x1,y1),Q(x2,y2),则则==…(10分)若∠PNM=∠QNM,则k PN+k QN=0即=0,整理得4k(x0﹣4)=0由于k∈R,所以x0=4综上在x轴上存在定点N(4,0),使得∠PNM=∠QNM…(12分)点评:本题考查椭圆的几何性质与标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查同学的计算力量,属于中档题.21.已知函数f(x)=ax﹣1﹣1n x.(1)若f(x)≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2)求证:对任意的x∈N*,<e(其中e为自然对数的底,e≈2.71828).考点:利用导数求闭区间上函数的最值.专题:计算题;证明题;函数的性质及应用;导数的综合应用.分析:(1)f(x)≥0可化为a ≥对任意的x∈(0,+∞)恒成立,令g(x)=,x∈(0,+∞);求g′(x)=﹣,从而求最值;(2)由(1)知,lnx≤x﹣1对任意的x∈(0,+∞)恒成立,从而可得ln(1+)<对任意k∈N*成立,从而可得到kln(1+k)﹣klnk<1,从而化简求得.解答:解:(1)由f(x)≥0得,a ≥对任意的x∈(0,+∞)恒成立,令g(x)=,x∈(0,+∞);∵g′(x)=﹣,∴当x∈(0,1)时,g′(x)>0,g(x)为增函数;当x∈(1,+∞)时,g′(x)<0,g(x)为减函数;故g max(x)=g(1)=1;∴a≥1;∴实数a的取值范围是[1,+∞);(2)证明:由(1)知,lnx≤x﹣1对任意的x∈(0,+∞)恒成立,当且仅当x=1时取等号,∴ln(1+)<对任意k∈N*成立,即ln(1+k)﹣lnk<;即kln(1+k)﹣klnk<1,∴(1+k)ln(1+k)﹣klnk<1+ln(1+k);故2ln2﹣1ln1<1+ln2,3ln3﹣2ln2<1+ln3,…,(1+n)ln(1+n)﹣nlnn<1+ln(1+n);累加得,(1+n)ln(1+n)<n+ln2+ln3+…+ln(n+1),即nln(n+1)<n+ln(n!),∴ln(n+1)<1+ln(n!),即ln(n+1)﹣ln<1;∴ln<1,即<e.点评:本题考查了导数的综合应用及恒成立问题的应用,属于中档题.。

山东省(新高考)2021届高三第二次模拟考试卷 数学(一) Word版含答案

山东省(新高考)2021届高三第二次模拟考试卷 数学(一) Word版含答案

山东省(新高考)2021届高三第二次模拟考试卷数 学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,{}220B x x x =∈--≤Z ,若{}0,1A B =,则BA =( )A .{}1,1-B .{}1,2C .{}1,1,2-D .{}1,2-2.已知复数(3i)(32i)()z a a =-+∈R 的实部与虚部的和为7,则a 的值为( ) A .1B .0C .2D .2-3.某自来水厂一蓄水池可以用甲、乙两个水泵注水,单开甲泵需15小时注满,单开乙泵需18小时注满,若要求10小时注满水池,并且使两泵同时开放的时间尽可能地少,则甲、乙两水泵同时开放的时间最少需( ) A .4小时B .7小时C .6小时D .14小时4.33x y >⎧⎨>⎩是69x y x y +>⎧⎨⋅>⎩成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()2234x f x x x -=+-,且()()2log 3f a f >,则实数a 的取值范围为( )A .()(),28,-∞+∞B .()0,2C .()()0,28,+∞D .()8,+∞6.已知数列{}n a 中,11a =,()111n n n n a a a n a ++*-=⋅∈N ,若110m a =,则m =( )A .8B .9C .10D .117.已知函数()()π8sin 03f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,若()f x 在,243πm ⎡⎤-⎢⎥⎣⎦上单调递增,在2π23m ⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的取值范围是( ) A .3π,π2⎡⎤⎢⎥⎣⎦B .55π,π64⎡⎤⎢⎥⎣⎦C .π,3π2⎡⎤⎢⎥⎣⎦D .4,π8π3⎡⎤-⎢⎥⎣⎦8.若,,a b c 均为单位向量,且0⋅=a b ,()()0-⋅-≤a c b c ,则+-a b c 的最大值为( ) A .21- B .1C .2D .2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABC A B C D -的棱长为4,M 为1DD 的中点,N 为ABCD 所在平面上一动点,则下列命题正确的是( )A .若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆 B .若4MN =,则MN 的中点P 的轨迹所围成图形的面积为2π C .若点N 到直线1BB 与直线DC 的距离相等,则点N 的轨迹为抛物线D .若1D N 与AB 所成的角为π3,则点N 的轨迹为双曲线 10.将4男、4女共8位同学随机地分成人数相等的甲、乙两组,则下列说法正确的是( )A .4位女同学分到同一组的概率为135 B .男生甲和女生乙分到甲组的概率为314C .有且只有3位女同学分到同一组的概率为3235D .4位男同学不同时分到甲组的概率为3435此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.意大利画家列奥纳多·达·芬奇(1452.4—1519.5)的画作《抱银貂的女人》中,女士脖颈上黑色珍珠项链与主人相互映衬呈现出不一样的美与光泽,达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,项链所形成的曲线是什么?这就是著名的“悬链线问题”,后人给出了悬链线的函数解析式:()coshxf x a a=,其中a 为悬链线系数,cosh x 称为双曲余弦函数,其函数表达式为cosh 2x x e x e -+=,相应地双曲正弦函数的表达式为sinh 2x xe x e --=.若直线x =m 与双曲余弦函数C 1与双曲正弦函数C 2的图象分别相交于点A ,B ,曲线C 1在点A 处的切线l 1与曲线C 2在点B 处的切线l 2相交于点P ,则下列结论正确的为( )A .cosh cosh cosh sinh s )inh (x y x y x y --=B .sinh cosh y x x =是偶函数C .()cosh sinh x x '=D .若PAB △是以A 为直角顶点的直角三角形,则实数0m = 12.关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数yf x x 有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +>第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.()6x y z +-的展开式中23xy z 的系数是________.14.如图,在平面四边形ABCD 中,1AD =,263BD =,AB AC ⊥,2AC AB =,则CD 的最小值为_______.15.已知函数2πcos ,11()21,||1x x f x x x ⎧-≤≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是_______.16.已知圆()221:31C x y ++=,()222:381C x y -+=,动圆C 与圆1C 、2C 都相切,则动圆C的圆心轨迹E 的方程为_____________;直线l 与曲线E 仅有三个公共点,依次为P 、Q 、R ,则PR的最大值为________.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知n S 为等差数列{}n a 的前n 项和,63219S S =,1121a =. (1)求数列{}n a 的通项公式;(2)若11n n n b a a +=⋅,求数列{}n b 的前n 项和n T .18.(12分)在①π2A C =+;②5415cos c a A -=;③ABC △的面积3S =.这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c . 注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)已知四棱锥E ABCD -中,四边形ABCD 为等腰梯形,AB DC ∥,2AD DC ==,4AB =,△ADE 为等边三角形,且平面ADE ⊥平面ABCD .(1)求证:AE ⊥BD ;(2)是否存在一点F ,满足EF EB λ= (01λ<≤),且使平面ADF 与平面BCE 所成的锐二面角的余弦值为6513.若存在,求出λ的值,否则请说明理由.20.(12分)某医院为筛查某种疾病,需要检验血液是否为阳性,现有*()n n ∈N 份血液样本,有以下两种检验方式:①逐份检验,需要检验n 次;②混合检验,将其(k k *∈N 且2k ≥)份血液样木分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为()01p p <<.(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率;(2)现取其中(k k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ.①记E (ξ)为随机变量ξ的数学期望.若12()()E E ξξ=,运用概率统计的知识,求出p 关于k 的函数关系式()p f k =,并写出定义域; ②若141p e-=-,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k 的最大值.参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈.21.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点. (1)求椭圆C 的方程;(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF F B λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值.22.(12分)已知函数2()x f x e ax x =--.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若函数()()F x f x x =+有两个极值点1x ,2x ,求证:212(ln(2))x x a <.数 学答 案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】由不等式22(2)(1)0x x x x --=-+≤,解得12x -≤≤,所以{}1,0,1,2B =-,又由{}0,1AB =且{}0,A a =,所以1a =,即{}0,1A =,由补集的概念及运算,可得{}1,2BA =-,故选D .2.【答案】C【解析】2(3i)(32i)32i 9i 6i 36(29)i z a a a a a =-+=+--=++-, 所以复数z 的实部与虚部分别为36a +,29a -, 于是36297a a ++-=,解得2a =,故选C . 3.【答案】C【解析】根据题意开放水泵的工序流程图有两个方案: 方案一:甲、乙两泵同时开放→甲泵开放 方案二:甲、乙两泵同时开放→乙泵开放如果用方案一注水,可设甲、乙两泵同时开放的时间为x 个小时,由题意得方程111(10)1181515x x ⎛⎫++-= ⎪⎝⎭,解得6x =(小时); 如果用方案二注水,可设甲、乙两泵同时注水的时间为y 个小时, 则111(10)1181518y y ⎛⎫++-=⎪⎝⎭,解得602693y ==(小时),所以选方案一注水,可得甲、乙两水泵同时开放注水的时间最少,需6个小时,故选C . 4.【答案】A【解析】充分性显然成立, 必要性可以举反例:10x =,52y =,显然必要性不成立, 故选A .5.【答案】C【解析】∵()()()()22224344434xx f x x x x x f x ---=+---=+-=,∴()f x 的图象关于直线2x =对称, ∵23x y -=和24y x x =-都在(),2-∞上是减函数,在()2,+∞上是增函数,∴()f x 在(),2-∞上为减函数,在()2,+∞上为增函数. 又()()2log 3f a f >,∴2log 2321a ->-=,即2log 1a <或2log 3a >,解得02a <<或8a >,故选C . 6.【答案】C 【解析】111111n n n n n na a a a a a +++-=-=⋅,所以1n a ⎧⎫⎨⎬⎩⎭为以1为首项,公差1d =的等差数列, 所以11(1)1n n n a =+-⨯=,所以1n a n=, 由1110m a m ==,所以10m =,故选C . 7.【答案】B 【解析】由题意可得2ππω=,求得2ω=,令πππ2π22π,232k x k k -≤-≤+∈Z ,求得π5πππ,1212k x k k -≤≤+∈Z ,由ππ3π2π22π,232k x k k +≤-≤+∈Z ,求得5π11πππ,1212k x k k +≤≤+∈Z , 因为()f x 在,243πm ⎡⎤-⎢⎥⎣⎦上单调递增,在2π23m ⎡⎤⎢⎥⎣⎦上单调递减, 所以5π5π5π3125π64212m m m ⎧≤⎪⎪⇒≤≤⎨⎪≥⎪⎩,所以实数m 的取值范围是55π,π64⎡⎤⎢⎥⎣⎦,故选B . 8.【答案】B【解析】由题意知,2221===a b c , 又0⋅=a b ,∵()()20-⋅-=⋅-⋅-⋅+≤a c b c a b a c c b c , ∴21⋅+⋅≥⋅+=a c b c a c b ,∴()2222221110211+-=+++⋅-⋅+⋅≤+++-⨯=a b c a b c a b a c b c , ∴1+-≤a b c ,即+-a b c 的最大值为1,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.【答案】ACD 【解析】如图:对于A ,根据正方体的性质可知,MD ⊥平面ABCD ,所以MND ∠为MN 与平面ABCD 所成的角, 所以π4MND ∠=,所以1114222DN DM DD ===⨯=,所以点N 的轨迹为以D 为圆心,2为半径的圆,故A 正确;对于B ,在直角三角形MDN 中,22224223DN MN MD =--=,取MD 的中点E ,因为P 为MN 的中点,所以PE DN ∥,且132PE DN ==因为DN ED ⊥,所以PE ED ⊥,即点P 在过点E 且与1DD 垂直的平面内,又PE =所以点P 其面积为2π3π⋅=,故B 不正确; 对于C ,连接NB ,因为1BB ⊥平面ABCD ,所以1BB NB ⊥,所以点N 到直线1BB 的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离,又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确; 对于D ,以D 为原点,1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系, 则(4,0,0)A ,(4,4,0)B ,1(0,0,4)D , 设(,,0)N x y ,则(0,4,0)AB,1(,,4)D N x y =-,因为1D N 与AB 所成的角为π3,所以1π|cos ,|cos 3AB D N <>=,所以1||2=,整理得22311616y x -=,所以点N 的轨迹为双曲线,故D 正确, 故选ACD . 10.【答案】AB【解析】8位同学随机地分成人数相等的甲、乙两组的不同分法为4484C C 70⋅=,A 选项,4位女同学分到同一组的不同分法只有2种,其概率为217035=,对; B 选项,男生甲和女生乙分到甲组的不同分法为2464C C 15⋅=,其概率为1537014=,对; C 选项,有且只有3位女同学分到同一组3144C 32C 2⋅⋅=种, 则有且只有3位女同学分到同一组的概率为32167035=,错; D 选项,4位男同学同时分到甲组只有1种,其概率为170, 则4位男同学不同时分到甲组的概率为16917070-=,错, 故选AB . 11.【答案】ACD【解析】cosh cosh sinh sinh 2222x x y y x x y ye e e e e e e e x y x y ----++---=⋅-⋅()2cosh x y x y x y e e --++==-,A 正确;22sinh c 4osh x x y x x e e --==,记22()4x xe e h x --=, 则22()()4x xe e h x h x ---==-,()h x 为奇函数,即sinh cosh y x x =是奇函数,B 错误; ()22x x x x e e e e --+-'=,即()cosh sinh x x '=,C 正确;对于D ,因为AB x ⊥轴,因此若△P AB 是以A 为直角顶点的直角三角形, 则0PA k =,由02m A mP e k e --==,解得0m =,D 正确,故选ACD . 12.【答案】BD【解析】A :函数()f x 的定义域为0,,()22212x f x x x x-'=-+=, 当()0,2x ∈时,0f x,()f x 单调递减;当()2,x ∈+∞时,0fx,()f x 单调递增,所以2x =是()f x 的极小值点,故A 错误;B :()2ln y f x x x x x =-=+-,22221210x x y x x x-+'=-+-=-<, 所以函数在0,上单调递减,又()112ln1110f -=+-=>,()221ln 22ln 210f -=+-=-<, 所以函数yf x x 有且只有1个零点,故B 正确;C :若()f x kx >,即2ln x kx x +>,则22ln xk x x<+. 令()22ln x g x x x=+,则()34ln x x xg x x -+-'=. 令()4ln h x x x x =-+-,则()ln h x x '=-,当()0,1∈x 时,()0h x '>,()h x 单调递增;当()1,∈+∞x 时,()0h x '<,()h x 单调递减,所以()()130h x h ≤=-<,所以0g x ,所以()22ln x g x x x=+在0,上单调递减,函数无最小值,所以不存在正实数k ,使得()f x kx >恒成立,故C 错; D :因为()f x 在()0,2上单调递减,在2,上单调递增,∴2x =是()f x 的极小值点.∵对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则1202x x <<<. 令()211x t t x =>,则21x tx =, 由()()12f x f x =,得121222ln ln x x x x +=+,∴211222ln ln x x x x -=-, 即()2121212ln x x x x x x -=,即()11121ln t x t x tx -=⋅,解得()121ln t x t t -=,()2121ln t t x tx t t-==,所以21222ln t x x t t-+=.故要证124x x +>,需证1240x x +->,需证22240ln t t t -->,需证2224ln 0ln t t tt t-->. ∵211x t x =>,则ln 0t t >,∴证2224ln 0t t t -->. 令()()2224ln 1H t t t t t =-->,()()44ln 41H t t t t '=-->,()()()414401t H t t t t-''=-=>>,所以()H t '在1,上是增函数.因为1t →时,()0H t '→,则()0H t '>,所以()H t 在1,上是增函数.因为1t →时,()0H t →,则()0H t >,所以2224ln 0ln t t tt t-->,∴124x x +>,故D 正确, 故选BD .第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】60- 【解析】()()66x y z x y z +-=+-⎡⎤⎣⎦,所以,()6x y z +-的展开通项为()616C rr r r A x y z -+=⋅⋅-,()ry z -的展开式通项为()()1C C 1k kk r k kr k k k r r B y z y z --+=⋅⋅-=⋅-⋅⋅,所以,()6x y z +-的展开式通项可以为()61,16C C 1kr kr r k k r k r T x y z --++=⋅⋅⋅-,其中06k r ≤≤≤且k 、r ∈N ,令6123r r k k -=⎧⎪-=⎨⎪=⎩,解得53r k =⎧⎨=⎩,因此,()6x y z +-的展开式中23xy z 的系数是()35365C C 160⋅-=-,故答案为60-.14.【答案】3【解析】设ADB θ∠=,在ABD △中,由正弦定理得sin sin AB BD BADθ=∠,即3sin sin AB BAD θ=∠,整理得sin AB BAD θ⋅∠=.由余弦定理得222112cos 33AB AD BD AD BD θθ=+-⋅⋅⋅=-,因为AB AC ⊥,所以π2BAD DAC ∠=+∠. 在ACD △中, 由余弦定理得22222cos 12sin CD AD AC AD AC DAC AB BAD =+-⋅⋅∠=+-⋅∠25258sin()33θθθϕ=-=-+(其中tan ϕ=, 所以当sin()1θϕ+=时,min CD =15.【答案】5【解析】由2()3()20f x f x -+=,知()2f x =或()1f x =,∴由函数()f x 解析式,知:当()2f x =时,有212x -=,解得x =||1x >; 当()1f x =时,若πcos12x=且11x -≤≤,有0x =; 若211x -=,解得x =||1x >, ∴综上知:方程一共有5个根,故答案为5.16.【答案】2212516x y +=或221167x y +=,152 【解析】已知圆()221:31C x y ++=,()222:381C x y -+=,则圆1C 内含于圆2C , 圆1C 的圆心为()13,0C -,半径为11r =; 圆2C 的圆心为()23,0C ,半径为29r =. 设动圆C 的半径为r ,分以下两种情况讨论: ①圆C 与圆1C 外切,与圆2C 内切,由题意可得1219CC r CC r ⎧=+⎪⎨=-⎪⎩,121106CC CC CC ∴+=>=,此时,圆C 的圆心轨迹E 是以1C 、2C 分别为左、右焦点,长轴长为1210a =的椭圆,15a ∴=,13c =,则14b ==,此时,轨迹E 的方程为2212516x y +=; ②圆C 与圆1C 、2C 都内切,且12r r r <<,由题意可得1219CC r CC r ⎧=-⎪⎨=-⎪⎩,12186CC CC CC ∴+=>=,此时,圆C 的圆心轨迹E 是以1C 、2C 分别为左、右焦点,长轴长为228a =的椭圆,24a ∴=,23c =,2b ==E 的方程为221167x y +=,综上所述,轨迹E 的方程为2212516x y +=或221167x y +=. 由于直线l 与曲线E 仅有三个公共点,则直线l 与椭圆221167x y +=相切.①若直线l 的斜率不存在时,直线l 的方程为4x =±,可设直线l 的方程为4x =,联立22412516x x y =⎧⎪⎨+=⎪⎩,解得4125x y =⎧⎪⎨=±⎪⎩,此时245PQ =; ②当直线l 的斜率存在时,设直线l 的方程为y kx m =+,联立221167y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 并整理得()()222167321670k x kmx m +++-=,()()()222222221324167167781670Δk m m k k m =-⨯-⨯+=⨯+-=,可得22167m k =+,设点()11,P x y 、()22,R x y ,联立2212516y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得()()22225165025160k x kmx m +++-=,()()()()22222222250425162516160025161440010Δk m m k k m k =-⨯-+=+-=+>,由韦达定理得122502516kmx x k +=-+,()212225162516m x x k -=+,12PR x ∴=-=()2222212011201209251625162511k k k k k +====++-++, 120152592PR ∴≤=-,当且仅当0k =时,PR 取得最大值152.故答案为2212516x y +=或221167x y +=,152.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)21n a n =-;(2)21n nT n =+. 【解析】(1)等差数列{}n a 的前n 项和()12n n n a a S +=, 得()()1636332121211163329212a a S a a a S a +===+, 因为1121a =,所以3263a =, 等差数列{}n a 的公差321163212321121a a d --===-,所以,()()11112121121n a a n d n n =+-=+-=-. (2)由(1)可知()()1111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,11111111112335212122121n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.【答案】答案见解析.【解析】解:方案一:选条件①②.因为5415cos c a A -=,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=.因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >,所以cos 45B =,3sin 5B ==. 因为π2AC =+,πA B C ++=,所以π22B C =-,所以π3cos 2cos sin 25C B B ⎛⎫=-==⎪⎝⎭,所以21cos 21sin 25C C -==. 因为()0,πC ∈,所以sin C =在ABC △中,由正弦定理得3sin 53sin 5b Cc B===.方案二:选条件①③.因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2A C =+,πA B C ++=,所以π22B C =-.在ABC △中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B C C ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭,所以3sin cos 2cos 2C CC=,即3sin 24cos2C C =.因为π0π20πA C C ⎧<=+<⎪⎨⎪<<⎩,所以π02C <<,02πC <<, 所以sin 20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos 25C =, 所以21cos 21sin 25C C -==,所以sin 5C =.在ABC △中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C =====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos c a A -=,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >,所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC △中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.19.【答案】(1)证明见解析;(2)存在12λ=使得平面ADF 与平面BCE 所成的锐二面角的余弦值为13. 【解析】(1)取AB 的中点G ,连接DG ,12BG AB CD ==,BG CD ∥, ∴四边形BCDG 是平行四边形,2DG BC AG AD ====,ADG ∴△为等边三角形,12DG AB =,ABD ∴△是直角三角形,AD BD ∴⊥, 平面ADE ⊥平面ABCD ,BD ⊂平面ABCD ,AD =平面ADE平面ABCD ,BD ∴⊥平面ADE ,AE ⊂平面ADE ,AE BD ∴⊥.(2)F 为EB 中点即可满足条件.取AD 的中点H ,连接EH ,则EH AD ⊥,取AD 的中点H ,连接EH ,平面ADE ⊥平面ABCD ,EH ⊂平面EAD ,所以EH ⊥平面ABCD ,3EH =,23BD =, 如图建立空间直角坐标系D xyz -,则()0,0,0D ,()2,0,0A ,()0,23,0B ,()3,0C -,(3E , 则()2,0,0DA =,()1,3,0CB =,(1,23,3EB =--,(),23,3EF EB λλλλ==--,()1,2333DF λλλ=-,设平面ADF 的法向量为111(,,)x y z =m ,平面BCE 的法向量为222(,,)x y z =n .由00DF DA ⎧⋅=⎪⎨⋅=⎪⎩m m ,得()()111112333020x y z x λλλ⎧-++=⎪⎨=⎪⎩,取()0,12λλ=-,m ; 由00CB EB ⎧⋅=⎪⎨⋅=⎪⎩n n ,得2222230330x x z ⎧+=⎪⎨-+=⎪⎩,取()3,1,3=-n , 于是,21665|cos ,|1313521λλλλ⋅-+〈〉===⋅⋅-+m n m n m n, 解得1=2λ或13λ=-(舍去),所以存在12λ=使得平面ADF 与平面BCE 65 20.【答案】(1)310;(2)①111kp k ⎛⎫=- ⎪⎝⎭(*k ∈N 且2k ≥);②8. 【解析】(1)记恰好经过3次检验就能把阳性样本全部检验出来为A 事件,则()3121322335A A C C 31A 0P A +==.(2)①根据题意,可知()1E k ξ=,2ξ的可能值为1,1k +,则()()211k P p ξ==-,()()2111kP k p ξ=+=--, 所以()()()()()()2111111kkkE p k p k k p ξ=-++--=+--,由()()12E E ξξ=,得()11kk k k p =+--,所以111kp k ⎛⎫=-⎪⎝⎭(*k ∈N 且2k ≥). ②由于141p e -=-,则()421k E k keξ-=+-,所以41k k kek -+-<,即ln 04kk ->, 设()ln 4x f x x =-,()11444x f x x x-'=-=,0x >, 当()0,4x ∈时,()0f x '>,()f x 在()0,4上单调递增; 当()4,x ∈+∞时,()0f x '<,()f x 在()4,+∞上单调递减,()ln823n 2208l f =-=->,()99ln 92ln 30494f =-=-<, 所以k 的最大值为8.21.【答案】(1)22143x y +=;(2)6. 【解析】(1)由题意,得222221149141b e a a b⎧=-=⎪⎪⎨⎪+=⎪⎩,解得24a =,23b =, 所以椭圆的方程为22143x y +=.(2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为1x =-与直线1x =无交点,不满足条件; 设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ=,所以0m ≠, 设()11,A x y ,()22,B x y ,()00,Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得()2234690m y my +--=, 122634m y y m +=+,122934y y m =-+, 因为11AF F B QA QBλλ⎧=⎪⎨=⎪⎩,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩,则12y y λ-=,()1020y y y y λ-=-, 所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+,于是1F Q = 直线2l 的方程为11x y m=--, 联立111x y mx ⎧=--⎪⎨⎪=⎩,解得(1,2)P m -,所以1PF =. 所以()12113111362PQF m S FQ F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭△, 当且仅当1m =±时,()1min6PQF S =△.22.【答案】(1)(3)1y e x =-+;(2)证明见解析.【解析】(1)当1a =时,2()xf x e x x =--,则()21xf x e x '=--, 所以(1)3k f e ='=-,又(1)2f e =-,所以切线方程为(3)(1)2y e x e =--+-,即(3)1y e x =-+.(2)由题意得2()x F x e ax =-,则()2xF x e ax '=-.因为函数()F x 有两个极值点1x ,2x ,所以()0F x '=有两个不相等的实数根1x ,2x . 令()2xh x e ax =-,则()2xh x e a '=-.①当0a ≤时,()0h x '>恒成立,则函数()h x 为R 上的增函数,故()h x 在R 上至多有一个零点,不符合题意; ②当0a >时,令()0h x '=,得ln(2)x a =,当(,ln(2))∈-∞x a 时,()0h x '<,故函数()h x 在(,ln(2))a -∞上单调递减; 当(ln(2),)x a ∈+∞时,()0h x '>,故函数()h x 在(ln(2),)a +∞上单调递增, 因为函数()0h x =有两个不相等的实数根1x ,2x , 所以min ()(ln(2))22ln(2)0h x h a a a a ==-<,得2e a >, 不妨设12x x <,则1ln(2)x a <,2ln(2)1x a >>, 又(0)10h =>,所以1(0,ln(2))x a ∈.令24()()(2ln(2))44ln(2)xx a G x h x h a x e ax a a e=--=--+,则24()440xxa G x e a a e '=+-≥=, 所以函数()G x 在R 上单调递增.由2ln(2)x a >,可得()2(ln(2))0G x G a >=,即()()222ln(2)h x h a x >-, 又1x ,2x 是函数()h x 的两个零点,即12h x h x ,所以()()122ln(2)h x h a x >-.因为2ln(2)x a >,所以22ln(2)ln(2)a x a -<, 又1ln(2)x a <,函数()h x 在(,ln(2))a -∞上单调递减, 所以122ln(2)x a x <-,即122ln(2)x x a +<.又12x x +>,所以2ln(2)a <,因此212(ln(2))x x a <.。

2021年海南高考数学试题模拟试题及答案

2021年海南高考数学试题模拟试题及答案

2021年海南高考数学试题模拟试题及答案注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3} B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A.20°B.40°C.50°D.90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A.62% B.56%C.46% D.42%6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2021届高考数学(新高考)仿真模拟卷(四)(含答案)

2021届高考数学(新高考)仿真模拟卷(四)(含答案)

2021届高考数学(新高考)仿真模拟卷(四)注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分) 1.已知复数2i1iz =+,则z z ⋅的值 A .0B .2iC .2D .12.命题“x R ∀∈,2210x x ++>”的否定是 A .0x R ∃∈,使得200210x x ++> B .0x R ∃∈,使得200210x x ++≤ C .x R ∀∈,2210x x ++≤ D .x R ∀∈,2210x x ++<3.已知向量()2,1m =-,(),2n λ=,若()2m n m -⊥,则λ= A .94B .94-C .7-D .74.如图1是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中11223781OA A A A A A A ===⋯==,如果把图2中的直角三角形继续作下去,记12,,,,n OA OA OA 的长度构成数列{}n a ,则此数列的通项公式为A .n a n =,*n N ∈B .n a =*n N ∈C .n a =,*n N ∈D .2n a n =,*n N ∈5.已知正实数a ,b 满足1a b +=,则1231⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭a b 的最小值为A .14+B .25C .24D .6.在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知()2sin 2BA C +=.2a =,3c =,则sin 2A 的值为A .7-B .14C .7D .14-7.已知a 、b 满足0a b e <<<,则ln +ba a a 与ln +ab b b的大小关系为 A .ln ln +>+a ba ba b a b B .ln ln +=+a ba b a b a bC .ln ln +<+a ba b a b a bD .不能确定8.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行D .三棱锥1F ABD -的体积为定值二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.德国数学家狄里克雷(1805—1859)在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚的说明了函数的内涵,只要有一个法则,使得取值范围内的每一个x ,都有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图象、表格等形式表示.他还发现了狄里克雷函数D(x ),即:当自变量x 取有理数时,函数值为1,当自变量x 取无理数时,函数值为0.狄里克雷函数的发现改变了数学家们对“函数是连续的”的认识,也使数学家们更加认可函数的对应说定义,下列关于狄里克雷函数D(x )的性质表述正确的是A .()0D π=B .()D x 是奇函数C .()D x 的值域是{}0,1D .()()1D x D x +=10.若2nx⎛ ⎝的展开式中第6项的二项式系数最大,则n 的可能值为A .9B .10C .11D .1211.已知函数()sin xf x x=,(]0,x π∈,则下列结论正确的有 A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤,则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1D .若函数()()cos g x xg x x '=+,且()1g π=-,()g x 在(]0,π上单调递减12.如图,正方体1111ABCD A B C D -的棱长为3,线段11B D 上有两个动点,E F ,且1EF =,以下结论正确的有A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值三、填空题(本大题共4小题,每小题5分,共20分) 13.在Rt ABC 中,2A π∠=,2AC =,那么CB CA ⋅=_____;14.夏、秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为____.15.设函数()()21,11,1x x f x f x x ⎧-≤⎪=⎨->⎪⎩,()lg g x x =,则函数()()()F x f x g x =-零点的个数有______个.16.若n S 是数列{}n a 的前n 项和,且2121232222n n a a a a n n -++++=+,则n a =______n S =_____四、解答题(本大题共6小题,共70分)17.如图,ABC 中的内角A 、B 、C 所对的边分别为a 、b 、c ,8c =,1cos 7ACB ∠=-且14cos b B =.(1)求B(2)点D 在BC边的延长线上,且AD =CD 的长.18.设33M a =-,22N a =,4T a =,给出以下四种排序:①M ,N ,T ;②M ,T ,N ;③N ,T ,M ;④T ,N ,M .从中任选一个,补充在下面的问题中,解答相应的问题.已知等比数列{}n a 中的各项都为正数,11a =,且__________依次成等差数列. (Ⅰ)求{}n a 的通项公式;(Ⅰ)设,01,{1,1,n n n n na ab a a <≤=>数列{}n b 的前n 项和为n S ,求满足100n n S b >的最小正整数n .注:若选择多种排序分别解答,按第一个解答计分.19.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km h 的有40人,不超过100km h 的有15人;在45名女性驾驶员中,平均车速超过100km h 的有20人,不超过100km h 的有25人.(1)完成下面22⨯列联表,并判断能否在犯错误概率不超过0.005的前提下认为“平均车速超过100km h 与性别有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(2)在被调查的驾驶员中,从平均车速不超过100km h 的人中随机抽取2人,求这2人恰好是1名男性驾驶员和1名女性驾驶员的概率;(3)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100km h 且为男性驾驶员的车辆数为X ,求X 的分布列和数学期望()E X .20.如图,在四棱锥P −ABCD 中,AD //BC ,AD =2BC =4,AB =2√3,∠BAD =90∘,M,O 分别为线段CD,AC 的中点,PO ⊥平面ABCD .(1)求证:平面PBM ⊥平面PAC ;(2)是否存在线段PM 上一点N ,使得ON //平面PAB ,若存在,求PN PM的值;若不存在,请说明理由.21.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x yc b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:e e =A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值. 22.已知函数()22xf x x ax e =+-在R 上单调递减.(1)求实数a 的取值范围;(2)若存在非零实数1x ,2x 满足1f x ,()0f ,2f x 依次成等差数列.求证:120x x +<.参考答案1.C 2.B 3.A 4.C 5.A 6.C 7.C 8.C 9.ACD 10.ABC 11.ACD 12.ACD 13.4 14.1315.8 16.1212n n -+ 125102n n -+- 17.(1)3B π=;(2)7CD =.【解析】(1)因为1cos 7ACB ∠=-,(0,)ACB π∠∈,所以sin ACB ∠== 在ABC 中,由正弦定理得:sin sin b c B ACB=∠,所以sin sin 3c B b B ACB ==∠,又14cos b B =14cos B B =,所以tan B = 因为(0,)B π∈,所以3B π=.(2)由(1)可得11472b =⨯=,在ACD △中,1cos cos 7ACD ACB ∠=-∠=, 由余弦定理可得:2222cos AD AC CD AC CD ACD =+-⋅⋅∠,即22217277CD CD =+-⋅⋅⋅,即22350CD CD -⋅-=, 解得:7CD =或5-(舍去), 所以7CD =.18.(Ⅰ)答案见解析;(Ⅰ)答案见解析. 【解析】(解答一)选②或③:(Ⅰ)设{}n a 的公比为q ,则0q >.由条件得423223a a a =-,又因为11a =,所以32223q q q =-,即22320q q +-=,解得12q =(负值舍去).所以112n n a -=.(Ⅰ)由题意得112n n b -=,则1112121212n nn n S ---==-.由100n n S b >得 112110022n n n --->,即2101>n ,又因为*n ∈N ,所以n 的最小值为7. (解答二)选①或④:(Ⅰ)设{}n a 的公比为q ,则0q >.由条件得24343a a a =-,又因为11a =,所以3243q q q =-,即2340q q --=,解得4q =(负值舍去).所以14n n a -=.(Ⅰ)由题意得114n n b -=,则11141413414n n n n S ---==⨯-.由100n n S b >得 1141100344n n n --->⨯,即4301n >,又因为*n ∈N ,所以n 的最小值为5. 19.(1)答案见解析,能;(2)2552;(3)答案见解析,65.【解析】(1)完成的22⨯列联表如下:()22100402515208.2497.87955456040K ⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误概率不超过0.005的前提下,能认为“平均车速超过100km h 与性别有关”. (2)平均车速不超过100km h 的驾驶员有40人,从中随机抽取2人的方法总数为240C ,记“这2人恰好是1名男性驾驶员和1名女性驾驶员”为事件A , 则事件A 所包含的基本事件数为111525C C ,所以所求的概率()111525240152525203952C C P A C ⨯===⨯. (3)根据样本估计总体的思想,从总体中任取1辆车, 平均车速超过100km h 且为男性驾驶员的概率为4021005=, 故2(3,)5XB .所以0332327(0)()()55125P X C ===;()12323541()()55125P X C ===; ()22323362()()55125P X C ===;3303238(3)()()55125P X C ===. 所以X 的分布列为()2701231251251251255E X =⨯+⨯+⨯+⨯=(或()26355E X =⨯=).20.(1)证明见解析;(2)λ=13. 【解析】试题分析:(1)以A 为原点建立空间直角坐标系A −xyz ,可得BM ⃗⃗⃗⃗⃗⃗ =(−√3,3,0),AC ⃗⃗⃗⃗⃗ =(2√3,2,0), BM ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,BM ⊥AC 又BM ⊥PO 得BM ⊥平面PAC ,进而得结论;(2)设OP =ℎ,可得平面PAB 的一个法向量为n ⃗ =(0,−ℎ,1),再根据ON ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =−2λℎ+ℎ−λℎ=0可解得λ. 试题解析:(1)如图,以A 为原点建立空间直角坐标系A −xyz ,B(2√3,0,0),C(2√3,2,0),D(0,4,0),所以CD 中点M(√3,3),则BM ⃗⃗⃗⃗⃗⃗ =(−√3,3,0),AC ⃗⃗⃗⃗⃗ =(2√3,2,0),则BM ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =(−√3)×(2√3)+3×2=0,所以BM ⊥AC .又PO ⊥平面ABCD ,所以BM ⊥PO ,由AC ∩PO =O , 所以BM ⊥平面PAC ,又BM ⊂平面PBM ,所以平面PBM ⊥平面PAC .(2)法一:设OP =ℎ,则O(√3,1,0),P(√3,1,ℎ),则PM ⃗⃗⃗⃗⃗⃗ =(0,2,−ℎ), 设平面PAB 的一个法向量为n ⃗ =(x 0,y 0,z 0),AP ⃗⃗⃗⃗⃗ =(√3,1,ℎ),AB ⃗⃗⃗⃗⃗ =(2,0,0), 所以{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0 ,则{√3x 0+y 0+ℎz 0=02x 0=0 ,令z 0=1,得n ⃗ =(0,−ℎ,1),设PN ⃗⃗⃗⃗⃗⃗ =λPM ⃗⃗⃗⃗⃗⃗ =(0,2λ,−λℎ) (0≤λ≤1),则 ON ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +PN⃗⃗⃗⃗⃗⃗ =(0,2λ,ℎ−λℎ), 若ON//平面PAB ,则ON ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =−2λℎ+ℎ−λℎ=0,解得λ=13.法二:(略解):连接MO 延长与AB 交于点E ,连接PE ,若存在ON//平面PAB ,则ON//PE , 证明OE EM=13即可.21.(1)22193x y +=;(2)2. 【解析】(1)由题意知1c e a =,2e c c==,因为12:e e =2c a c=⋅,22, 将等号两边同时平方,得42243840c a c a -+=,即()()22222230a c a c --=,所以2232a c =,又222a b c =+,所以3a b ,c =,所以),0A ,()0,B b -,所以直线AB 的方程为2y x b =-,与椭圆1C :222213x y b b +=联立并消去y ,得222332x x b b ⎛⎫+-= ⎪ ⎪⎝⎭,整理得10x =,25x =,所以,55b P ⎛⎫ ⎪ ⎪⎝⎭,因为185PB =185=,得b =3a =,椭圆1C 的方程为22193x y +=. (2)当直线MN 的斜率不存在时,易得2MN =.当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y , 得()222124260k x knx m +++-=,因为直线MN 与椭圆2C 相切,所以()()222216412260k m km ∆=-+-=,整理得()22630*k m +-=, 将直线MN 与椭圆1C 方程联立并消去y ,得()222136390k x kmx m +++-=, 由()*式可得()()()22222223641339129336k m k m k m k ∆=-+-=+-=.设(),M M M x y ,(),N N N x y ,则2613M N km x x k -+=+,223913M N m x x k-=+,所以213M NMN xk=-==+设213k t+=,则1t>,2MN==≤,22<,所以当4t=,即1k=±时,MN最大,且最大值为2.22.(1)(],2-∞;(2)证明见解析.【解析】(1)根据题意,()220xf x x a e'=+-≤恒成立,即()maxf x'≤,设()()g x f x'=,则()22xg x e='-.令0g x,得0x=,当0x<时,0g x,()g x 单调递增;当0x>时,0g x,()g x单调递减.所以()()max02g x g a==-.所以20a-≤,即2a≤.故a的取值范围为(],2-∞.(2)由题意得()()()1202f x f xf+=,因为()f x单调递减,不妨设12x x<<.设()()()22x xf x f xF x x e e-+-==--,则()2x xF x x e e-'=-+.设()()G x F x'=,则()20x xG x e e-'=--≤,所以()G x单调递减,即()F x'单调递减.当0x<时,()()00F x F''>=,所以()F x在,0上单调递增.因为10x<,所以()()1F x F<,即()()()()()1112022f x f x f x f x f +-+<=,整理可得()()12f x f x -<. 因为()f x 在R 上单调递减,所以12x x ->,即120x x +<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 求直线 EF 与平面 FCD 所成角的正弦值.
.
21.(12
分)已知椭圆
C
:
x2 a2
y2 b2
1a
b
0 的离心率是
2 ,原点到直线 x y 1 的距离等于 2 3 .
2
ab
3
(1)求椭圆 C 的标准方程.
(2)已知点 Q 0,3 ,若椭圆 C
上总存在两个点
A,
B
关于直线
y
x
m
对称,且
非年轻人
合计
经常使用共享单车 100
20
120
不常使用共享单车 60
20
80
合计
160
40
200
于是 a 100,b 20, c 60, d 20 ∴K 2 200 (100 20 60 20)2 2.083 2.072 120 80 160 40
设 DD1 2AB CD 4 ,
a
x1
x2
2
2x1
x2
3 x1
x2
ln
x1x2
5 4a
1
ln(2a)
.

h(a)
5 4a
1
ln(2a)
0
a
1 8

h(a)
5 4a 4a2
0
,故
h(a)

0,
1 8
上单调递增,故
h(a)
h
1 8
11
2 ln
2

所以 t 11 2 ln 2 ,所以 t 的取值范围是 (, 11 2 ln 2) .
使用共享单车情况与年龄列联表
年轻人
非年轻人
合计
经常使用单车用户
120
不常使用单车用户
80
合计
160
40
200
(2)将(1)中频率视为概率,若从该市市民中随机任取 3 人,设其中经常使用共享 单车的“非年轻人”人数为随机变量 X ,求 X 的分布列与期望.
(参考数据:独立性检验界值表
P K 2 k0
龄有关?
1-5BABDA 6.-8:CDB 9.:BC 10.:ABD 11.:BD 12:BC
13.8
14.:-1
15.:900
16.: 0 a 1 ; (, 11 2 ln 2)
8
16.解析:由题可得
f
(x)
2ax2
x
x
1 x
0
,因为函数
f
(x)
ax 2
x
ln
x
有两个不同的极值点
x1, x2
A.第一象限
B.第二象限
C.第三象限
3.已知向量
AB
(2,
2),
AC
(t,1)
,若
AB
BC
2
,则
t
(
)
D.第四象限
A.5
B.4
C.3
D. 2
4.已知函数
f
x 对任意
x ,y R
,都有
f
(x
y)
f
(x)
f
(y)
,且
f
(1)
1 2
n
,则 i0
1 f (i)
(
)
A.
1
1 2n
B.
2
1 2n
C. 2n 1
2a
c
4 sin
A
2 sin
2π 3
A
5sin A 3 cos A 2 7 sin( A ) (其中 tan 3 ) 0 A 2π
5
3
∴2a c 的最大值为 2 7
18.(1)对任意的
n
N* ,
Sn1
3Sn
2
,则
Sn1 1 Sn 1
3Sn Sn
3 1
3

S1
1
3,
所以,数列Sn 1 是以 3 为首项,以 3 为公比的等比数列;

△ 1 8a 0
所以方程
2ax2
x
1
0
有两个不相等的正实数根,于是有
x1
x2
1 2a
0 ,解得 0
a
1 8
.
x1 x2
1 2a
0
若不等式 f x1 f x2 2x1 x2 t 有解,所以 t f x1 f x2 2x1 x2 max
由于曲线
Cn
:
x2
18.(12 分)已知数列 an 的前 n 项和为 Sn , a1 2, Sn1 3Sn 2, n N* . (1)证明:数列 Sn 1 为等比数列; (2)已知曲线 Cn : x2 19 an y2 1 若 Cn 为椭圆,求 n 的值;
19.(12 分)如图, 在直四棱柱 ABCD A1B1C1D1 中, AD BC, AB / /CD,CD 2AB DD1 ,
0.15
0.10
0.050
0.025
0.010
k0
2.072
2.706
3.841
其中, K 2
n(ad bc)2
,n a b c d
(a b)(c d )(a c)(b d )
5.024
6.635
E, F
分别为
A1B,
AD1
的中点,
ABC
=
2π 3
.(1)
证明: EF
/ / 平面 ABCD
2 e2
,
e2 8
(e 2
,
)
三、填空题(每小题 5 分,共 20 分)
13.在等差数列 an 中,若 a1 a2 4,a5 a6 6 ,则 a9 a10 _________.
14. sin 40(tan10 3) _________. 15.2020 年是全面建成小康社会目标实现之年,是脱贫攻坚收官之年根据中央对“精准扶贫”的要求,某 市决定派 5 名党员和 3 名医护人员到三个不同的扶贫村进行调研,要求每个扶贫村至少派党员和医护人
1 x
,
x 0 ,g(x) f (x) x a ,若 g x 恰有 3 个零点,则实数 a 的取值范围是(
)
ln x, x 0
A. a 1
B. a 0
C. 1 a 0
D. a 1
8.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十
天干”;子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫做“十二地支”地支又与十二生肖“鼠、
0,
0),
C
(0,
4,
0)

uuur EF =
3 2
,
3 2
,
0
,
uuur DF =
3 2
,
1 2
,
2
,
uuur FC =
3 2
,
7 2
, 2
设平面
FCD
的法向量为
m
(a,b, c)
,
由 DF m
0

3 2
a
1b 2
2c
0
解得
b 0
FC m 0
3 a 7 b 2c 0 22
17.答案:(1)a2 b2 (a c)c 即 b2 a2 c2 ac
b2
a2
c2
2ac
cos B
cos
B
1 B (0, 2
ห้องสมุดไป่ตู้
π)
∴B
π 3
a (2)由 sin A
3 3
c sin C
可得,
a
2 sin
A, c
2sin C
2
∴2a
c
4 sin
A
2 sin
C
∵A+C
2 3
π
C
2 3
π
A
直线 x 1对称 10. 函 数 f (x) 2sin(x )( 0, π) 的 部 分 图 像 如 图 所
示,则
下列结论正确的是( )
A.
f
x
2 sin
1 3
x
π 6
B. 若把函数 f x 的图像向左平移 π 个单位,则所得函数是奇
2
C. 若把 f x 的横坐标缩短为原来的 2 倍,纵坐标不变,得到
2021 新高考数学模拟试题及答案
1.已知集合 A {x | y x2 2x 3},B {2,0,2,3} , M A B ,则 M 的子集共有( )
A.3 个
B.4 个
C.7 个
D.8 个
2..已知 i 为虚数单位,复数 z 满足 z 2 3i 1 ,则 z 在复平面内对应的点所在的象限为( )
3QA
QB
28
,求实数
m 的取值范围.
20.(12 分)共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2020 年该市共享单车用户年 龄等级分布如图 1 所示,一周内市民使用单车的频率分布扇形图如图 2 所示.若将共享单车用户按照年龄 分为“年轻人”(20 岁-39 岁)和“非年轻人”(19 岁及以下或者 40 岁及以上)两类,将一周内使用 的次数为 6 次或 6 次以上的称为“经常使用单车用户”,使用次数为 5 次或不足 5 次的称为“不常使用 单车用户”.已知在“经常使用单车用户”中有 5 是“年轻人”.
19
an
y2
1
是椭圆,则
19 19
an an
0 1
,即
2 3n1
2
3n1
19 18

∵n N* ,解得 n 1 或 2;
19.答案:(1)连接 A1D, BD ,易知侧面 ADD1A1 为矩形,∵F 为 AD1 的中点,∴F 为 A1D 的中点.
相关文档
最新文档