高中数学-集合的基本运算(一)
集合的基本运算一 必修一教案4
第 4 页 共 4 页
(二)例题讲解: 例 1. (课本例 5)设集合 A x 1 x 2 , B x 1 x 3 , 求 A∪B. 变式:A={x|-5≤x≤8}
例 2. (课本例 7)设平面内直线 l1 上点的集合为 L1, 直线 l2 上点的集合为 L2,试用集合的运算表示 l1 ,l2 的 位置关系。
第 1 页 共 4 页
教学难点
教学过程
1. 并集的定义: 一般地,由所有属于集合 A 或属于集合 B 的元素 所组成的集合,叫做集合 A 与集合 B 的并集(union set) 。记作:A∪B(读作: “ A 并 B” ) ,即
A B x x A, 或x B
用 Venn 图表示:
人教版高中数学必修 1 教案
授课时间: 备课时间: 年 年 月 月 日 日
课题:集合的基本运算㈠ (1)理解交集与并集的概念; (2)掌握交集与并集的区别与联系;
教学目标
(3)会求两个已知集合的交集和并集,并能正确应用它们解决一 些简单问题。
教学重点
交集与并集的概念,数形结合的思想。 理解交集与并集的概念、符号之间的区别与联系。 一、复习回顾: 1.已知 A={1,2,3},S={1,2,3,4,5},则 A S;{x|x∈S 且 x A}= 。 2.用适当符号填空: 0 {0}; 0 Φ; Φ {x|x 2 +1=0,x∈ R} {0} {x|x<3 且 x>5} ; {x|x>6} {x|x< - 2 或 x>5} ; {x|x>-3} {x>2} 二、新课教学 (一). 交集、并集概念及性质的教学: 思考 1.考察下列集合,说出集合 C 与集合 A,B 之 间的关系: (1) A {1,3,5} , B {2,4,6}, C 1,2,3,4,5,6 ; (2) A {x x是有理数} , B {x x是无理数}, C x x 是实数 ; 由学生通过观察得结论。
1.1.3 集合的基本运算(1)并集与交集-讲义版
1.1.3
集合的基本运算
第 1 课时 并集和交集
已知一个班有 30 人,其中 5 人有兄弟,5 人有姐妹,你能判断这个班有多少是独生子女吗?如果不能 判断,你能说出需哪些条件才能对这一问题做出判断吗? 事实上,如果注意到“有兄弟的人也可能有姐妹”,我们就知道,上面给出的条件不足以判断这个班独 生子女的人数,为了解决这个问题,我们还必须知道“有兄弟且有姐妹的同学的人数”.应用本小节集 合运算的知识,我们就能清晰地描述并解决上述问题了. 1、并集和交集的定义 定义 自然语言 符号语言
变式训练 3: 已知集合 M={x|2x-4=0},N={x|x2-3x+m=0}. (1)当 m=2 时,求 M∩N,M∪N;(2)当 M∩N=M 时,求实数 m 的值.
第 4 页 共 7 页
高中数学必修系列: 《集合与函数的概念》 专题 4:利用交集、并集运算求参数
精讲例题 4: 已知集合 A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的 a 值. (1)9∈A∩B; (2){9}=A∩B.
(3)已知 A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则 A∩B=________. 变式训练 2: (1)若综合 M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则 M∩N=( A.{1,4} A.{2} B.{-1,-4} B.{x|1<x<3} C.{0} ) D.{x|3<x<5} C.{x|2<x<3} D. (2)已知集合 A={x|1<x<3},B={x|2<x<5},则 A∩B=(
第 7 页 共 7 页
第 2 页 共 7 页
高中数学必修系列: 《集合与函数的概念》 专题 1:并集的概念及运算
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)
集合C的元素既属于A,又属于B,则称C为A与B的交集.
3 交集
交 由两个集合A、B的公共部分组成的集合,叫这两个
集
的 集合的交集,记作A∩B
概
文字语言
念 即 A∩B={ x| x∈A 且 x∈B }
读作 A交B
符号语言
图 示
Venn图
A
B
A∩B
图形语言
练一练 已知A={2,4,6,8,10},B={3,5,8,12}, C={6,8}. 求:(1)A∩B ; (2)A∩(B∩C)
2. (1)已知A={x| x2-6x+8=0},B={x |x2-mx+4=0}, 且A∩B=B,
问
核
心
素 养
题
之
则实数m的取值范围是
.
(2)已知A={x|x2-6x+8<0}, B={x|(x-2a)(x-a-2)<0},且A∩B=B,
则实数a的取值范围是
.
数 据 分
(1)A={2, 4};由A∩B=B知B⊆A.
④A∪B=A
B⊆A .
练一练
已知A={ x | x2 > 1 },B={ x | x < a},若A∪B =A,
则实数a的取值范围是 a≤-1
.
3 交集
观察下列集合,A、B与C之间有什么关系? (1)A={ 4,3,5 }、 B={ 2,4,6 }与 C={ 4 }. (2)A={x│x是等腰三角形}、B={x│x是直角三角形}与
第一章 集合与常用逻辑用语
1.3.1 并集和交集
高中数学/人教A版/必修一
1.3.1 并集和交集
思维篇 素养篇
高中数学必修一课件:集合的基本运算(第1课时)
课时学案
题型一 并集与交集的基本运算
例1 求下列两个集合的交集和并集. (1)A={1,3,4,6},B={2,3,5,6}; (2)A={x|x>-2},B={x|x≤3}; (3)A={x|-3<x≤4},B={x|1<x≤5}; (4)A={y|y=x2-2x},B={x|y=-x2}.
【解析】 (1)A∩B={3,6},A∪B={1,2,3,4,5,6}. (2)把A和B表示在数轴上,如图:
②符号语言:A∩B=____{x_|x_∈_A_,__且_x_∈_B_}_____. ③图形语言:如图中阴影部分.
(2)交集的性质 ①A∩A__=___A;②A∩B__=___B∩A;③A∩∅___=___∅; ④A∩B__⊆___A;⑤A∩B__⊆___B; ⑥A⊆B⇔A∩B=A.
1.并集的含义是什么? 答:(1)A与B的并集是一个集合.
(2)并集的性质 ①A∪A_=___A;②A∪B_=__B∪A;③A∪∅_=___A; ④A_⊆___A∪B;⑤A∪B_⊇___B; ⑥A∪B=B⇔A⊆B. 要点2 交集 (1)交集的三种语言 ①文字语言:一般地,由所有___属_于__集_合__A___且__属_于__集_合__B__的元素组成的集 合,称为集合A与B的交集.
(2)设A={(x,y)|x+y=0},B={(x,y)|x-y=4},求A∩B.
【解析】 (1)∵A={1,2,3},B={3,4,5},U={1,2,3,4,5},
∴B∩U={3,4,5}.∴A∪(B∩U)={1,2,3,4,5}(或U).
(2)A∩B={(x,y)|x+y=0且x-y=4}=(x,y)|
∴A∩B={x|-2<x≤3},A∪B=R. (3)把A和B表示在数轴上,如图:
数学课件:1.1.3集合的基本运算(第1课时并集、交集)
第十页,编辑于星期日:十一点 三十七分。
第十一页,编辑于星期日:十一点 三十七分。
已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A∪B =A,求实数m的取值范围.
【思路点拨】 由题目可获取以下主要信息: ①集合A确定,集合B中元素不确定; ②A∪B=A.解答本题时,可由A∪B=A知B⊆A.从而分B=Ø和 B≠Ø分类讨论. ③本题中B={x|2m-1<x<2m+1},由于2m+1>2m-1,故B≠Ø.
1.(1)若本例(1)中,问题改为求A∪B. (2)本例(2)中,问题改为求M∩N. 【解析】 (1)由例1中的数轴表示知A∪B=R,故选D. (2)由例1中的数轴表示知M∩N={x|-3<x<5},故选C. 【答案】 (1)D;(2)C
第九页,编辑于星期日:十一点 三十七分。
设集合A={x|-1<x<a},B={x|1<x<3}且A∩B=Ø,求a的取值范 围.
①当a-1=2,即a=3时,B={1,2}; ②当a-1=1,即a=2时,B={1}. 于是a=2或a=3都满足题意. 所以a的取值范围是{a|a=2,或a=3}.
第十八页,编辑于星期日:十一点 三十七分。
1.对并集概念的理解 “x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B, 但x∉A”;“x∈A,且x∈B”.Venn图如图.另外,在求两个集合的 并集时,它们的公共元素只出现一次.
高一数学必修一1.1.3集合的基本运算(一) 教学课件PPT
⑵ A={x |x是某班参加百米赛的同学}, B={x |x是某班参加跳高的同学}, 求A∩B.
例5设集合A={y|y=x2,x∈R}, B={(x, y)|y=x+2,x∈R},
则A∩B =( )
A.{(-1, 1),(2, 4)} B. {(-1, 1)}
C {(2, 4)}
性质:
①A∩B={x|x∈A且x∈B}; ②A∩B=A,A∩=,
A∩B=B∩A.
课堂小结
1.交集,并集 2.性质 ⑴ A∪B={x|x∈A或x∈B},
A∩B={x|x∈A且x∈B}; ② A∩A=A,A∪A=A,
A∩=,A∪=A; ③ A∩B=B∩A,A∪B=B∪A.
课堂练习
教材P.11练习第1、2、3题
用Venn图表示为:
AB
新课
示例1:观察下列各组集合
A={1,3,5} B={2,4,6}
A∪B=C
C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
例1设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
求A∪B.
例1设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
D.
例5设集合A={y|y=x2,x∈R}, B={(x, y)|y=x+2,x∈R},
则A∩B =( D )
A.{(-1, 1),(2, 4)} B. {(-1, 1)}
C {(2, 4)}
D.
例6设A={x|x2+4x=0}, B={x2+(2a+1)x+a2-1=0}, 若A∩B =B,求a的值.
求A∪B.
-1
123 x
高中数学必修一第一章 1.3 集合的基本运算1
第一章 1.3 集合的基本运算1一、单选题1.已知集合{}220,A x x x x R =--<∈,{}2|log 0.5B x x =<,则( ) A .A B φ⋂= B .A B B ⋂= C .()U A B R ⋃= D .A B B ⋃= 2.已知集合{}|10A x ax =+=,集合{}2|210B x x x =--=,则所有满足A B ⋂≠∅的实数a 组成的集合为( )A .{}1,2-B .{}1,2-C .{}0,1,2-D .{}0,1,2-3.已知全集U =R ,集合{|(4)0}A x x x =-<,{}2|log (1)1B x x =->,图中阴影部分所表示的集合为( )A .{|12}x x <<B .{|23}x x <<C .{|03}x x <D .{|04}x x << 4.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =( ) A .{}04x x <≤ B .{}02x x <≤ C .{}2x x ≥ D .{}4x x ≤ 5.已知20,()1(0),{|()},{|(())()}a f x ax x x A x f x x B x f f x f x x >=-+>=≤=≤≤,若A B φ=≠则实数a 的取值范围是( )A .(0,1]B .3(0,]4 C .3[,1]4 D .[1,)+∞6.设全集{}4U x N x *=∈≤,集合{}1,4A =,{}2,4B =,则()U A B =( )A .{}1,2,3B .{}1,2,4C .{}1,3,4D .{}2,3,47.已知集合2{|90}A x N x =∈-<,{}3,0,1B =-,则( )A .AB =∅ B .B A ⊆C .{0,1}A B =D .A B ⊆8.已知集合()1222M x y x x ⎧⎫==-⎨⎬⎩⎭,{}11N x x =-<<,则M N =( )A .[)0,1B .()0,1C .(]1,0-D .()1,0-9.已知全集U Z =,集合{}{}21,0,1,2,|A B x x x =-==,则()U A B ∩等于( )A .{}1,2B .{}1,0-C .{}0,1D .{}1,2-10.已知集合{2A x Z x =∈≤-或}3x ≥,则Z C A =( )A .1,0,1,2B .{}1-C .{}1,0-D .{}0,1,211.设集合A ={−1,0,1},B ={sin0,cosπ},则A ∩B = ( )A .{0}B .{1}C .{0,1}D .{0,−1}12.若集合M ={y|y =2x −1},N ={x|y =√|x|−1},则M ∩N =( )A .B .C .D .13.已知全集U =R ,集合A ={x|−2<x <2},B ={x|(x +1)(x −3)≤0},则A ∩(C R B)等于( )A .(−1,2)B .(−2,−1]C .(−2,−1)D .(2,3)14.已知A ={x ∈Z|2x 2+x –1=0},B ={x |4x 2+1=0}.则A ∪B =A .{–12,12,–1}B .{12}C .{–1}D .{12,–1} 15.已知集合{}1,3,5,6A =,{}8|0B x N x =∈<<,则图中阴影部分表示的集合的元素个数为( )A .4B .3C .2D .116.已知全集U =R ,集合A ={x |﹣2<x <3},B ={x ≤2},则()U B A ⋂( )A .[2,3]B .(﹣∞,﹣2]∪[2,+∞)C .(3,4]D .[3,4]二、填空题17.函数2()lg(1)f x x =-,集合{|()}A x y f x ==,{|()}B y y f x ==,则图中阴影部分表示的集合为________18.已知集合A ={1,2,4},B ={a,4},若A ∪B ={1,2,3,4},则A ∩B = .19.设常数a∈R,集合A ={x|(x -1)·(x-a)≥0},B ={x|x≥a-1},若A∪B=R ,则a 的取值范围为________.20.某校高一某班共有40人,摸底测验数学成绩23人得优,语文成绩20人得优,两门都不得优者有6人,则两门都得优者有__________人.21.已知集合{}{}2|log (1)2,|21A x x B x x m =+<=-<<-,若AB A =,则实数m 的取值范围为_______.22.已知集合1=1,22A ⎧⎫⎨⎬⎩⎭,,集合{}2=|,B y y x x A =∈,则A B =________.23.某学校举办运动会时,高一(1)班共有26名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,则同时参加球类比赛和田径比赛的学生有__人.24.如图,若集合{}12345A =,,,,,{}246810B =,,,,,则图中阴影部分表示的集合为___.三、解答题25.设2{|60},{|10}M x x x N x ax =+-==+=,若M N ⊇,求实数a 的值的集合.26.设全集U =R ,集合{22A x m x m =-<<+,R}m ∈,集合{44}B x x =-<<. (1)当3m =时,求A B ,A B ; (2)若U A B ⊆,求实数m 的取值范围.27.已知集合2{|20},{|2123}A x x x B x a x a =--≤=-<<+(1)若A B =∅,求a 的取值范围;(2)若A B B ⋃=,求a 的取值范围。
1.3集合的基本运算第1课时交集与并集-人教A版(2021)高中数学必修第一册同步讲义
第一章集合与常用逻辑用语1.3集合的基本运算第1课时交集与并集【课程标准】1.理解两个集合的并集与交集的含义,能求两个集合的交集与并集。
2.能使用Venn图表示集合的并集、交集运算结果.3.掌握有关的术语和符号,并会用它们正确进行集合的并集与交集运算.【知识要点归纳】1. 并集(1)文字语言:由所有属于集合A属于集合B的元素组成的集合,称为集合A与B的 .(2)符号语言:A∪B=.(3)图形语言:如图所示.2. 交集(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B的.(2)符号语言:A∩B=.(3)图形语言:如图所示..____________._______.________________A A A A A A A B A B A B ∅∅⊆性质汇总(1)=,=,=,=(2)若,则=,=(3)A B A,A B B,A A B,(A B )(A B ).【经典例题】例1 求下列两个集合的并集和交集.(1)A ={1,2,3,4,5},B ={-1,0,1,2,3};(2)A ={x |x <-2},B ={x |x >-5}.{}{}{}{}(3)14,0 5.(4)(,)46,(,)53,A x x B x x A x y y x B x y y x A B =-<≤=≤<==-+==-求例2 设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的值;(2)若A ∪B =B ,求a 的值.{}{}例3 已知集合若,求实数的取值范围-≤≤+≤≤-A x xB x m x m A B A m=25,=121,={}{}例4 已知集合若,则实数的取值范围_______-<<<≠Φ=12,=,A x xB x x a A B a{}{}例5 已知集合若,则实数的取值范围_______ <<+-<<=Φ=6,=12,A x m x mB x x A B m【当堂检测】一.选择题(共4小题)1.设集合A={x|x2﹣6x<0},B={y|y>3},则A∪B=()A.∅B.(0,+∞)C.(3,6)D.(6,+∞)2.已知集合A={x|x2﹣4x﹣5<0},B={x||x|>},则A∩B=()A.(5,+∞)B.(1,)C.(﹣,5)D.(,5)3.已知集合M={(x,y)|x+y=0},N={(x,y)|(x﹣1)2+y2=1}.则M∩N中元素个数为()A.0B.1C.2D.34.设集合A={﹣1,0,1,2,3},集合B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{﹣1,0,2}二.填空题(共2小题)5.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=.6.已知集合A={1,2,3,4},B={2,4,6,8},则A∪B=.三.解答题(共2小题)7.已知集合A=[﹣5,6],B=[2m﹣1,m+1].(1)当m=﹣3时、求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.8.已知集合A={x|x2﹣5x+6<0},B={x|(x﹣a)(x﹣3a)<0}.(1)若x∈A是x∈B的充分条件,求a的取值范围;(2)若A∩B=∅,求a的取值范围.当堂检测答案一.选择题(共4小题)1.设集合A={x|x2﹣6x<0},B={y|y>3},则A∪B=()A.∅B.(0,+∞)C.(3,6)D.(6,+∞)【分析】解出集合A,结合集合并集运算的定义可得答案.【解答】解:集合A={x|x2﹣6x<0}={x|0<x<6}=(0,6),B={y|y>3}=(3,+∞),则A∪B=(0,+∞),故选:B.【点评】本题考查的知识是集合的运算,不等式的解法,难度不大,属于基础题.2.已知集合A={x|x2﹣4x﹣5<0},B={x||x|>},则A∩B=()A.(5,+∞)B.(1,)C.(﹣,5)D.(,5)【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵,∴.故选:D.【点评】本题考查了描述法、区间的定义,一元二次不等式和绝对值不等式的解法,交集的定义及运算,考查了计算能力,属于基础题.3.已知集合M={(x,y)|x+y=0},N={(x,y)|(x﹣1)2+y2=1}.则M∩N中元素个数为()A.0B.1C.2D.3【分析】可解出,然后即可得出M∩N,从而得出M∩N中元素的个数.【解答】解:解得或,∴M∩N={(0,0),(1,﹣1)},∴M∩N中元素个数为:2.故选:C.【点评】本题考查了交集的定义及运算,集合、元素的定义,交集的运算,考查了计算能力,属于基础题.4.设集合A={﹣1,0,1,2,3},集合B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{﹣1,0,2}【分析】利用交集定义直接求解.【解答】解:∵集合A={﹣1,0,1,2,3},集合B={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1,2}.故选:B.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.二.填空题(共2小题)5.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B={x|﹣2<x<3}..【分析】利用并集定义直接求解.【解答】解:∵集合A={x|﹣2<x<1},B={x|﹣1<x<3},∴A∪B={x|﹣2<x<3}.故答案为:{x|﹣2<x<3}.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.6.已知集合A={1,2,3,4},B={2,4,6,8},则A∪B={1,2,3,4,6,8}.【分析】利用并集定义直接求解.【解答】解:∵集合A={1,2,3,4},B={2,4,6,8},∴A∪B={1,2,3,4,6,8}.故答案为:{1,2,3,4,6,8}.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.三.解答题(共2小题)7.已知集合A=[﹣5,6],B=[2m﹣1,m+1].(1)当m=﹣3时、求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.【分析】(1)利用集合的交集和并集的定义求解.(2)由题意可知B⊆A,根据集合间的包含关系列出不等式组解出m的取值范围即可.【解答】解:(1)当m=﹣3时,集合A=[﹣5,6],集合B=[﹣7,﹣2],∴A∩B=[﹣5,﹣2],A∪B=[﹣7,6];(2)∵A∪B=A,∴B⊆A,由题意可得,解得﹣2≤m<2,综上所述:实数m的取值范围为[﹣2,2).【点评】本题主要考查了集合的基本运算,是基础题.8.已知集合A={x|x2﹣5x+6<0},B={x|(x﹣a)(x﹣3a)<0}.(1)若x∈A是x∈B的充分条件,求a的取值范围;(2)若A∩B=∅,求a的取值范围.【分析】(1)求出集合A={x|2<x<3},由x∈A是x∈B的充分条件,得A⊆B,当a=0时,B=∅,当a>0时,B={x|a<x<3a},当a<0时,B={x|3a<x<a},由此能求出a 的取值范围.(2)当a=0时,B=∅,A∩B=∅,当a>0时,B={x|a<x<3a},由A∩B=∅,得3a ≤2或a≥3.当a<0时,B={x|3a<x<a},A∩B=∅,由此能求出a的取值范围.【解答】解:(1)集合A={x|x2﹣5x+6<0}={x|2<x<3},B={x|(x﹣a)(x﹣3a)<0}.∵x∈A是x∈B的充分条件,∴A⊆B,当a=0时,B=∅,不合题意,当a>0时,B={x|a<x<3a},则,解得1≤a≤2.当a<0时,B={x|3a<x<a},不合题意.综上,a的取值范围是[1,2].(2)当a=0时,B=∅,A∩B=∅,符合题意;当a>0时,B={x|a<x<3a},由A∩B=∅,得3a≤2或a≥3.解得0<a≤或a≥3.当a<0时,B={x|3a<x<a},A∩B=∅,符合题意.综上,a的取值范围是(0,]∪[3,+∞).【点评】本题考查实数的取值范围的求法,考查子集、交集定义等基础知识,考查运算求解能力,是基础题.。
集合的基本运算(第一课时)
1.3集合的基本运算(第1课时)(人教A版普通高中教科书数学必修第一册第一章)一、教学目标1.数学抽象:理解两个集合的并集与交集的含义;2.数学运算:会求两个简单集合的并集与交集;3.直观想象:能使用Venn图、数轴表示集合的关系及运算。
二、教学重难点1.【重点】理解并集与交集的概念,求两个简单集合的并集与交集;2.【难点】理解并集与交集的概念。
三、教学过程1.创设情境,引发思考问题1:请同学们观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【答案】集合C是由所有属于集合A或属于B的所有元素组成的.【设计意图】通过实例,让学生感知、了解并集的含义,提高学生用数学抽象的思维方式思考并解决问题的能力。
1.2 新知初探2.1.1并集的概念【设计意图】用图形来表示并集,提高学生用数形结合法解决问题的能力。
回到问题1:请同学们观察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5,7},B={2,4,6,7},C={1,2,3,4,5,6,7}.(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.【答案】因为集合C是由所有属于集合A或属于B的所有元素组成的,所以集合C是集合A与B的并集.【设计意图】学以致用,既巩固了新知,又提高了学生运用所学知识解决问题的意识和能力。
2.1.2对并集概念的理解(1)运算结果:A∪B仍是一个集合,由所有属于A或属于B的元素组成,公共元素只能算一次(元素的互异性).(2)并集概念中的“或”指的是只要满足其中一个条件即可,符号语言“x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B,但x∉A”;“x∈A,且x∈B”.【设计意图】加深学生对并集的理解。
人教版高中数学必修一《集合的基本运算》课时学案
课 题: 1.1.3 集合的基本运算(一)交集、并集教学目标:理解交集与并集的概念,掌握交集与并集的区别与联系,会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题。
教学重点:交集与并集的概念,数形结合的思想。
教学难点:理解交集与并集的概念、符号之间的区别与联系。
教学过程: 一、复习准备:1.已知A={1,2,3}, S={1,2,3,4,5},则A S , {x|x ∈S 且x ∉A}= 。
2.用适当符号填空:0 {0} 0 Φ Φ {x|x 2+1=0,X ∈R} {0} {x|x<3且x>5} {x|x>6} {x|x<-2或x>5} {x|x>-3} {x>2} 二、讲授新课:1.教学交集、并集概念及性质:① 探讨:设{4,5,6,8}A =,{3,5,7,8}B =,试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并).② 讨论:如何用文字语言、符号语言分别表示两个集合的交、并?③ 定义交集:一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即:A ∩B ={x|x ∈A 且x ∈B}。
④ 讨论:A ∩B 与A 、B 、B ∩A 的关系? →A ∩A = A ∩Φ= ⑤ 图示五种交集的情况:… ⑥ 练习(口答):A ={x|x>2},B ={x|x<8},则A ∩B = ;A ={等腰三角形},B ={直角三角形},则A ∩B = 。
⑦定义并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set )。
记作:A ∪B ,读作:A 并B 。
用描述法表示是:…⑧分析:与交集比较,注意“所有”与“或”条件;“x ∈A 或x ∈B ”的三种情况。
⑨讨论:A ∪B 与集合A 、B 的关系?→ A ∪A = A ∪Ф= A ∪B 与B ∪A ⑩练习(口答): A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ; 设A ={锐角三角形},B ={钝角三角形},则A ∪B = ; A ={x|x>3},B ={x|x<6},则A ∪B = ,A ∩B = 。
人教新课标版数学高一必修1学案集合的基本运算(一)
1.1.3集合的基本运算(一)1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自主探究能力.3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.2.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.3.A∩A=__A__,A∪A=__A__,A∩∅=__∅__,A∪∅=A.4.若A⊆B,则A∩B=__A__,A∪B=__B__.5.A∩B⊆A,A∩B⊆B,A⊆A∪B,A∩B⊆A∪B.对点讲练求两个集合的交集与并集【例1】求下列两个集合的并集和交集.(1)A={1,2,3,4,5},B={-1,0,1,2,3};(2)A={x|x<-2},B={x|x>-5}.解(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)结合数轴(如图所示)得:A∪B=R,A∩B={x|-5<x<-2}.规律方法求两个集合的交集、并集依据它们的定义,借用Venn图或结合数轴分析两个集合的元素的分布情况,有利于准确写出交集、并集.变式迁移1(1)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于() A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2} (2)若将(1)中A改为A={x|x>a},求A∪B,A∩B.(1)答案 A解析画出数轴,故A∪B={x|x>-2}.(2)解如图所示,当a<-2时,A∪B=A,A∩B={x|-2<x<2};当-2≤a<2时,A∪B={x|x>-2},A∩B={x|a<x<2};当a≥2时,A∪B={x|-2<x<2或x>a},A∩B=∅.已知集合的交集、并集求参数【例2】已知A={x|2a≤x≤a+3},B={x|x<-1或x>5}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=R,求a的取值范围.解(1)由A∩B=∅,①若A=∅,有2a>a+3,∴a>3.②若A≠∅,如图:∴⎩⎪⎨⎪⎧2a≥-1a+3≤52a≤a+3,解得-12≤a≤2.综上所述,a的取值范围是{a|-12≤a≤2或a>3}.(2)由A ∪B =R ,如图所示,∴⎩⎪⎨⎪⎧2a ≤-1a +3≥5,解得a ∈∅. 规律方法 出现交集为空集的情形,应首先考虑集合中有没有空集,即分类讨论.其次,与不等式有关的集合的交、并运算中,数轴分析法直观清晰,应重点考虑. 变式迁移2 已知集合A ={x |2<x <4},B ={x |a <x <3a }. (1)若A ∩B =∅,试求a 的取值范围; (2)若A ∩B ={x |3<x <4},试求a 的取值范围. 解 (1)如图,有两类情况,一类是B ≠∅⇒a >0. 此时,又分两种情况:①B 在A 的左边,如图B 所示; ②B 在A 的右边,如图B ′所示.B 或B ′位置均使A ∩B =∅成立, 即3a ≤2或a ≥4,解得0<a ≤23,或a ≥4.另一类是B =∅,即a ≤0时,显然A ∩B =∅成立. 综上所述,a 的取值范围是{a |a ≤23,或a ≥4}.(2)因为A ={x |2<x <4},A ∩B ={x |3<x <4}, 如图所示:集合B 若要符合题意,显然有a =3,此时B ={x |3<x <9},所以a =3为所求.交集、并集性质的运用【例3】 已知集合A ={x |1<ax <2},B ={x ||x |<1},且满足A ∪B =B ,求实数a 的取值范围.解 ∵A ∪B =B ,∴A ⊆B . (1)当a =0时,A =∅,满足A ⊆B . (2)当a >0时,A =⎩⎨⎧⎭⎬⎫x |1a <x <2a .∵A ⊆B ,∴⎩⎨⎧ 1a≥-12a ≤1∴a ≥2.(3)当a <0时,A =⎩⎨⎧⎭⎬⎫x |2a <x <1a .∵A ⊆B ,∴⎩⎨⎧2a≥-11a ≤1∴a ≤-2.综合(1)(2)(3)知,a 的取值范围是 {a |a ≤-2或a =0或a ≥2}.规律方法 明确A ∩B =B 和A ∪B =B 的含义,根据问题的需要,将A ∩B =B 和A ∪B =B 转化为等价的关系式B ⊆A 和A ⊆B 是解决本题的关键.另外在B ⊆A 时易忽视B =∅时的情况.变式迁移3 设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∩B =B ,求a 的值. 解 ∵A ∩B =B ,∴B ⊆A . ∵A ={-2}≠∅, ∴B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.1.A ∪B 的定义中“或”的意义与通常所说的“非此即彼”有原则的区别,它们是“相容”的.求A ∪B 时,相同的元素在集合中只出现一次.2.A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B ,这两个性质非常重要.另外,在解决有条件A ⊆B 的集合问题时,不要忽视A =∅的情况.课时作业一、选择题 1.设集合A ={x |-5≤x <1},B ={x |x ≤2},则A ∩B 等于( ) A .{x |-5≤x <1} B .{x |-5≤x ≤2} C .{x |x <1} D .{x |x ≤2} 答案 A2.下列四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆B ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 答案 C解析 ②③④正确.3.设A ={x |1≤x ≤3},B ={x |x <0或x ≥2},则A ∪B 等于( ) A .{x |x <0或x ≥1} B .{x |x <0或x ≥3} C .{x |x <0或x ≥2} D .{x |2≤x ≤3} 答案 A解析 结合数轴知A ∪B ={x |x <0或x ≥1}.4.已知A ={x |x ≤-1或x ≥3},B ={x |a <x <4},若A ∪B =R ,则实数a 的取值范围是( ) A .3≤a <4 B .-1<a <4 C .a ≤-1 D .a <-1 答案 C解析 结合数轴知答案C 正确.5.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A.1 B.2 C.3 D.4答案 B解析由已知得M={2,3}或{1,2,3},共2个.二、填空题6.已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B=________.答案{(2,1)}7.设集合A={x|-1≤x<2},B={x|x≤a},若A∩B≠∅,则实数a的取值范围为________.答案a≥-1解析由A∩B≠∅,借助于数轴知a≥-1.8.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.答案-4解析如图所示,可知a=1,b=6,2a-b=-4.三、解答题9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.解∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±6.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解A={1,2},∵A∪B=A,∴B⊆A,集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0,∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,∴a=4.综上,a的取值范围是a≥4.【探究驿站】11.求满足P∪Q={1,2}的集合P,Q共有多少组?解可采用列举法:当P=∅时,Q={1,2};当P={1}时,Q={2},{1,2};当P={2}时,Q={1},{1,2};当P={1,2}时,Q=∅,{1},{2},{1,2},∴一共有9组.。
河北省衡水中学高中数学1.1.3集合的基本运算(一)学案新人教A版必修1
河北省衡水中学高中数学1.1.3集合的基本运算(一)学案新人教A版必修1第一篇:河北省衡水中学高中数学 1.1.3集合的基本运算(一)学案新人教A版必修11.1.3集合的基本运算(一)一、学习目标1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自学探究能力.3.能使用Venn图表达集合的关系及运算,体会Venn图的作用.二、自学导引1、一般的,由所有属于的元素组成的集合,称为集合A与集合B 的并集,记作A Y B(读作“A并B”),即A Y B=.2、由属于的所有元素组成的集合,称为集合A与集合B的交集,记作A I B(读作“A交B”),即A I B=.3、A I A=,A Y A=,A I∅=,A Y∅=.4、若A⊆B,则A I B=,A Y B=.5、A I BA,A I BB,AA Y B,A I BA Y B.三、典型例题1、求两个集合的交集与并集例1求下列两个集合的交集和并集⑴A={1,2,3,4,5},B={-1,0,1,2,3};⑵A={x|x<-2},B={x|x>-5}.变式迁移1⑴设集合A={x|x>-1},B={x|-2<x<2}A Y B等于()A{x|x>-2}B.{x|x>-1}C.{x|-2<x<-1}D.{x|-1<x<2}⑵若将⑴中A改为A={x|x>a},求A Y B.2、已知集合的交集、并集求参数的问题例2已知集合A=-4,2a-1,a{2},B={a-5,1-a,9},若A I B={9},求a的值.3、交集、并集性质的综合应用例3设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.⑴若A I B=B,求a的值;⑵若A Y B=B,求a的值。
变式迁移3已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A Y B=A,求实数m的取值范围.4、课堂练习1.已知A={0,1,2,3,4},B={3,0,5,6},则A I B等于()A{0,3}B.{0,1,2,3,4}C.{3,0,5,6}D.{0,1,2,3,4,5,6}2.已知M={x|x-2<0},N={x|x+2>0}则M I N等于()A.{x|x<2或x>-2}B.{x|-2<x<2}C.{x|x<2}D.{x|x>-2}23.已知集合M={x|y=x-1},,N={y|y=x2-1}那么M I N等于A.∅B.NC.MD.R4.若集合A={1,3,x},B=1,x2,A Y B={1,3,x},则满足条件的实数x的个数有{}()A.1个B.2个C.3 个D.4个二、填空题5.满足条件M Y{}1={1,2,3}的集合M的个数是.6.已知A I{-1且A⊆{-2,0,1}={0,1},0,1,2},则满足上述条件的集合A共有个.7.已知集合A={x|-1≤x≤2},B={x|2a<x<a+3}且满足A I B=∅,则实数a的取值范围是.8.已知集合A=1,4,a2-2a,B=a-2,a2-4a+2,a2-{}1,3},则A Y B=.3a+3,a2-5a},若A I B={10个高考试题1.集合A={x|-1≤x≤2},B={x|x<1},则A⋂(CRB)=(A){x|x>1}(B){x|x≥1}(C){x|1<x≤2}(D){x|1≤x≤2}{⎧⎪2.若集合A=⎨xlog1x≥⎪2⎩1⎫⎪⎬,则ðRA= 2⎪⎭⎛⎫⎛⎫(-∞,0]Y+∞,+∞+∞)A、B、 C、(-∞,0]Y D、+∞) ⎪⎪2⎪2⎪⎝⎭⎝⎭3.集合P={x∈Z0≤x<3},M={x∈Rx2≤9}则PIM=(A){1,2}(B){0,1,2}(C){x|0≤x<3}(D){x|0≤x≤3}4.若集合A={x-2<x<1},B={x0<x<2}则集合A ∩B= A.{x-1<x<1}B.{x-2<x<1} C.{x-2<x<2}D.{x0<x<1}第二篇:河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案新人教A版必修1高一数学必修一学案:1.1.1集合的含义与表示(一)一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。
集合的基本运算【课时教学设计】-高中数学新教材必修第一册
1.3.1集合的基本运算(1)课时教学设计一、课题:集合的基本运算(1)二、教学内容1.集合并集的含义与运算;2.集合交集的含义与运算;3.区分交、并运算的运算符号,会进行简单的离散型和连续型集合的交、并运算.三、教学目标学生能通过类比实数运算,结合具体实例,能理解集合并集、交集运算的含义,掌握简单的集合运算,并学会使用Venn图、数轴等几何方法表达集合的关系及运算,体会直观图示对理解抽象概念的作用,从而体会数形结合在理解集合中的重要作用,发展学生数学运算的核心素养.四、教学重难点教学重点:理解并集、交集的含义,并会进行简单的集合基本运算.教学难点:区分交、并集运算符号,掌握集合的交、并运算.五、教学设计过程问题1:我们知道,实数有加法运算,两个实数可以相加,集合是否也有类似的运算呢?请同学们考察下列两组集合,你能说出集合C与集合A,B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.师生活动:引导学生通过观察集合,并借助Venn图得出集合间的关系,并发现集合C的元素全部由集合A,B 构成,并且没有元素不属于集合A,B.设计意图:学生通过观察具体集合,发现集合并集的运算实质,获得数学活动经验,回顾上节知识的同时也回顾了数形结合解决问题的思想.追问:你能用集合的语言描述集合C与集合A,B之间的关系吗?师生活动:学生尝试将自然语言转化为集合语言,老师进行必要的指导和补充.设计意图:让学生学会用数学的语言来描述数学问题,获得概念的严谨表述.并集概念:一般地,由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集,记作:A∪B;读作“A并B”.用描述法表示为A∪B ={x|x∈A,或x∈B}.Venn图表示为:例1:设A ={4,5,6,8},B ={3,5,7,8},求A∪B.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.设计意图:通过具体例题,深化并集概念,练习离散集合的并集运算.例2:设集合A ={x| –1<x<2},集合B ={x| 1<x<3},求A∪B.解:用数轴表示:则A∪B={x| –1<x<2}∪{x| 1<x<3}={x| –1<x<3}追问:若中间−1、2两个虚点变为实点后结果改变了吗?师生活动:学生思考后回答.设计意图:让学生做题时注意把握细节,并体会集合端点对集合并集结果的影响.问题2:下列关系式成立吗?(1)A∪A=A (2)A∪∅=A师生活动:学生根据并集的概念思考后易得到答案.设计意图:让学生体会特殊集合的并集运算,考虑问题中特殊情况的处理.追问:若A⊆B则A∪B=?师生活动:可以引导学生借助Venn图来理解和解决问题.设计意图:在问题2的基础上,继续让学生进一步理解并集概念,了解集合间的关系与集合运算的联系,并学会用Venn图来直观的研究问题.问题3:考察下面的问题,集合A,B与集合C之间有什么关系?(1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8}(2)A={x |x是立德中学今年在校的女同学},B={x |x是立德中学今年在校的高一年级同学},C={x |x是立德中学今年在校的高一年级女同学}.师生活动:学生观察两组集合,发现集合C中的元素是由集合A,B中共有的元素组成的,引导学生注意并且不能有漏掉的.如果学生总结不严谨,可以给出集合D={x |x是立德中学今年在校的身高超过170cm的高一年级女同学},通过比较C与D的不同点,来引导、帮助学生更加严谨地归纳总结交集的概念,强调是集合C是由属于集合A且又属于集合B的所有元素组成.设计意图:通过给出两个实例,让学生们自己观察并交流,找出集合A,B与集合C之间的关系,通过模仿上面并集的概念,锻炼了学生观察、类比以及总结的能力.交集概念:一般地,由属于集合A且属于集合B的所有元素组成的集合,成为A与B的交集,记作A∩B,读作“A交B”.用描述法表示为:A∩B ={x|x∈A且x∈B}用Venn图表示为:例3:立德中学开运动会,设A={x |x是立德中学高一年级参加百米赛跑的同学},B={x |x是立德中学高一年级参加跳高比赛的同学},求A∩B.解:A∩B就是立德中学高一年级中既参加百米赛跑又加跳高比赛的同学组成的集合.所以,A∩B={x |x是立德中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例4:设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1和 l2的位置关系.解:平面内直线l1和 l2可能有三种位置关系,即相交于一点,平行或重合.(1)直线l1和 l2相交于一点P,可表示为L1∩ L2={点P};(2)直线l1和 l2平行可表示为L1∩ L2=∅;(3)直线l1和 l2重合可表示为L1∩ L2=L1=L2.设计意图:学生通过应用交集运算解决实际问题和几何问题,巩固了对交集概念的理解,实现了交集运算的实际应用,同时也考察了学生分类讨论的能力.问题4:下列交集运算的结果是什么呢?(1)A∩A=?(2)A∩∅=?(3)若A⊆B,则A∩B=?师生活动:学生借助Venn图,思考讨论后给出答案.设计意图:让学生在问题2和交集概念的基础上,类比并集的概念,加强概念横向间的联系.问题5:请同学们对比交集和并集的概念,从文字上面能发现什么不同吗?师生活动:学生指出交集中使用的是“且”字,并集中使用的是“或”字.设计意图:让学生对比交集和并集的概念,加强概念横向间的对比.追问:如果我们称大于3或大于5的实数为集合A,那么3是集合A的元素吗?5呢?6呢?这三个元素有什么不同呢?师生活动:学生经讨论后发现,3不是集合A的元素,5和6是集合A的元素,其中3不满足大于3也不满足大于5,5只满足其中第一个,6两个都满足。
集合间的基本关系及基本运算(高中必修一)
知识要点:(1)一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.即:,A x ∈∀则B x ∈⇔B A ⊆(2)如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 即:B A ⊆且,0A x ∈∃但B x ∉0⇔A B .(3)如果集合A 与集合B 的元素相同,则称集合A 与集合B 为等集。
即:B A ⊆且BA ⊇⇔B A =(4)把不含任何元素的集合叫做空集.记作:φ.并规定:空集合是任何集合的子集.(5)如果集合A 中含有n 个元素,则集合A 有2n 个子集.题例方法例1.下列各组集合,表示相等集合的是( )①M ={(3,2)},N ={(2,3)};②M ={3,2},N ={2,3};③M ={(1,2)},N ={1,2}.A .①B .②C .③D .以上都不对例2.设全集U=R ,集合M={x|x >1},P={x|x 2>1},则下列关系中正确的是 ( )A.M=P B .P ⊂M C.M ⊂P D .(C U M )⋂P=ø例3.满足条件{1,2}A ⊆{1,2,3,4,5}的集合A 共有 个。
例4.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1},(1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.巩固练习:1.已知集合A ={x|-1<x<2},B ={x|0<x<1},则( )A .A>B B .A BC .B AD .A =B2.已知集合A={0,2,3},B={x|x=ab,a 、b ∈A 且a ≠b},则B 的子集的个数是 ( )A .4B .8C .16D .153.若全集U={1,2,3},则集合A 的真子集共有( )A .3个B .5个C .7个D .8个知识要点:(1)一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:A ∪B.即有:A ∪B={x|x ∈A 或x ∈B }(2)一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:A ∩B.即有:A ∩B={x|x ∈A 且x ∈B }(3)一般地,如果一个集合U 含有所研究问题中涉及的所有元素,称U 为所研究问题的全集.(4)一般地,集合A 是全集U 的一个子集,由全集U 中不属于A 的元素组成的集合,称为对于全集U 集合A 的补集。
高中数学(人教B版)必修第一册:集合的基本运算【精品课件】
可以表示为:
{(x,y) | y=0}∩{(x,y) | x=0}={(0,0)}.
从定义可以看出,A∩B表示由集合A,B按照指定的法则构造出
一个新集合,因此“交”可以看成集合之间的一种运算,通常称为
交集运算.
交集运算具有以下性质,对于任意两个集合A,B,都有:
sF=M,
sM=F.
例如,如果U={1,2,3,4,5,6},A={1,3,5},则
UA={2,4,6}.
注意,此时UA仍是U的一个子集,因此U(UA)也是有意
义的,此例中的U(UA)={1,3,5}=A.
事实上,给定全集U及其任意一个子集A,补集运算具有如下
性质:
A∪(UA)=U;
英语成绩低于70分的所有同学组成的集合为N,
需要去参加意见征求会的同学组成的集合为P,
可以看出,集合P中的元素,要么属于集合M,要么属于集合
N.
一般地,给定两个集合A,B,由这两个集合的所有元素组成的
集合,称为A与B的并集,记作A∪B,读作“A并B”.
两个集合的并集可用图(1)或(2)所示的阴影部分形象地表
可以看出,集合S 中的元素既属于集合P,又属于集合M.
一般地,给定两个集合A,B,由既属于A又属于B的所有元素
(即A和B的公共元素)组成的集合,称为A与B的交集,记作A∩B,
读作“A交B ”.两个集合的交集可用下图所示的阴影部分形象地表
示.
因此,上述情境与问题中的集合满足P∩M=S.
例如,{1,2,3,4,5}∩{3,4,5,6,8}={3,4,5};
A∪B=A,试求实数m的取值范围.
解析:∵A∪B=A,∴B⊆A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C {(2+4x=0}, B={x2+(2a+1)x+a2-1=0}, 若A∩B =B,求a的值.
性质:
①A∩B={x|x∈A且x∈B}; ②A∩B=A,A∩=,
A∩B=B∩A.
课堂小结
1.交集,并集 2.性质 ⑴ A∪B={x|x∈A或x∈B},
A∩B={x|x∈A且x∈B}; ② A∩A=A,A∪A=A,
A∪B={3,4,5,6,7,8,9}.
2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
求A∪B.
2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
求A∪B.
-1
123 x
2设集合A={x |-1<x<2}, 集合B={x | 1<x<3},
求A∪B.
-1
123 x
A∪B={x|-1<x<3}.
3已知集合A={x |-2≤x≤5}, 集合B={x | m+1≤x≤2m-1},
若A∪B=A,求m的取值范围.
3已知集合A={x |-2≤x≤5}, 集合B={x | m+1≤x≤2m-1},
若A∪B=A,求m的取值范围.
m∈{m |2≤m≤3}.
性质:
1.并 集
定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,记 作A∪B,即A∪B={x|x∈A或x∈B}.
1.并 集 定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,记 作A∪B,即A∪B={x|x∈A或x∈B}.
用Venn图表示为:
AB
新课
示例1:观察下列各组集合
2.交 集 定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},读作A交B.
用Venn图表示为:
AB
4⑴ A={2,4,6,8,10}, B={3,5,8,12}, C={6,8},
求①A∩B ②A∩(B∩C) ;
⑵ A={x |x是某班参加百米赛的同学}, B={x |x是某班参加跳高的同学}, 求A∩B.
A={1,3,5} B={2,4,6}
A∪B=C
C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
1设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
求A∪B.
1设集合A={4,5,6,8}, 集合B={3,5,7,8,9},
求A∪B.
①A∪A=
;
②A∪=
;
③A∪B=
.
性质:
①A∪A= A ;
②A∪=
;
③A∪B=
.
性质:
①A∪A= A ;
②A∪= A ;
③A∪B=
.
性质:
①A∪A= A ; ②A∪= A ; ③A∪B= B∪A .
2.交 集 示例2:考察下列各集合 A={4,3,5};B={2,4,6};C={4}.
2.交 集 示例2:考察下列各集合 A={4,3,5};B={2,4,6};C={4}.
新课
示例1:观察下列各组集合 A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
新课
示例1:观察下列各组集合 A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
集合C是由集合A或属于集合B的 元素组成的,则称C是A与B的并集.
1.并 集
定义:由所有属于集合A或B的元素组成 的集合,称为集合A与集合B的并集,
5设集合A={y|y=x2,x∈R}, B={(x, y)|y=x+2,x∈R},
则A∩B =( )
A.{(-1, 1),(2, 4)} B. {(-1, 1)}
C {(2, 4)}
D.
5设集合A={y|y=x2,x∈R}, B={(x, y)|y=x+2,x∈R},
则A∩B =( D )
A.{(-1, 1),(2, 4)} B. {(-1, 1)}
集合C的元素既属于A,又属于B, 则称C为A与B的交集.
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},
2.交 集
定义:由两个集合A、B的公共部分组成 的集合,叫这两个集合的交集,记作 A∩B=C={x|x∈A且x∈B},读作A交B.
A∩=,A∪=A; ③ A∩B=B∩A,A∪B=B∪A.