双碱法脱硫物料平衡计算过程

合集下载

双碱法烟气脱硫计算

双碱法烟气脱硫计算

双碱法计算过程标态:h Nm Q /4000030=65℃:h m Q /49523400002736527331=⨯+= 还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。

1、脱硫塔⑴ 塔径及底面积计算:塔内流速:取s m v /2.3=m v Q r r v vs Q 17.12.314.33600/49532121=⨯==⇒⋅⋅==ππ D=2r=2.35m 即塔径为2.35米。

底面积S=∏r 2=4.3m 2塔径设定为一个整数,如2.5m⑵ 脱硫塔高度计算:液气比取L/G= 4,烟气中水气含量设为8%SO 2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4① 循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324)/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 91m 。

选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台② 计算循环浆液区的高度:取循环泵8min 的流量,则H 1=24.26÷4.3=5.65m如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。

采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。

③ 计算洗涤反应区高度停留时间取3秒,则洗涤反应区高度H2=3.2×3=9.6m④除雾区高度取6米H3=6m⑤脱硫塔总高度:H=H1+H2+H3=5.65+9.6+6=21.3m塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。

如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。

塔的高度可设定在16~18m2、物料恒算每小时消耗99%的NaOH 1.075Kg。

双碱法脱硫的操作

双碱法脱硫的操作

双碱法脱硫的操作主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。

3种生成物均溶于水。

在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。

一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等。

上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料。

因此可做到废物综合利用,降低运行费用。

用NaOH脱硫,循环水基本上是NaOH的水溶液。

在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养。

为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题。

脱硫剂用量计算如下:脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量。

用量需要过量5%以上(按5%计算)。

前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h。

SO2和CO2中和反应用氢氧化钠量为:(80×42÷64+80×2 161÷44)×105%=4 180 kg脱硫过程由于NaOH的转换实际消耗是石灰。

折算成生石灰消耗量56×4 180÷80=2 926 kg生石灰日消耗量为70 224 kg综上所述,脱硫过程的碱消耗量是很大的。

但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用。

所以改进后的双碱法脱硫工艺是值得推荐和推广应用的。

双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。

另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。

双碱法脱硫工艺

双碱法脱硫工艺

双碱法脱硫工艺双碱法脱硫工艺技术是目前应用成熟的一种烟气脱硫技术,尤其是在小热电燃煤锅炉烟气污染治理方面应用较为广泛。

脱硫剂初步采用氢氧化钠溶液(含30%NaOH)和生石灰(含90%CaO)。

其工艺原理是:以NaOH溶液为第一碱吸收烟气中的二氧化硫,然后再用生石灰加水熟化成氢氧化钙溶液作为第二碱,再生吸收液中NaOH,副产物为石膏。

再生后的吸收液送回脱硫塔循环使用。

各步骤反应如下:吸收反应:SO2+2NaOH=Na2SO3+H2ONa2SO3+SO2+H2O=2NaHSO3副反应如下:Na2SO3+1/2O2=Na2SO4由于硫酸钠是很难再生还原的,一旦生成就需要补充NaOH。

再生反应用氢氧化钙溶液对吸收液进行再生2NaHSO3+Ca(OH)2=Na2SO3+CaSO3·1/2H2O+3/2H2ONa2SO3+Ca(OH)2+1/2H2O=2NaOH+CaSO3·1/2H2O氧化反应CaSO3·1/2H2O+1/2O2=CaSO4·1/2H2O本双碱法脱硫系统主要由脱硫塔系统(含烟气除雾)、烟气系统、吸收剂供应及制备系统、脱硫液循环及再生系统、脱硫渣处理系统、工艺水系统和电气及仪表控制系统等组成。

技术特点(1)从技术、经济及装置运行稳定性、可靠性上考虑采用生石灰和氢氧化钠作为脱硫剂,保证系统脱硫效率最低可达90%。

(2)采用双碱法脱硫工艺,可以基本上避免产生结垢堵塞现象,减少昂贵的NaOH耗量和降低运行费用。

(3)采用喷雾洗涤方式可在较小的液气比下获得较大的液气接触面积,进而获得较高的脱硫除尘效率;并且,较小的液气比可以减少循环液量,从而减少循环泵的流量,降低了运行成本也减少了造价。

(4)为确保整个系统连续可靠运行,采用优良可靠的设备,以确保脱硫系统的可靠运行.(5)按现有场地条件布置脱硫系统设备,力求紧凑合理,节约用地。

(6)最大限度的把脱硫水循环利用,但是由于烟气中含有一定浓度的盐份和Cl离子,反应塔内部分水分蒸发,因此形成循环水中盐和Cl离子的积累,由于过高的盐和Cl离子浓度会降低脱硫效率和腐蚀反应装置,所以必须调整脱硫循环水水质并补充少量工业用水。

双碱法烟气脱硫物料计算

双碱法烟气脱硫物料计算
年脱出SO2总量 纯生石灰的量
烧碱的量
单位 m m
元/吨 元/吨
% h m2 m/s t t/年 t/年
数值 18.00 4.00 300.00 3000.00 93.00 8000.00 12.56 3.98 632.40 581.02 19.86
85%生石灰的量 t/年
683.55
生石灰费用 万元
44.51
21.26

2.47
反应池中的钠、钙、硫平衡
进反应池的Na2SO3
155.63
进反应池的Ca(OH)2
91.40
出反应池的CaSO3
148.22
出反应池的Na(OH)
98.81
输入值
计算值
锅炉数量
1.00
脱硫塔计算公式
设计参数 塔高 塔径
85%生石灰价格 烧碱价格 脱硫效率 年运行时间
脱硫塔截面积 烟气流速
1700.00
85.00
79.05
物料计算(小时耗量)
排放浓度(mg/Nm3)
脱硫效率(%)
纯生石灰的量(Kg/h)
400.00
76.47
72.63
需要烧碱的量(Kg)
石膏产生量(Kg/h) 氧化空气用量(m3/h)
98.81
212.64
79.05
石膏结晶水(Kg/h)
脱硫渣含水(Kg/h)
烧碱耗量(Kg/h)
工况烟气量计算
烟气温度(℃)
标况烟气量(Nm3/h)
工况烟气量(m3/h)
150.00
60000.00
92967.03
标况烟气量计算
烟气温度(℃)
工况烟气量(m3/h)
标况烟气量(Nm3/h)

双碱液法脱硫计算公式

双碱液法脱硫计算公式

双碱液法脱硫计算公式
双碱液法脱硫是一种常用的大气污染控制技术,可以将燃煤电厂等工业设施的二氧化硫排放量减少到国家和地方排放标准以下,从而保护环境和人民健康。

双碱液法脱硫的原理是利用碱性溶液(主要包括氢氧化钠和碳酸钙)与二氧化硫发生反应,形成硫酸钙和水,从而达到脱硫的目的。

在反应过程中,必须要控制溶液的浓度和温度才能保证脱硫效果。

具体的计算公式如下:
1. 双碱液法脱硫反应方程式
反应式:NaOH + SO2 + H2O → Na2SO3 + 2H2O
化学方程式:2NaOH + SO2 + 2CO2 → Na2SO3 + Na2CO3 +
2H2O
2. 双碱液法脱硫的常数及限制因素
常数:k1、k2、k3、k4、k5
限制因素:SO2、NaOH、Ca(OH)2的摩尔比、气相速度、溶液浓度、温度、气体分子量、溶液分子量以及反应釜的构造设计等。

3. 双碱液法脱硫效率的计算公式
SO2去除率=1- (Cout/Cin)*100%
其中,Cout为脱除后气流中的SO2浓度(mg/m3),Cin为控制前气流中的SO2浓度(mg/m3)。

4. 双碱液法脱硫量的计算公式
SO2去除量= V*I*(Cin-Cout)
其中,V表示气流体积(m3/s),I表示反应器中溶液的稀释倍数,Cin-Cout表示SO2的浓度差(mg/m3)。

5. 双碱液法脱硫方案比较
在双碱液法脱硫方案中,不同的方案对应着不同的反应器构造、气体流量、溶液循环量、溶液配比等。

需要进行全面比较才能选择
适宜的方案。

以上就是双碱液法脱硫计算公式的相关内容,具体的计算需要
根据实际情况进行调整。

双碱法烟气脱硫物料计算

双碱法烟气脱硫物料计算

双碱法烟气脱硫物料计算导言烟气脱硫是火力发电站中重要的污染治理环节之一。

双碱法烟气脱硫是目前应用比较广泛的一种方法。

在这种方法中,石灰石和苏打灰被加入到烟气中,与二氧化硫进行反应,生成石膏。

因此,计算烟气脱硫物料对于双碱法烟气脱硫工艺的优化和掌握非常重要。

本文将介绍双碱法烟气脱硫物料计算方法及其相关原理。

双碱法烟气脱硫原理双碱法烟气脱硫采用了石灰石和苏打灰两种碱性物料作为脱硫剂,这种方法的脱硫效率高,操作稳定,使用寿命长。

其中,石灰石主要作用是中和气相中二氧化硫,生成硫酸钙,而苏打灰则主要用于清洗脱硫剂,防止脱硫剂在吸收过程中结垢。

通过这两种物料的协同作用,可以有效地降低烟气中二氧化硫的浓度。

计算公式及原理在双碱法烟气脱硫过程中,石灰石和苏打灰的投入量是关键的参数。

合理的计算方法可以保证脱硫效率,提高运行效率。

石灰石的投入量的计算公式为:石灰石投入量 = SO2浓度 × 烟气体积 × 15 / (石灰石纯度 × SO2的反应转化率)其中,SO2浓度可以通过测定烟气中二氧化硫的浓度来获得。

烟气体积可以通过测定烟气流量和烟气温度计算得出。

15是一个常数,纯度为石灰石的质量纯度,SO2的反应转化率指二氧化硫转化为硫酸钙的转化率。

同样地,苏打灰的投入量可以根据如下公式计算:苏打灰投入量 = SO2浓度 × 烟气体积 × 10 / (苏打灰纯度 × SO2的反应转化率)其中,10是一个常数,苏打灰纯度为该物料的质量纯度。

实际应用举例为了更好地理解双碱法烟气脱硫物料计算方法,我们可以通过一个实际案例进行演示。

假设某发电厂采用双碱法烟气脱硫工艺,脱硫需要使用石灰石和苏打灰两种脱硫剂。

石灰石和苏打灰的质量纯度分别为90%和95%。

某次测定烟气流量为5000m³/h,温度为150℃,二氧化硫的浓度为1.2g/Nm³。

首先,我们可以根据石灰石的投入量公式计算出石灰石的具体质量:石灰石投入量 = 1.2 × 5000 × 15 / (90% × 85%)= 147.06kg/h接下来,我们可以利用苏打灰的投入量公式计算苏打灰的具体质量:苏打灰投入量 = 1.2 × 5000 × 10 / (95% × 85%)= 98.04kg/h综上所述,该发电厂每小时需要投入147.06kg的石灰石和98.04kg 的苏打灰进行脱硫处理。

双碱法脱硫物料平衡计算过程

双碱法脱硫物料平衡计算过程

双碱法脱硫物料平衡计算过程双碱法脱硫是一种常用的烟气脱硫技术,常用的双碱剂为氢氧化钠和氢氧化钙,既可以实现脱除烟气中的SO2,也可以避免单碱法操作中的缺点,如石灰石堵塞等。

在双碱法脱硫过程中,需要进行物料平衡计算,以确保反应体系的合理性和脱硫效率。

以下是双碱法脱硫物料平衡计算的详细过程。

1. 确定反应方程式:双碱法脱硫的基本反应方程式为:Ca(OH)2 + NaOH + SO2 → CaSO3 + 2H2O + NaOH反应中氢氧化钙和氢氧化钠与二氧化硫反应生成硫酸钙和水,并释放出氢氧化钠。

反应中前两个试剂是体积计输送进入吸收塔,后置两个试剂为反应废液,存在管道里输送。

物料平衡计算的目的就是通过上述方程式,计算各个试剂的输入量和产出量。

2. 确定反应条件:在反应中,需要控制反应废液的pH值,以确保反应的顺利进行和产物的纯度。

一般情况下,反应废液的pH值应该在10.5~11.5之间。

此外,还需要控制反应废液的温度,防止因温度过高产生副反应。

3. 计算反应试剂的输入量:在双碱法脱硫过程中,需要输入的试剂有氢氧化钠、氢氧化钙和二氧化硫。

假设反应中氢氧化钠的摩尔数为a,氢氧化钙的摩尔数为b,二氧化硫的摩尔数为c,则反应的总摩尔数为a+b+c。

由此可得,氢氧化钠和氢氧化钙的输入量分别为V1=a*(mol/V)和V2=b*(mol/V),其中V为体积,单位为立方米。

在实际操作中,氢氧化钠和氢氧化钙的输送速率不同,需要考虑到孔板的压损和各个管道的分配。

实际输送量可以通过实验和测量得到,再进行调整。

4. 计算反应产物的输出量:反应废液中产生的产物包括CaSO3、H2O和NaOH。

假设反应中CaSO3的摩尔数为d,水的摩尔数为e,NaOH的摩尔数为f,则反应产物的总摩尔数为d+2e+f。

由此可得,反应产生的NaOH量为V3=f*(mol/V)。

反应废液中的CaSO3可以通过挥发和过滤等方法进行处理,而水也可以通过挥发和蒸汽回收的方式进行处理,以节约资源和降低成本。

双碱法脱硫的操作

双碱法脱硫的操作

双碱法脱硫的操作双碱法脱硫的操作主要工艺过程是:清水池一次性加入氢氧化钠溶剂制成氢氧化钠脱硫液(循环水),用泵打入脱硫除尘器进行脱硫。

3种生成物均溶于水。

在脱硫过程中,烟气夹杂的烟道灰同时被循环水湿润而捕集进入循环水,从脱硫除尘器排出的循环水变为灰水(稀灰浆)。

一起流入沉淀池,烟道灰经沉淀定期清除,回收利用,如制内燃砖等。

上清液溢流进入反应池与投加的石灰进行反应,置换出的氢氧化钠溶解在循环水中,同时生成难溶解的亚硫酸钙、硫酸钙和碳酸钙等,可通过沉淀清除;可以回收,是制水泥的良好原料。

因此可做到废物综合利用,降低运行费用。

用NaOH脱硫,循环水基本上是NaOH的水溶液。

在循环过程中对水泵、管道、设备均无腐蚀与堵塞现象,便于设备运行与保养。

为保证脱硫除尘器正常运行,烟气排放稳定达标,确保脱硫剂有足够使用量是一个关键问题。

脱硫剂用量计算如下:脱硫反应中,NaOH的消耗量是SO2和CO2与其反应的消耗量。

用量需要过量5%以上(按5%计算)。

前面计算的10 t/h锅炉烟气中SO2排放量为42 kg/h,CO2排放是为2 161 kg/h。

SO2和CO2中和反应用氢氧化钠量为:(80×42÷64+80×2 161÷44)×105%=4 180 kg脱硫过程由于NaOH的转换实际消耗是石灰。

折算成生石灰消耗量56×4 180÷80=2 926 kg生石灰日消耗量为70 224 kg综上所述,脱硫过程的碱消耗量是很大的。

但要保证脱硫效率,就必须要保证碱的用量,通过比较双碱法脱硫可以实现脱硫效率高,运行费用相对比较低,操作方便,无二次污染,废渣可综合利用。

所以改进后的双碱法脱硫工艺是值得推荐和推广应用的。

双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。

另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。

双碱法脱硫工艺计算表

双碱法脱硫工艺计算表

双碱法脱硫工艺计算表概述双碱法脱硫是一种经济、环保的烟气脱硫工艺。

该工艺通过在烟气中加入一定量的氢氧化钙和氢氧化钠,使烟气中的二氧化硫与氢氧化钙和氢氧化钠反应生成硫酸钙或硫酸钠,从而达到脱硫的目的。

本文将介绍双碱法脱硫的工艺计算表。

计算表数据输入项序号数据项单位1烟气流量Nm3/h2二氧化硫浓度mg/Nm33所需脱硫效率%4氢氧化钙纯度%5氢氧化钠纯度%6水的化学当量mol/kg7硫酸钙的产率系数%8硫酸钠的产率系数%数据输出项序号数据项单位序号数据项单位1所需氢氧化钙用量kg/h2所需氢氧化钠用量kg/h3硫酸钙产生量kg/h4硫酸钠产生量kg/h计算方法假设双碱法脱硫的化学反应方程式如下:Ca(OH)2 + SO2 → CaSO3 + H2O2NaOH + SO2 → Na2SO3 + H2O根据反应式,可以列出以下计算公式:1.计算氢氧化钙用量:氢氧化钙用量 = 烟气流量 × 二氧化硫浓度 × (1 - 所需脱硫效率) ÷ (2 × 水的化学当量 × 氢氧化钙纯度 × 硫酸钙的产率系数)2.计算氢氧化钠用量:氢氧化钠用量 = 烟气流量 × 二氧化硫浓度 × (1 - 所需脱硫效率) ÷ (2 × 水的化学当量 × 氢氧化钠纯度 × 硫酸钠的产率系数)3.计算硫酸钙产生量:硫酸钙产生量 = 烟气流量 × 二氧化硫浓度 × 所需脱硫效率 × 硫酸钙的产率系数 ÷ 1004.计算硫酸钠产生量:硫酸钠产生量 = 烟气流量 × 二氧化硫浓度 × 所需脱硫效率 × 硫酸钠的产率系数 ÷ 100注意事项1.氢氧化钙和氢氧化钠的纯度和硫酸钙、硫酸钠的产率系数是根据实际情况而定,需要根据实际脱硫设备的情况进行确定。

脱硫系统(双碱法)

脱硫系统(双碱法)

2.脱硫系统(双碱法) 2.1工艺技术要求(1) 脱硫工艺采用双碱法,设计脱硫塔出口SO 2排放浓度≤100mg/Nm 3。

(2) 脱硫装置采用一炉一塔方式建设,共设置一座脱硫塔,其他工艺系统(包括脱硫剂储存制备系统、脱硫液再生循环系统、脱硫产物氧化脱水系统、工艺水系统)利用业主原有脱硫装置。

(3) 脱硫后烟气经出口烟道返回至原有烟囱进行排放。

2.2 工艺方案设计2.2.1工艺流程概述双碱法烟气脱硫工艺是利用NaOH 、Na 2CO 3、NaHCO 3、Na 2SO 3等水溶性碱液在吸收塔内吸收烟气中的SO 2,生成Ca(HSO 3)2、CaSO 3与CaSO 4的混合溶液,然后在另一反应器内使用Ca(OH)2溶液将上述混合溶液进行再生,使Ca 2+和Na +得以置换,最终使SO 2与Ca 2+结合以Ca 2SO 3和Ca 2SO 4的形式析出,生成亚硫酸钙和石膏。

分步反应方程式如下:1、在吸收塔内利用钠碱溶液吸收SO 2(脱硫过程):(1)(2) (3)2、在再生池内利用氢氧化钙溶液置换钠离子(再生过程):(4)(5) 3、在氧化脱水系统内通过强制氧化及机械作用对脱硫副产物进行脱水处理(氧化脱水过程):(6) 本工程脱硫塔及与脱硫塔相连的循环泵、脱硫液返回泵、工艺水箱、工艺水泵由乙方提供,其余附属设施由甲方提供(循环水池和沉淀池的总容积为180M 3)。

22322NaOH SO Na SO H O +⇒+322322NaHSO O H SO SO Na ⇔++↑+⇒+232232CO SO Na SO CO Na 3223322132()22NaHSO Ca OH Na SO CaSO H O H O∙+⇔++2323()2Na SO Ca OH NaOH CaSO +⇒+423CaSO O CaSO ⇒+来自除尘器后的原烟气在脱硫塔内与循环浆液进行脱硫反应,经反应后的浆液经自流输送到业主原有循环水池进行再生沉淀;新鲜的脱硫浆液经脱硫液返回泵输送到脱硫塔内使用;工艺水箱内储存的工艺水在使用时通过工艺水泵输送到脱硫塔或个用水点使用。

双碱法计算过程

双碱法计算过程

双碱法 计算过程标态:h Nm Q /4000030=65℃:h m Q /49523400002736527331=⨯+= 还有约5%的水份如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。

1、脱硫塔(1)塔径及底面积计算:塔内流速:取s m v /2.3=m v Q r r v vs Q 17.12.314.33600/49532121=⨯==⇒⋅⋅==ππ D=2r=2.35m 即塔径为2.35米。

底面积S=∏r 2=4.3m 2塔径设定为一个整数,如2.5m(2)脱硫塔高度计算:液气比取L/G= 4 烟气中水气含量设为8%SO2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4①循环水泵流量:h m m l HG Q GL Q /1821000)08.01(495324)/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 91m 。

选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台②计算循环浆液区的高度:取循环泵8min 的流量H 1=24.26÷4.3=5.65m如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。

采用塔外循环,泵的杨程选35m,管道采用碳钢即可。

③计算洗涤反应区高度停留时间取3秒洗涤反应区高度H2=3.2×3=9.6m④除雾区高度取6米H3=6m⑤脱硫塔总高度H=H1+H2+H3=5.65+9.6+6=21.3m塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。

如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。

塔的高度可设定在16~18m2、物料恒算每小时消耗99%的NaOH1.075Kg。

脱硫塔操作规程(双碱法)

脱硫塔操作规程(双碱法)

双碱法脱硫系统操作规程目录一、引言 (1)(一)、概述 (1)(二)、设备技术参数 (1)二、操作人员岗位职责 (2)(一)、岗位职责 (2)(二)、巡回检查路线及要求 (2)(三)、安全环保注意事项 (3)三、工艺操作规程 (4)(一)工艺流程简介 (4)(二)系统运行中的参数控制 (5)(三)系统的设计参数说明 (5)四、脱硫系统的启动 (7)(一)系统投运前准备 (7)(二)系统开车 (7)五、脱硫系统的停运 (8)(一)、短期停运 (8)(二)、长期停运 (8)六、主要设备 (9)(一)窑炉引风机 (9)(二)脱硫塔 (9)(三)脱硫塔供水系统 (11)(四)加药系统 (12)(五)循环水排出系统 (13)七、常见故障及处理 (13)(一)事故处理的一般原则 (13)(二)停水应急处理办法 (14)(三)停电应急处理办法 (14)(四)设备故障 (14)八、附录 (15)附录一:脱硫各项目的化学分析方法 (15)(一)氧化钙的测定 (15)(二)浆液P H值的测量 (16)(三)亚硫酸盐的测定 (16)(四)硫酸盐的测定 (17)附录二:运行记录表格(参考) (19)一、引言为了确保我公司脱硫系统的安全、稳定、长期高效运行,使操作人员尽快掌握设备及系统操作技能,并能对系统进行日常维护检修,结合现场实际,特编制本《规程》。

对规程中可能存在的问题及不足,将在日后通过对实际运行经验的总结,不断予以改进和完善。

(一)、概述烟气中SO2的去除在吸收塔内进行,吸收塔由预喷淋系统、均流板、3层喷淋装置和1套脱水装置所组成。

从引风机出来的原烟气进入吸收塔后,烟气先经过预喷淋,经过均流板使主喷淋区的烟气分布均匀,然后与喷淋下来的浆液充分接触,烟气被浆液冷却并达到饱和,烟气中的SO2、SO3、HCl、HF等酸性组份被吸收,再流经一层脱水装置而除去所含的液滴。

经洗涤和净化的烟气排出吸收塔,通过烟囱排入大气中。

双碱法烟气脱硫计算

双碱法烟气脱硫计算

双碱法烟气脱硫计算双碱法烟气脱硫计算,是指在烟气中加入两种碱性化合物(如氢氧化钙和三氧化硫),以与烟气中的二氧化硫反应生成硫酸钙而达到脱硫的目的。

下面详细介绍双碱法烟气脱硫计算过程。

1. 初步计算烟气中二氧化硫的含量烟气中二氧化硫(SO2)的含量,一般用浓度(mg/m3)表示。

根据国家标准《烟气中污染物的测定方法》GB/T 16157-1996,可以采用色谱法或分光光度法等方法进行测定,得到二氧化硫的排放浓度。

2. 计算烟气脱硫所需氢氧化钙的质量在双碱法中,需要加入足够的氢氧化钙与烟气中的二氧化硫反应生成硫酸钙。

实际添加的氢氧化钙质量,则可以按照下面的计算公式进行计算:氢氧化钙质量= SO2排放浓度(mg/m3)×烟气体积流量(m3/h)×(CaO/Ca(OH)2)×(1/1000)×(1/56)其中CaO/Ca(OH)2为氢氧化钙的纯度。

1/1000为把mg/m3转换为g/h的转换系数,1/56为将CaO的质量转换为Ca(OH)2的质量,以考虑其化学计量比。

3. 计算烟气脱硫所需三氧化硫的质量除了氢氧化钙外,还需要加入一定量的三氧化硫(SO3)作为催化剂,提高SO2与Ca(OH)2反应的速率和效率。

加入的三氧化硫质量,可以按照下面的计算公式进行计算:三氧化硫质量= SO2排放浓度(mg/m3)×烟气体积流量(m3/h)×补充量系数×(SO3/SO2)补充量系数是指为了在烟气中保持一定的SO3含量而需要额外加入的三氧化硫量,一般取0.5-1%。

SO3/SO2则是三氧化硫与二氧化硫的化学计量比,为0.3/1。

4. 计算烟气脱硫效率烟气脱硫效率是指脱硫前后二氧化硫浓度的变化比例,通常以%表示。

可以使用下面的公式来计算:烟气脱硫效率=(SO2排放浓度-脱硫后SO2浓度)/ SO2排放浓度×100%其中,脱硫后SO2浓度可以通过测量排放口出口的SO2浓度来得到。

双碱法烟气脱硫物料计算

双碱法烟气脱硫物料计算

双碱法烟气脱硫物料计算烟气脱硫是一种常见的烟气净化技术,主要用于去除燃煤电厂等工业烟气中的二氧化硫(SO2)。

在烟气脱硫过程中,使用双碱法是一种常用方法。

双碱法是指将石灰石(CaCO3)和苏打灰(Na2CO3)两种物料一起使用,通过反应生成大量的石膏(CaSO4)和钠硫酸盐(Na2SO4),实现烟气中SO2的脱除。

在双碱法烟气脱硫物料计算中,需要考虑下列几个因素:1.SO2的排放浓度:燃煤电厂烟道烟气的SO2排放浓度可能会有所不同,一般为几百到几千毫克/立方米。

在计算中需要准确确定SO2排放浓度。

2.石灰石配比:石灰石是双碱法脱硫的主要消耗物料,其配比会影响脱硫效率。

根据煤质和投加方式的不同,可选择的石灰石配比范围一般为2.5到3.53.苏打灰配比:苏打灰是双碱法脱硫中的辅助消耗物料,其作用是提高石灰石的利用率。

苏打灰的配比与石灰石的配比在一定程度上相关,一般为石灰石配比的20%到30%。

4.脱硫效率:双碱法脱硫的效率与物料配比、石灰石和苏打灰质量等因素有关。

一般来说,采用双碱法脱硫的燃煤电厂脱硫效率可以达到90%以上。

计算双碱法烟气脱硫所需物料的步骤如下:步骤1:根据烟气排放浓度确定石灰石的投加量。

石灰石投加量(t/h)= SO2排放浓度(mg/Nm³)× 烟气流量(Nm³/h) / 石灰石配比(kg/t)步骤2:根据石灰石投加量确定苏打灰的投加量。

苏打灰投加量(t/h)=石灰石投加量(t/h)×苏打灰配比(%)步骤3:根据苏打灰投加量确定石膏的产生量。

石膏产生量(t/h)=石灰石投加量(t/h)×石膏生成率(%)步骤4:根据石膏产生量确定钠硫酸盐的产生量。

钠硫酸盐产生量(t/h)=苏打灰投加量(t/h)×钠硫酸盐生成率(%)在实际操作中,以上计算仅为初步估算。

实际投放量需要考虑设备的脱硫效率、排放标准以及物料的损失和废料处理等因素,并进行调整。

双碱法计算书

双碱法计算书

浙江永泰纸业集团3×75t/h锅炉烟气脱硫工程工艺计算书一、设计资料参数本工程的设计参数,主要依据浙江永泰纸业集团所提供的资料,设计指标严格按照地方标准,参考国家统一标准治理要求,主要设计参数下表主要设计参数表(单台)项目参数单位备注锅炉蒸发量75 t/h 三台烟气量175000 m3/h 三台排烟温度140 ℃业主提供耗煤量11 t/h 三台燃煤含硫0.6 % 业主提供烟气出口含尘浓度19 g/m3业主提供锅炉年运行时间8000 h 业主提供引风机风量171608 m3/h业主提供全压4550 Pa二、系统物料衡算1、进口标态烟气量Q标=Q工×273÷(273+140)=115677.96Nm3/h取Q标=115680Nm3/h2、锅炉出口SO2浓度出口SO2浓度=11×0.6÷100×2×0.9×109÷115680=1026mg/Nm33、蒸发水量吸收塔出口烟气温度为52℃,根据吸放热平衡,当烟气温度由140℃降到52 ℃时,蒸发水量Q水=8026.35 Nm3/h4、吸收塔循环液量取塔体液气比为 2.0L/Nm3,则单塔循环液量Q1=115680×2.0÷1000=231.36m3/h取短管喷淋段液气比为0.5L/Nm3,则单塔喷淋液量Q2=115680×0.5÷1000=57.84m3/h脱硫液再生量为总循环液量的40%,即Q3=(231.36+57.84)×3×0.4=347.04m3/h 5、脱硫剂耗量(设计脱硫效率为90%)1)二氧化硫脱除量按照设计指标要求,每小时应脱除的SO2总量为:单台锅炉脱除的SO2量为:115680Nm3/h×1026mg/Nm3×90%×10-9=0.107 t/h 三台锅炉脱除SO2总量为:0.320 t/h年脱出SO2的总量为:0.320 t/h ×8000=2563.65t/a年排放的SO2为:284.85t/a2)脱硫剂需求量本工艺脱硫剂为钠碱和石灰,钙硫比取1.03,生石灰质量含量为85%,液碱补充量为0.03mol(100%NaOH)/molSO2,则三台锅炉烟气脱硫的脱硫剂需求量为:脱硫剂需求量一览表3)脱硫渣采用生石灰做脱硫剂使产生的脱硫副产物为半水亚硫酸钙,该产物可以做建筑材料用。

双碱法烟气脱硫设计计算书(计算模板介绍)

双碱法烟气脱硫设计计算书(计算模板介绍)

L Q HG G
4 170000
(1 0.08)
625 .6m3
/h
1000 (l / m3 )
1000
取每台循环泵流量 Q 312.8m。
② 计算循环浆液区的高度: 取循环泵 8min 的流量,则 H1=41.7÷14.8=2.8m ③ 计算洗涤反应区高度 停留时间取 2.5 秒(2-3 秒),则洗涤反应区高度 H2=3.2×2.5=8m ④ 除雾区高度取 3 米 H3=3m ⑤ 脱硫塔总高度:H=H1+H2+H3=2.8+8+3=13.8m 根据导则要求:喷淋层的设置除考虑喷淋效率外还应易于安装和检修,相邻 两层喷淋层间距不小于 1.8 米,最低一层喷淋层距离烟气进口烟道顶部通常保持 2-4 米,最上层喷淋层距离一级除雾器距离不低于 1.5 米,喷淋层数不小于 3 层, (3-6 层)。除雾器通常设两层,两层除雾器间应留有足够的检修空间,二级除雾 器顶部距离烟气出口烟道下沿距离不低于 1.5 米。
Ca(OH)2:520.3kg;石灰浆液浓度石灰浆液:含固量 15%,可得石灰浆液密度 1.093。按一小时配置一次石灰浆液计算,每次配置石灰浆液的体积是 3.2m3。
产生 CaSO3﹒1/2H2O 质量为 625.8kg,
4、脱硫塔(喷淋塔)的理论计算:
⑴ 塔径及底面积计算: 塔内流速:取 v 3.2m/ s
参考其他设计要求:最低喷淋层离入口顶端高度 h=1.2~4m;最高喷淋层 离入口顶端高度 h≥vt,v 为空塔速度,m/s,t 为时间,s,一般取 t≥1.0s;喷淋层 之间的间距 h≥1.5~2.5m;除雾器离最近(最高层)喷淋层距离应≥1.2 m,当最高 层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m。

双碱液法脱硫计算公式

双碱液法脱硫计算公式

烟气量计算烟气含氧量和含湿量计算烟气含硫量及脱硫量计算吸收剂消耗量计算脱硫产物计算氧化空气量计算第十三章:干燥通过本章的学习,应熟练掌握表示湿空气性质的参数,正确应用空气的H–I 图确定空气的状态点及其性质参数;熟练应用物料衡算及热量衡算解决干燥过程中的计算问题;了解干燥过程的平衡关系和速率特征及干燥时间的计算;了解干燥器的类型及强化干燥操作的基本方法。

二、本章思考题1、工业上常用的去湿方法有哪几种?态参数?11、当湿空气的总压变化时,湿空气H–I图上的各线将如何变化? 在t、H 相同的条件下,提高压力对干燥操作是否有利? 为什么?12、作为干燥介质的湿空气为什么要先经预热后再送入干燥器?13、采用一定湿度的热空气干燥湿物料,被除去的水分是结合水还是非结合水?为什么?14、干燥过程分哪几种阶段?它们有什么特征?15、什么叫临界含水量和平衡含水量?16、干燥时间包括几个部分?怎样计算?17、干燥哪一类物料用部分废气循环?废气的作用是什么?18、影响干燥操作的主要因素是什么?调节、控制时应注意哪些问题?三、例题例题13-1:已知湿空气的总压为101.3kN/m2 ,相对湿度为50%,干球温度为20o C。

试用I-H图求解:(a)水蒸汽分压p;(b)湿度H;(c)热焓I;(d)露点t d;(e)湿球温度tw ;(f)如将含500kg/h干空气的湿空气预热至117o C,求所需热量Q。

解:由已知条件:P=101.3kN/m2,Ψ0=50%,t0=20o C在I-H图上定出湿空气的状态点A点。

(a)水蒸汽分压p过预热器气所获得的热量为每小时含500kg干空气的湿空气通过预热所获得的热量为例题13-2:在一连续干燥器中干燥盐类结晶,每小时处理湿物料为1000kg,经干燥后物料的含水量由40%减至5%(均为湿基),以热空气为干燥介质,初始湿度H1为0.009kg水•kg-1绝干气,离开干燥器时湿度H2为0.039kg水•kg-1绝干气,假定干燥过程中无物料损失,试求:(1)水分蒸发是q m,W(kg水•h-1);(2)空气消耗q m,L(kg绝干气•h-1);原湿空气消耗量q m,L’(kg原空气•h-1);(3)干燥产品量q m,G2(kg •h -1)。

双碱法脱硫工艺标准说明材料

双碱法脱硫工艺标准说明材料

双碱法脱硫装置技术工艺简介一、常用脱硫法简介目前主要用于烟气脱硫工艺按形式可分为干法、半干法和湿法三大类。

1.干法干法常用的有炉内喷钙(石灰/石灰石),金属吸收等,干法脱硫属传统工艺,脱硫率普遍不高(<50%),工业应用较少。

2.半干法半干法使用较多的为塔内喷浆法,即将石灰制成石灰浆液,在塔内进行SO2吸收,但由于石灰奖溶解SO2的速度较慢,喷钙反应效率较低,Ca/S比较大,一般在1.5以上(一般温法脱硫Ca/S比较为0.9~1.2)。

应用也不是很多。

3.湿法湿法脱硫为目前使用范围最广的脱硫方法,占脱硫总量的80%。

漫法脱硫根据脱硫的原料不同又可分为石灰石/石灰法、氨法、钠碱法、钠钙双碱法、金属氧化物法、碱性硫酸铝法等,其中石灰石/石灰法、氨法、钠碱法、钠钙双碱法以及金属氧化物中的氧化镁法使用较为普遍。

3.1石灰石/石灰法石灰石法采用将石灰石粉碎成200~300目大小的石灰粉,将其制成石灰浆液,在吸收塔内通过喷淋雾化使其与烟气接触,从而达到脱硫的目的。

该工艺需配备石灰石粉碎系统与石灰石粉化浆系统,由于石灰石活性较低,需通过增大吸收液的喷淋量,提高液气比,来保证足够的脱硫效率,因此运行费用较高。

石灰法是用石灰粉代替石灰石,石灰活性大大高于石灰石,可提高脱硫效率,石灰法主要存在的问题是塔内容易结垢,引起气液接触器(喷头或塔板)的堵塞。

3.2氨法氨法采用氨水作为SO2的吸收剂,SO2与NH3反应可产生亚硫酸氨、亚硫酸氢氨与部分因氧化而产生的硫酸氨。

根据吸收液再生方法的不同,氨法可分为氨—酸法、氨—亚硫酸氨法和氨——硫酸氨法。

氨法主要优点是脱硫效率高(与钠碱法相同),副产物可作为农业肥料。

由于氨易挥发,使吸收剂消耗量增加,脱硫剂利用率不高;脱硫对氨水的浓度有一定的要求,若氨水浓度太低,不仅影响脱硫效率,而且水循环系统庞大,使运行费用增大;浓度增大,势必导致蒸发量的增大,对工作环境产生影响,而且氨易与净化后烟气中的SO2反应,形成气溶胶,使得烟气无法达标排放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双碱法 计算过程
标态:h Nm Q /4000030=
65℃:h m Q /4952340000273
6527331=⨯+= 还有约5%的水份
如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。

1、脱硫塔
(1)塔径及底面积计算:
塔内流速:取s m v /2.3=
m v Q r r v vs Q 17.12
.314.33600/49532121=⨯==⇒⋅⋅==ππ D=2r=2.35m 即塔径为2.35米。

底面积S=∏r 2=4.3m 2
塔径设定为一个整数,如2.5m
(2)脱硫塔高度计算:
液气比取L/G= 4 烟气中水气含量设为8%
SO2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4
①循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324)
/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 91m 。

选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台
②计算循环浆液区的高度:
取循环泵8min 的流量
H 1=24.26÷4.3=5.65m
如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。

采用塔外循环,泵的杨程选35m,管道采用碳钢即可。

③计算洗涤反应区高度
停留时间取3秒
洗涤反应区高度H2=3.2×3=9.6m
④除雾区高度取6米
H3=6m
⑤脱硫塔总高度H=H1+H2+H3=5.65+9.6+6=21.3m
塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。

如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。

塔的高度可设定在16~18m
2、物料恒算
每小时消耗99%的NaOH1.075Kg。

每小时消耗85%的CaO60.585Kg。

石灰浆液浓度:含固量15%,可得石灰浆液密度1.093。

按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。

浆液区的体积是24.26 m3。

石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为 2.4 m3/h)不间断往塔内输送浆液。

石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为4.8 m3/h)不间断往塔外输出石膏浆液。

由计算可得每小时产石膏干重0.129吨。

蒸发水分量2.16 m3/h。

除雾器及管道冲洗水量约为3 m3/h。

补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为 2.4 m3/h)不间断往塔内输送碱液
进塔部分:石灰浆液2.4 m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量2.4 m3/h 出塔部分:石膏浆液4.8m3/h +蒸发水分量2.16 m3/h
若氧化还原池按两塔5小时排出浆液量计算,则容积应为3.6×2×5=36 m3
如果采用塔外循环,循环水池也即再生、沉淀、碱水池可设定容量为250m3,有效容积200m3,池高度≤4m(便于抽沉淀),循环水停留时间设定为1小时。

石灰采用人工加料,沉淀用离心渣泵或潜水渣泵抽出,采用卧式离心机脱水。

相关文档
最新文档