2018武汉四月调考数学试题及标准答案
【高三数学试题精选】2018年4月湖北高三数学调研试卷(理带答案)
2018年4月湖北高三数学调研试卷(理带答案)
5 c 15
6已知随机变量满足,则下列说法正确的是
A B
c D
7设均为非零向量,已知命题是的必要不充分条,命题是成立的充分不必要条,则下列命题是真命题的是
A B c D
8已知函数在区间上的图象如图所示,则可取
A B c D
9执行如图所示的程序框图,若输出的值为,则满足条的实数的个数为
A 4
B 3 c 2 D 1
10网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为
A 2
B 4 c D
11已知实数满足,则的取值范围是
A B c D
12过圆内一点作倾斜角互补的直线Ac和BD,分别交圆于A,c,和B,D,则四边形ABcD的面积的最大值为
A B c D
第Ⅱ卷(非选择题共90分)
二、填空题本大题共4小题,每小题5分,共5不等式选讲
已知函数
(1)若的最小值为4,求实数的值;
(2)若时,不等式恒成立,求实数的取值范围
5 c。
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题(解析版)
武汉市2018届高中毕业生四月调研测试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的共轭复数是()A. B. C. D.【答案】B【解析】,所以其共轭复数为.2. 已知集合,,若,则实数的取值集合为()A. B. C. D.【答案】D【解析】【分析】先求出集合M={x|x2=1}={﹣1,1},当a=0时,N=∅,成立;当a≠0时,N={},由N⊆M,得或=1.由此能求出实数a的取值集合.【详解】∵集合M={x|x2=1}={﹣1,1},N={x|ax=1},N⊆M,∴当a=0时,N=∅,成立;当a≠0时,N={},∵N⊆M,∴或=1.解得a=﹣1或a=1,综上,实数a的取值集合为{1,﹣1,0}.故选:D.【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3. 执行如图所示的程序框图,如果输入的,则输出的属于()A. B. C. D.【答案】A【解析】【分析】根据程序框图的功能进行求解即可.【详解】本程序为条件结果对应的表达式为S=,则当输入的t∈[﹣2,2],则当t∈[﹣2,0)时,S=2t∈[﹣4,0),当t∈[0,2]时,如右图,S=﹣3t+t3=t(t﹣)(t)∈[﹣2,2],综上S∈[﹣4,2],故选:A.【点睛】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.4. 某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为()A. B. C. D.【答案】B【解析】【分析】在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,进而得到答案.【详解】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长宽高分别为2,1,1的长方体的体对角线,故d==,故选:B.【点睛】由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5. 一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为()A. B. C. D.【答案】C【解析】【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解.【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,任意按最后一位数字,不超过2次就按对的概率为:p==.故选:C.【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6. 若实数,满足,,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.【详解】∵实数a,b满足a>b>1,m=log a(log a b),,,∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,0<<1,1>=2log a b>.∴m,n,l的大小关系为l>n>m.故选:B.【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7. 已知直线与双曲线的右支有两个交点,则的取值范围为()A. B. C. D.【答案】D【解析】【分析】根据双曲线的渐近线和切线的方程得出k的范围.【详解】双曲线的渐近线方程为y=±x,∴当﹣1<k≤1时,直线与双曲线的右支只有1个交点,当k≤﹣1时,直线与双曲线右支没有交点,把y=kx﹣1代入x2﹣y2=4得:(1﹣k2)x+2kx﹣5=0,令△=4k2+20(1﹣k2)=0,解得k=或k=﹣(舍).∴1<k<.故选:D.【点睛】本题考查了双曲线的简单几何性质,直线与双曲线相切的等价条件,属于中档题.8. 在中,角、、的对应边分别为,,,条件:,条件:,那么条件是条件成立的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】由条件p:a≤,利用余弦定理与基本不等式的性质可得:cosA=≥,当且仅当b=c=a时取等号.又A∈(0,π),可得.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.即可判断出结论.【详解】由条件p:a≤,则cosA=≥=≥=,当且仅当b=c=a时取等号.又A∈(0,π),∴.由条件q:A,B,C∈(0,π),A≤.取,C=,B=满足上述条件,但是a.∴条件p是条件q成立的充分不必要条件.故选:A.【点睛】本题考查了余弦定理与基本不等式的性质、倍角公式、三角函数求值,考查了推理能力与计算能力,属于中档题.9. 在的展开式中,含项的系数为()A. B. C. D.【答案】B【解析】【分析】把x+看作一项,写出的展开式的通项,再写出的展开式的通项,由x的指数为5求得r、s的值,则答案可求.【详解】的展开式的通项为.的展开式的通项为=.由6﹣r﹣2s=5,得r+2s=1,∵r,s∈N,∴r=1,s=0.∴在的展开式中,含x5项的系数为.故选:B.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.10. 若,满足,则的最小值为()A. B. C. D.【答案】D【解析】【分析】画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.【详解】令,,作出可行域,如图所示:,表示可行域上的动点到定点距离的平方,然后减去,故其最小值为定点到直线AB的距离的平方减去。
湖北省武汉市2018届高三毕业生四月调研测试数学(理)试卷(含答案)
湖北省武汉市2018届⾼三毕业⽣四⽉调研测试数学(理)试卷(含答案)武汉市2018届⾼中毕业⽣四⽉调研测试理科数学⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.复数52i -的共轭复数是() A .2i + B .2i -+ C .2i -- D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ?,则实数a 的取值集合为()A .{1}B .{1,1}-C .{1,0}D .{1,1,0}-3.执⾏如图所⽰的程序框图,如果输⼊的[2,2]t ∈-,则输出的S 属于()A .[4,2]-B .[2,2]-C .[2,4]-D .[4,0]-4.某⼏何体的三视图如图所⽰,则在该⼏何体的所有顶点中任取两个顶点,它们之间距离的最⼤值为() A .3 B .6 C .23 D .26 5.⼀张储蓄卡的密码共有6位数字,每位数字都可以从09:中任选⼀个,某⼈在银⾏⾃动提款机上取钱时,忘记了密码最后⼀位数字,如果任意按最后⼀位数字,不超过2次就按对的概率为()A .25 B .310C .15D .110 6.若实数a ,b 满⾜1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的⼤⼩关系为()A .m l n >>B .l n m >>C .n l m >>D .l m n >>7.已知直线1y kx =-与双曲线224x y -=的右⽀有两个交点,则k 的取值范围为()A .B .C .(D . 8.在ABC ?中,⾓A 、B 、C 的对应边分别为a ,b ,c ,条件p :2b c a +≤,条件q :2B C A +≤,那么条件p 是条件q 成⽴的()A .充分⽽不必要条件B .必要⽽不充分条件C .充要条件D .既不充分也不必要条件9.在61(1)x x+-的展开式中,含5x 项的系数为() A .6 B .6- C .24 D .24-10.若x ,y 满⾜1212x y -++≤,则2222M x y x =+-的最⼩值为()A .2-B .211 C .4 D .49- 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最⼤值点,则ω的取值范围为() A .[2,4]ππ B .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12.过点(2,1)P -作抛物线24x y =的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F两点,O 为坐标原点,则PEF ?与OAB ?的⾯积之⽐为()A .2B .3C .12D .34⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分.13.已知sin 2cos αα=,则sin cos αα= .14.已知向量a r ,b r ,c r 满⾜20a b c ++=r r r ,且1a =r ,3b =r ,2c =r ,则22a b a c b c ?+?+?=r r r r r r .15.已知(,)22x ππ∈-,()1y f x =-为奇函数,'()()tan 0f x f x x +>,则不等式()cos f x x >的解集为.16.在四⾯体ABCD 中,1AD DB AC CB ====,则四⾯体体积最⼤时,它的外接球半径R = .三、解答题:共70分.解答应写出⽂字说明、证明过程或演算步骤.第17题~第21题为必考题,每个试题考⽣都必须作答.第22题~第23题为选考题,考⽣根据要求作答.(⼀)必考题:共60分.17.已知正数数列{}n a 满⾜:12a =,11212n n n n n a a a a ---+=+-(2)n ≥. (1)求2a ,3a ;(2)设数列{}n b 满⾜22(1)n n b a n =--,证明:数列{}n b 是等差数列,并求数列{}n a 的通项n a . 18.如图,在棱长为3的正⽅体1111ABCD A B C D -中,E ,F 分别在棱AB ,CD 上,且1AE CF ==.(1)已知M 为棱1DD 上⼀点,且11D M =,求证:1B M ⊥平⾯11A EC .(2)求直线1FC 与平⾯11A EC 所成⾓的正弦值.19.已知椭圆Γ:22142x y +=,过点(1,1)P 作倾斜⾓互补的两条不同直线1l ,2l ,设1l 与椭圆Γ交于A 、B 两点,2l 与椭圆Γ交于C ,D 两点.(1)若(1,1)P 为线段AB 的中点,求直线AB 的⽅程;(2)记AB CDλ=,求λ的取值范围. 20.在某市⾼中某学科竞赛中,某⼀个区4000名考⽣的参赛成绩统计如图所⽰.(1)求这4000名考⽣的竞赛平均成绩x (同⼀组中数据⽤该组区间中点作代表);(2)由直⽅图可认为考⽣竞赛成绩z 服正态分布2(,)N µσ,其中µ,2σ分别取考⽣的平均成绩x 和考⽣成绩的⽅差2s ,那么该区4000名考⽣成绩超过84.41分(含84.81分)的⼈数估计有多少⼈?(3)如果⽤该区参赛考⽣成绩的情况来估计全市的参赛考⽣的成绩情况,现从全市参赛考⽣中随机抽取4名考⽣,记成绩不超过...84.81分的考⽣⼈数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =204.7514.31=;②2(,)z N µσ:,则()0.6826P z µσµσ-<<+=,(22)0.9544P z µσµσ-<<+=;③40.84130.501=.21.已知函数()(ln )x f x xe a x x =-+,a R ∈.(1)当a e =时,求()f x 的单调区间;(2)若()f x 有两个零点,求实数a 的取值范围. (⼆)选考题:共10分.请考⽣在22、23题中任选⼀题作答,如果多做,则按所做的第⼀题记分.作答时请写清题号.22.[选修4-4:坐标系与参数⽅程]在平⾯直⾓坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建⽴极坐标系,l 的极坐标⽅程为(cos 2sin )10ρθθ+=,C 的参数⽅程为3cos 2sin x y θθ=??=?(θ为参数,R θ∈). (1)写出l 和C 的普通⽅程;(2)在C 上求点M ,使点M 到l 的距离最⼩,并求出最⼩值.23.[选修4-5:不等式选讲] 已知()22f x ax x =--+.(1)在2a =时,解不等式()1f x ≤;(2)若关于x 的不等式4()4f x -≤≤对x R ∈恒成⽴,求实数a 的取值范围.武汉市2018届⾼中毕业⽣四⽉调研测试理科数学参考答案⼀、选择题1-5: BDABC 6-10: BDABD 11、12: CC⼆、填空题 13. 25 14. 13- 15. (0,)2π16. 6三、解答题17.(1)由已知212132a a a a +=+-,⽽12a =,∴2222232(2)a a -=+-,即222230a a --=.⽽20a >,则23a =. ⼜由323252a a a a +=+-,23a =,∴233952(3)a a -=+-,即233280a a --=.⽽30a >,则34a =.∴23a =,34a =.(2)由已知条件可知:22112()21n n n n a a a a n ---=-+-,∴22221(1)(1)(1)n n a a n n ----=--,则22221(1)(1)(1)n n a n a n ---=---223(1)2a ==--222(1)1a =--0=,⽽22(1)n n b a n =--,∴0n b =,数列{}n b 为等差数列.∴22(1)n a n -=.⽽0n a >,故1n a n =+.18.解:(1)过M 作1MT AA ⊥于点T ,连1B T ,则11AT =.易证:111AA E A B T ,于是111AA E A B T ∠=∠.由111190A B T ATB ∠+∠=o ,知11190AA E ATB ∠+∠=o ,∴11A E B T ⊥.显然MT ⊥⾯11AA B B ,⽽1A E ?⾯11AA B B ,∴1MT A E ⊥,⼜1B T MT T =I ,∴1A E ⊥⾯MTB ,∴11A E MB ⊥.连11B D ,则1111B D A C ⊥.⼜111D M A C ⊥,1111B D D M D =I ,∴11A C ⊥⾯11MD B ,∴111AC MB ⊥.由11A E MB ⊥,111AC MB ⊥,1111A E A C A =I ,∴1B M ⊥⾯11A EC .(2)在11D C 上取⼀点N ,使11ND =,连接EF . 易知1//A E FN .∴1111A EFC N EFC E NFC V V V ---==11113(23)33332NFC S ?=??==.对于11A EC ?,11AC =,1A E =⽽1EC =由余弦定理可知11cos EAC ∠==. ∴11A EC ?的⾯积11111sin 2S AC A E EAC =?∠12=?=. 由等体积法可知F 到平⾯11A EC 之距离h 满⾜111113A EC A EFC S h V ?-?=,则133h =,∴h =,⼜1FC ,设1FC 与平⾯1AEC 所成⾓为θ,∴sin θ===. 19.解:(1)设直线AB 的斜率为tan k α=,⽅程为1(1)y k x -=-,代⼊2224x y +=中,∴222[(1)]40x kx k +---=.∴222(12)4(1)2(1)40k x k k x k +--+--=.判别式222[4(1)]4(21)[2(1)4]k k k k ?=--+--28(321)k k =++.设11(,)A x y ,22(,)B x y ,则 12221224(1)212(1)421k k x x k k x x k -?+=??+?--?=?+?. ∵AB 中点为(1,1),∴12212(1)()1221k k x x k -+==+,则12k =. ∴直线的AB ⽅程为11(1)2y x -=-,即210x y -+=. (2)由(1)知12AB x =-==. 设直线的CD ⽅程为1(1)(0)y k x k -=--≠.同理可得CD =.∴0)ABk CD λ==≠. ∴2241312k k k λ=++-41132k k=++-. 令13t k k=+,则4()12g t t =+-,(,)t ∈-∞-+∞U . ()g t在(,-∞-,)+∞分别单调递减,∴2()1g t -<或1()2g t <≤+故221λ-≤<或212λ<≤+即λ∈U . 20.解:(1)由题意知:∴450.1550.15650.2750.3x =?+?+?+?850.15950.170.5+?+?=,∴4000名考⽣的竞赛平均成绩x 为70.5分.(2)依题意z 服从正态分布2(,)N µσ,其中70.5x µ==, 2204.75D σξ==,14.31σ=,∴z 服从正态分布22(,)(70.5,14.31)N N µσ=,⽽()(56.1984.81)0.6826P z P z µσµσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分的⼈数估计为0.158********.8?=⼈634≈⼈.(3)全市竞赛考⽣成绩不超过84.81分的概率10.15870.8413-=.⽽(4,0.8413)B ξ:,∴444(3)1(4)10.8413P P C ξξ≤=-==-?10.5010.499=-=.21.解:(1)定义域为:(0,)+∞,当a e =时,(1)()'()x x xe e f x x+-=. ∴()f x 在(0,1)时为减函数;在(1,)+∞时为增函数.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单增,且t R ∈.∴()(ln )x f x xe a x x =-+()te at g t =-=.∴()f x 在0x >上有两个零点等价于()t g t e at =-在t R ∈上有两个零点.①在0a =时,()t g t e =在R 上单增,且()0g t >,故()g t ⽆零点;②在0a <时,'()t g t e a =-在R 上单增,⼜(0)10g =>,11()10a g e a =-<,故()g t 在R 上只有⼀个零点;③在0a >时,由'()0t g t e a =-=可知()g t 在ln t a =时有唯⼀的⼀个极⼩值(ln ) (1ln )g a a a =-. 若0a e <<,(1ln )0g a a =->最⼩,()g t ⽆零点;若a e =,0g =最⼩,()g t 只有⼀个零点;若a e >时,(1ln )0g a a =-<最⼩,⽽(0)10g =>,由于ln ()x f x x=在x e >时为减函数,可知:a e >时,2a e e a a >>.从⽽2()0a g a e a =->,∴()g x 在(0,ln )a 和(ln ,)a +∞上各有⼀个零点.综上讨论可知:a e >时()f x 有两个零点,即所求a 的取值范围是(,)e +∞.22.解:(1)由l :cos sin 100ρθρ?+-=,及cos x ρθ=,sin y ρθ=. ∴l 的⽅程为2100x y +-=. 由3cos x θ=,2sin y θ=,消去θ得22194x y +=. (2)在C 上取点(3cos ,2sin )M ??,则d=05cos()10??=--. 其中003cos 54sin 5=?=??,当0??=时,d此时093sin 3cos 5??==,0082sin 2cos 5??==,98(,)55M . 23.解:(1)在2a =时,2221x x --+≤.在1x ≥时,(22)(2)1x x --+≤,∴15x ≤≤;在2x ≤-时,(22)(2)1x x --++≤,3x ≥,∴x ⽆解;在21x -≤≤时,(22)(2)1x x ---+≤,13x ≥-,∴113x -≤≤. 综上可知:不等式()1f x ≤的解集为1{|5}3x x -≤≤. (2)∵224x ax +--≤恒成⽴,⽽22(1)x ax a x +--≤+,或22(1)4x ax a x +--≤-+,故只需(1)4a x +≤恒成⽴,或(1)44a x -+≤恒成⽴,∴1a =-或1a =.∴a 的取值为1或1-.。
2018年湖北省武汉市九年级四月调研数学试卷(二)(解析版)
2018年湖北省武汉市九年级四月调研数学试卷(二)一、选择题(本大题共小10题,每小题3分,共30分)1.计算﹣5+1的结果为()A.﹣6B.﹣4C.4D.62.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4B.a>4C.a<4D.a≠43.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a24.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33B.0.34C.0.20D.0.355.计算(x﹣1)(x﹣2)的结果为()A.x2+3x﹣2B.x2﹣3x﹣2C.x2+3x+2D.x2﹣3x+26.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是()A.(1,5)B.(1,﹣3)C.(﹣5,5)D.(﹣5,﹣3)7.下列如图表示一个由若干相同小立方块搭成的几何体的俯视图,小正方形的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如表:根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为()A.13、15、14B.14、15、14C.13.5、15、14D.15、15、159.如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图100中有100个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S100,则S1+S2+S3+…+S100=()A.πB.πC.πD.2π10.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C 移动到点D的过程中,则点F运动的路径长为()A.πB.πC.πD.π二、填空题(本大题共6小题,每小题3分,共18分)11.化简:=.12.计算结果是.13.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为.14.如图,▱ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在▱ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为.15.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S=四边形ABCD 18,则BD的最小值为.16.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,y a)为抛物线C 上一点,当点A在抛物线y=x2上任意移动时,则y a的取值范围是.三、解答题(本大题共8小题,共72分)17.(8分)解方程组:.18.(8分)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.19.(8分)雾霾天气时常会影响市民的生活质量.前不久,我校气候先锋队的同学对“雾霾天气的主要成因”随机调查了部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)补全条形统计图,并将扇形统计图B、D两区域对应的圆心角的度数分别为、;(3)若武汉城区有1000万人口,请估计持有A或B种观点的市民共约有多少人20.(8分)武商量贩销售A,B两种商品,售出4件B种商品所得利润为400元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A,B两种商品很快售完,武商量贩决定再一次购进A,B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么武商量贩至少需购进多少件A种商品?21.(8分)如图,△ABC内接于⊙O,AB=AC,BO的延长线交AC于点D.(1)求证:△OAD∽△ABD;(2)记△AOB、△AOD、△COD的面积分别为S l、S2、S3,若S22=S1•S3,求的值.22.(10分)如图,双曲线y1=与直线y2=4x交于点A(1,m)、B.(1)直接写出:①k的值为;②m的值为;(2)点C是双曲线y1=(x>0)上异于点A的一点,作直线AC、BC与x轴分别交于E、D.①若OA=OC,求DE的值;②若CE:CB=1:4,直接写出△CDE的面积为.23.(10分)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB 于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n,当n为何值时,MN∥BE?24.(12分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.2018年湖北省武汉市九年级四月调研数学试卷(二)参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1.【分析】绝对值不相等的异号两数加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣5+1=﹣(5﹣1)=﹣4.故选:B.【点评】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.【分析】直接利用合并同类项的法则分析得出答案.【解答】解:2a2+3a2=5a2.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项的法则是解题关键.4.【分析】用“和为7”的频率估计概率即可得.【解答】解:由于出现“和为7”的频率稳定在0.33附近,所以出现“和为7”的概率为0.33.故选:A.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.5.【分析】原式利用多项式乘多项式法则计算即可得到结果.【解答】解:原式=x2﹣2x﹣x+2=x2﹣3x+2,故选:D.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据点的平移:左减右加,上加下减解答可得.【解答】解:将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(﹣2+3,1+4),即(1,5),故选:A.【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7.【分析】由已知条件可知,主视图有2列,每列小正方数形数目分别为2,3,据此可得到图形.【解答】解:主视图应有2列,左边一列有2个立方块,右侧有3个立方块,B选项符合要求,故选:B.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.8.【分析】根据加权平均数的计算公式列出算式,再进行计算即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或最中间两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这个排球队员年龄的平均数是(12×2+13×4+14×6+15×8)÷20=14(岁);∵15岁出现的次数最多,出现了8次,∴众数是15岁;把这些数从小到大排列,最中间的两个数的平均数是:=14,则中位数是14岁;故选:B.【点评】此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.9.【分析】先找出计算直角三角形内切圆半径的规律:半径r=长特殊到一般,探究规律后,利用规律即可解决问题.【解答】解:如图1,过O点作OE⊥AC于点E,过O点作OF⊥BC于点F,AC=3,BC=4,则AB=5,∴⊙O的半径r=OE=OF===2,∴S l=πr2=π,同理,如图2,等面积法可求得CD=,∴AD=,BD=,∴⊙O的半径r1==,⊙E的半径r2==,∴S1+S2=π(r+r)=π,以此类推,可以得到S1+S2+S3+…+S n=π,∴当n=100时,S1+S2+S3+…+S100=π.故选:A.【点评】本题考查了直角三角形的内切圆,这是一个图形变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解;解决此题的思路为:①先找出计算直角三角形内切圆半径的规律:半径r=a、b是直角边,c为斜边);②利用面积相等计算斜边上的高;③运用勾股定理计算直角三角形的边长.10.【分析】如图,E点运动过程中,F点的轨迹为.运用弧长公式进行解答.【解答】解:如图,E点运动过程中,F点的轨迹为.在Rt△ABC中,∵∠B=90°,∴tan∠BAC==,∴∠BAC=30°,当点E与C重合时,∠BAF=2∠BAC=60°∠FAF1=120°∴点F运动的路径长为:×2π×=π.故选:D.【点评】考查了轨迹,矩形的性质,翻折变换,根据题意,画出点F运动轨迹示意图是解题的难点.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】根据算术平方根的定义求出即可.【解答】解:=3.故答案为:3.【点评】此题主要考查了算术平方根的定义,是基础题型,比较简单.12.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是基础题,考查了分式的加减法,同分母的分式相加减的法则:分母不变,分子相加.13.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式即可求得答案.【解答】解:如图所示,由树状图知共有12种等可能结果,其中都是红球的有6种结果,∴都是红球的概率为,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14.【分析】设∠FBE=α,则∠ABC=α+25°,由折叠的性质和平行四边形的性质可得AE=BE=EF,∠A=∠DFE=155°﹣α,由四边形内接和为360°,可求∠FDA的度数.【解答】解:设∠FBE=α,则∠ABC=α+25°∵E是BA的中点,∴AE=BE∵四边形ABCD是平行四边形,∴BC∥AD∴∠A+∠CBA=180°∴∠A=180﹣α﹣25°=155°﹣α,∵折叠∴AE=BE=EF,∠A=∠DFE=155°﹣α∴∠FBE=∠BFE=α∵∠AEF=∠FBE+∠BFE∴∠AEF=2α∵∠A+∠DFE+∠AEF+∠FDA=360°∴155°﹣α+155°﹣α+2α+∠FDA=360°∴∠FDA=50°故答案为:50°【点评】本题考查了翻折变换,平行四边形的性质,四边形内角和为360°,熟练运用折叠的性质是本题的关键.15.【分析】由勾股定理可得AB 2+AD 2=BD 2,BC 2+CD 2=BD 2,由S 四边形ABCD =S △ABD +S △BCD ,可得18=+S △BCD ,即当S △BCD 值最大时,BD 最小,则可求BD 的最小值.【解答】解:∵AB =AD ,∠BAD =∠BCD =90°, ∴AB 2+AD 2=BD 2,BC 2+CD 2=BD 2, ∴2AB 2=BD 2,∵S 四边形ABCD =S △ABD +S △BCD ,∴18=+S △BCD ,∴当S △BCD 值最大时,BD 最小, ∵(CD ﹣BD )2≥0 ∴CD 2+BD 2≥2BD ×CD∴BD ×CD ≤∴S △BCD ≤∴当S △BCD =时,BD 的长度最小,∴18=∴BD =6 故答案为:6【点评】本题考查了直角三角形的性质,勾股定理,三角形的面积公式,熟练运用完全平方公式是本题的关键.16.【分析】设点A 的坐标为(m ,n ),由题意可知n =m 2,从而可知抛物线C 为y =(x ﹣m )2+n ,化简为y =x 2﹣2mx +2m 2,将x =2代入y =x 2﹣2mx +2m 2,利用二次函数的性质即可求出答案. 【解答】解:设点A 的坐标为(m ,n ),m 为全体实数, 由于点A 在抛物线y =x 2上, ∴n =m 2,由于以A 为顶点的抛物线C 为y =x 2+bx +c , ∴抛物线C 为y =(x ﹣m )2+n化简为:y =x 2﹣2mx +m 2+n =x 2﹣2mx +2m 2,∴令x=2,∴y a=4﹣4m+2m2=2(m﹣1)2+2≥2,∴y a≥2,故答案为:y a≥2【点评】本题考查二次函数的性质,解题的关键是根据题意求出y a=4﹣4m+2m2=2(m﹣1)2+2,本题属于中等题型.三、解答题(本大题共8小题,共72分)17.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:y=6,把y=6代入①得:x+6=10,解得:x=4,方程组的解为.【点评】本题考查了解二元一次方程组的,正确掌握解二元一次方程组的方法是解题的关键.18.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.19.【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200×360°=108°,200×40%﹣60=20,20÷200×360°=36°,区域B、D所对应的扇形圆心角的度数为:108°,36°,故答案为:108°;36°;(3)(60÷200+45%)×1000=750万人,∴若武汉城区有1000万人口,持有A、B两组主要成因的市民有750万人.【点评】本题考查的是条形统计图和扇形统计图的知识,正确获取图中信息并准确进行计算是解题的关键.20.【分析】(1)等量关关系:利润=单件产品利润×数量,总利润=总利润A+总利润B;(2)不等量关系:总利润A+总利润B≥4000.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y 元,根据题意得:,解得:,(2)设购进A种商品a件,则购进B种商品(34﹣a)件,根据题意得:200a+100(34﹣a)≥4000,解得:a≥6,答:每件A种商品售出后所得的利润为200元,每件B种商品售出后所得利润为100元;武商量贩至少需购进6件A种商品.【点评】本题考查二元一次方程组和一元一次不等式的综合运用,重点掌握解应用题的步骤.难点是正确列出不等量关系.21.【分析】(1)由OA=OA,OB=OC,AB=AC可证出△ABO≌△ACO(SSS),根据全等三角形的性质可得出∠ABO=∠ACO,由OA=OC可得出∠ACO=∠CAO,进而可得出∠ABD=∠OAD,结合∠ADO=∠ADB可证出△OAD∽△ABD;(2)过O作OE⊥AB于E,OF⊥AC于F,由(1)可得知∠BAO=∠CAO,利用角平分线的性质可得出OE=OF,利用三角形的面积公式可得出=,=,结合S22=S1•S3可得出=,设AD=1,CD=x,则AB=AC=x+1,进而可得出x(x+1)=1,解之取其正值,再将其代入===中即可求出结论.【解答】(1)证明:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠ABO=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠ABD=∠OAD.又∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)解:过O作OE⊥AB于E,OF⊥AC于F.由(1)知∠BAO=∠CAO,∴OE=OF,∴==,=.又∵S22=S1•S3,∴=.设AD=1,CD=x,则AB=AC=x+1,∴x(x+1)=1,解得:x1=,x2=(舍去),∴====.【点评】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、角平分线的性质、三角形的面积以及解一元二次方程,解题的关键是:(1)利用全等三角形的性质及等腰三角形的性质,找出∠ABD=∠OAD;(2)通过解一元二次方程,找出CD与AD的关系.22.【分析】(1)由点A在直线y2=4x上,利用一次函数图象上点的坐标特征可求出m的值,进而可得出点A的坐标,再利用反比例函数图象上点的坐标特征可求出k的值;(2)①由OA=OC可得出点C的坐标,由正、反比例函数的对称性可得出点B的坐标,根据点B,C的坐标利用待定系数法可求出直线BC的解析式,由直线BC的解析式利用一次函数图象上点的坐标特征可求出点D的坐标,同理可求出直线AC的解析式及点E的坐标,再由点D,E的坐标可求出DE的长度;②过C作CQ⊥x轴于Q,过B作x轴的平行线BM,BM交CQ于M点,设点C的坐标为(n,),则点M的坐标为(n,n+1),利用待定系数法可求出直线AC的解析式,在Rt△BCM中利用勾股定理可得出BC2=(n+1)2+(4+)2,由直线AC的解析式利用一次函数图象上点的坐标特征可得出点E的坐标,在Rt△CEQ中利用勾股定理可得出CE2=()2+1,结合CE:CB=1:4可得出关于n的方程,解之取其正值即可得出点C的坐标,由点B,C的坐标利用待定系数法可求出直线BC的解析式,由直线BC的解析式利用一次函数图象上点的坐标特征可求出点D的坐标,再利用三角形的面积公式可求出△CDE的面积.【解答】解:(1)∵点A(1,m)在直线y2=4x上,∵点A(1,m)在双曲线y1=上,∴k=1×4=4.故答案为:①4;②4.(2)①∵OA=OC,点A,C均在双曲线y1=上,点A的坐标为(1,4),∴点C的坐标为(4,1).∵双曲线y1=与直线y2=4x交于点A(1,4),B,∴点A,B关于原点O对称,∴点B的坐标为(﹣1,﹣4).设直线BC的解析式为y=ax+b(a≠0),将B(﹣1,﹣4),C(4,1)代入y=ax+b,得:,解得:,∴直线BC的解析式为y=x﹣3,∴点D的坐标为(3,0);同理,可得:直线AC的解析式为y=﹣x+5,∴点E的坐标为(5,0),∴DE=OE﹣OD=5﹣3=2.②如图,过C作CQ⊥x轴于Q,过B作x轴的平行线BM,BM交CQ于M点.设点C的坐标为(n,),则点M的坐标为(n,n+1),直线AC的解析式为y=﹣x+4+(可利用待定系数法求出).∵BC2=CM2+BM2,∴BC2=(n+1)2+(4+)2.当y=0时,﹣x+4+=0,解得:x=n+1,∴OE=n+1,EQ=1,∴EQ2+CQ2=CE2=()2+1.∵CE:CB=1:4,∴BC 2=16CE 2,∴(n +1)2+(4+)2=16[()2+1], 解得:n 1=3,n 2=﹣5(舍去),∴点C 的坐标为(3,),∴BC 的解析式为y =x ﹣, ∴点D 的坐标为(2,0), ∴OD =2, ∴DE =2,∴S △CDE =×2×=.故答案为:.【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、两点间的距离公式、勾股定理以及三角形的面积,解题的关键是:(1)利用正、反比例函数图象上点的坐标特征求出k ,m 的值;(2)①利用一次函数图象上点的坐标特征求出点D ,E 的坐标;②利用勾股定理结合CE :CB =1:4,找出关于n 的方程. 23.【分析】(1)如图1,易证△BMF ≌△ECF ,则有BM =EC ,然后根据E 为CD 的中点及AB =DC 就可得到AM =EC ;(2)如图2,设MB =a ,易证△ECF ∽△BMF ,根据相似三角形的性质可得EC =2a ,由此可得AB =4a ,AM =3a ,BC =AD =2a .易证△AMN ∽△BCM ,根据相似三角形的性质即可得到AN =a ,从而可得ND =AD ﹣AN =a ,就可求出的值;(3)如图3,设MB =a ,依据相似三角形的性质可得BC =2a ,CE =na .由MN ∥BE ,MN ⊥MC 可得∠EFC =∠HMC =90°,从而可证到△MBC ∽△BCE ,然后根据相似三角形的性质即可求出n的值.【解答】解:(1)当F为BE中点时,如图1,则有BF=EF.∵四边形ABCD是矩形,∴AB=DC,AB∥DC,∴∠MBF=∠CEF,∠BMF=∠ECF.在△BMF和△ECF中,,∴△BMF≌△ECF,∴BM=EC.∵E为CD的中点,∴EC=DC,∴BM=EC=DC=AB,∴AM=BM=EC;(2)如图2所示:设MB=a,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,∴△ECF∽△BMF,∴==2,∴EC=2a,∴AB=CD=2CE=4a,AM=AB﹣MB=3a.∵=2,∴BC=AD=2a.∵MN⊥MC,∴∠CMN=90°,∴∠AMN+∠BMC=90°.∵∠A=90°,∴∠ANM +∠AMN =90°, ∴∠BMC =∠ANM , ∴△AMN ∽△BCM ,∴=,∴=,∴AN =a ,ND =AD ﹣AN =2a ﹣a =a ,∴==3;(3)当==n 时,如图3:设MB =a .∵△MFB ∽△CFE ,∴=,即,解得EC =an .∴AB =2an .又∵=n ,∴,∴BC =2a .∵MN ∥BE ,MN ⊥MC , ∴∠EFC =∠HMC =90°, ∴∠FCB +∠FBC =90°. ∵∠MBC =90°, ∴∠BMC +∠FCB =90°, ∴∠BMC =∠FBC . ∵∠MBC =∠BCE =90°, ∴△MBC ∽△BCE ,∴=,∴=,∴n=4.【点评】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,利用相似三角形的性质得到线段之间的关系是解决本题的关键.24.【分析】(1)将A、B、C三点坐标表示为线段长,OA=m,OB=2,OC=2m,然后根据面积公式建立关于m的方程,解方程即可;(2)过点D作DF∥OC,可以通过平行构造八字型的相似关系,将DE与OE的比转换为DF与OC的比,OC为定值,所以设点D坐标,表示DF线段长度,从而得到表示线段长度之比的二次函数关系式,转换成顶点式,则的最大值可求;(3)分析条件AM∥PH可知应有等角,所以从M、Q向x轴作垂直,构造相似,利用直线解析式设M、N、Q三点坐标,将直线与抛物线解析式联立,用韦达定理表示x1+x2,x1x2,根据相似关系建立参数方程,因式分解讨论取值.【解答】解:(1)y=x2+(m﹣2)x﹣2m=(x+m)(x﹣2)令y=0,则(x+m)(x﹣2)=0,解得x1=﹣m,x2=2∴A(﹣m,0)、B(2,0)令x=0,则y=﹣2m∴C(0,﹣2m)∴AB=2+m,OC=2m=×(2+m)×2m=8,解得m1=2,m2=﹣4∵S△ABC∵m>0∴m=2(2)如图1,过点D作DF∥y轴交BC于F由(1)可知:m=2∴抛物线的解析式为y=x2﹣4∴B(2,0)、C(0,﹣4)∴直线BC的解析式为y=2x﹣4设D(t,t2﹣4),则F(t,2t﹣4)∴DF=2t﹣4﹣(t2﹣4)=﹣t2+2t,OC=4∵DF∥y轴∴===当t=1时,∵,∴,此时D(1,﹣3).(3)设M(x1,kx1+b)、N(x2,kx2+b)联立,整理得x2+(m﹣2﹣k)x﹣2m﹣b=0∴x1+x2=2+k﹣m,x1x2=﹣2m﹣b设点Q的横坐标为n,则Q(n,kn+b)∵MA∥PH如图2,过点M作MK⊥x轴于K,过点Q作QL⊥x轴于L∵△MKA∽△QLH∴=即,整理得kx1x2+b(x1+x2)+kmn+bm﹣bn=0∴k(﹣2m﹣b)+b(2+k﹣m)+kmn+bm﹣bn=0∴(km﹣b)(n﹣2)=0①当km﹣b=0,此时直线为y=k(x+m),过点A(﹣m,0),不符合题意②当n﹣2=0,此时n=2,Q点的横坐标为2.【点评】此题考查了因式分解,相似构造,一元二次方程根与系数之间的关系,二次函数的极值求法以及一次函数与二次函数的关系,前两问属于常规问题,难度不大,解法比较常见,第三问难度较大,条件中没有已知数值,需要学生设多个参数,用韦达定理和因式分解的方法来解决问题,难度较大.。
2018年武汉市九年级四调数学(含答案)
2017~2018学年武汉市九年级四月调考数学试卷考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A .22℃B .15℃C .8℃D .7℃2.若代数式41x 在实数范围内有意义,则实数x 得取值范围就是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2得结果就是( )A .1B .x 2C .x 4D .5x 24.下表记录了一名球员在罚球线上投篮得结果,这名球员投篮一次,投中得概率约就是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4356078104123152251投中频率0、40 0、70 0、60 0、52 0、52 0、49 0、51 0、50A .0、7B .0、6C .0、5D .0、4 5.计算(a +2)(a -3)得结果就是( )A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称得点得坐标就是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体得三视图如左图所示,则该几何体就是( )8.某公司有10名工作人员,她们得月工资情况如下表(其中x 为未知数).她们得月平均工资就是2、22万元.根据表中信息,计算该公司工作人员得月工资得中位数与众数分别就是( )A .2,4B .1、8,1、6C .2,1、6D .1、6,1、89.某居民小区得俯视图如图所示,点A 处为小区得大门,小方块处就是建筑物,圆饼处就是花坛,扇形处就是休闲广场,空白处就是道路.从小区大门口向东或向南走到休闲广场, 走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB ,CD 就是互相垂直得两条直径,点E 在弧BC 上,CF ⊥AE 于点F .若点F职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人) 532x0、8三等分弦AE ,⊙O 得直径为12,则CF 得长就是( )A .552 B .5102 C .556 D .5106 二、填空题(共6个小题,每小题3分,共18分)11.计算:2)32(-+得结果就是__________. 12.计算1112+--x x x得结果就是__________. 13.两个人玩“石头、剪子、布”得游戏,随机出手一次,其中一人获胜得概率就是________.14.一副三角板如图所示摆放,含45°得三角板得斜边与含30°得三角板得较长直角边重合.AE ⊥CD 于点E ,则∠ABE 得度数就是__________°.第14题图 第15题图15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为 1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 得取值在-1≤x ≤1得范围中时,函数有最小值n .则n 得最大值就是__________. 三、解答题(共8小题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE .求证:AB ∥DE .19.(本题8分)学校食堂提供A ,B ,C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐得人数,得到如下统计图.订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图(1) 一共抽查了_________人;(2) 购买A 套餐人数对应得扇形得圆心角得度数就是_________;(3) 如果A ,B ,C 套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐得总销售额大约就是多少元.20.(本题8分)下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0、20 方式二884000、25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费. (1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB ,AD ,DC相切,切点分别为E ,G ,F ,其中E 为边AB 得中点. (1) 求证:BC 与⊙O 相切;(2) 如图2,若AD =3,BC =6,求EF 得长.22.(本题10分)如图,点A ,B 分别就是x 轴,y 轴上得动点,A ( p ,0)、B (0,q ).以AB 为边,画正方形ABCD .(1) 在图1中得第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C ,D 得坐标;(2) 如图2,若点C ,D 在双曲线xky(x >0)上,且点D 得横坐标就是3,求k 得值; (3) 如图3,若点C ,D 在直线y =2x +4上,直接写出正方形ABCD 得边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点P ,CD 2=DP ·DB .(1) 求证:∠BAC =∠CBD ;(2) 如图2,E ,F 分别为边AD ,BC 上得点,PE ∥DC ,EF ⊥BC .① 求证:∠PFC =∠CPD ;② 若BP =2,PD =1,锐角∠BCD 得正弦值为33,直接写出BF 得长.24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0), B (3,0)两点,与y 轴交于点C .P 为抛物线得对称轴上得动点,且在x 轴得上方,直线AP 与抛物线交于另一点D .(1) 求抛物线得解析式;(2) 如图1,连接AC ,DC ,若∠ACD =60°,求点D 得横坐标;(3) 如图2,过点D 作直线3-=y 得垂线,垂足为点E ,若PD PE 2=,求点P 得坐标.2018年武汉市九年级四调数学(含答案)。
湖北省武汉市2018届高三毕业生四月调研测试数学(理)(答案打印版)
S (0) 0, S (1) 2, S (2) 2 ,所以当 0 t 2 时, S (t ) [2, 2] ;
综上,输入的 t [ 2, 2] ,则输出的 S [ 4, 2] . 4.答案:B
C1 A1 B1 C A
D1
解析:该几何体为如图所示的四棱柱 ABCD A1 B1C1 D1 , 任取两个顶点,它们之间距离最大的为线段 A1 D ,
D B
A1 D 12 12 2 2 6 .
5.答案:C 解析:所求概率 P
1 9 1 1 . 10 10 9 5
6.答案:B 解析:不妨取 a 4, b 2 ,则
m log 4 (log 4 2) log 4
1 1 1 1 , n (log 4 2)2 , l log 4 22 1 ,所以 l n m 2 2 4 2
所以 M 的最小值为 2d
2
1 1 1 4 . 2 18 2 9
P0 O A
B
C
D
11. 答案: C 解析: 当 0 时, x
3
3
, 令x
3
2
, 得x
5 13 , 令x , 得x , 6 3 2 6
第 2 页 共 8 页
1 a
2.答案:D 解析: M {x | x 2 1} {1,1} ,当 a 0 时, N ,满足 N M ,当 a 0 时, N , 因为 N M ,可得
1 1 或 1 ,解得 a 1 或 1 ,所以实数 a 的取值集合是 {1, 1, 0} . a
1 1 5 (1) 6 x . x
湖北省武汉市2018届高中毕业生四月调研测试理科数学试题(精编含解析)
∴S△PEF= 解方程①可得 x=2k, ∴A(2+2 ,3+2 ),B(2﹣2 ,3﹣2 ), ∴直线 AB 方程为 y=x+1,|AB|=8,
原点 O 到直线 AB 的距离 d= ,
∴S△OAB=
,
∴△PEF 与△OAB 的面积之比为 . 故答案为:C
【点睛】本题主要考查直线和抛物线的位置关系,考查三角形的面积,意在考查学生对这些知识的掌握水
A.
B.
【答案】D
【解析】
C.
D.
【分析】 画出约束条件表示的可行域,通过表达式的几何意义,求出表达式的最小值.
【详解】令
,
,
,作出可行域,如图所示:
表示可行域上的动点到定点
距离的平方,然后减去 ,故其最小值为
定点
到直线 AB 的距离的平方减去 。
AB:
定点
到直线 AB 的距离:
∴ 故选: 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次 确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等, 最后结合图形确定目标函数最值取法、值域范围.
15. 已知
,
【答案】 【解析】 【分析】
为奇函数,
,则不等式
的解集为_________.
令 g(x)= ,
,根据函数的单调性求出 g(x)>g(0),从而求出不等式的解集即可.
【详解】∵y=f(x)﹣1 为奇函数,
∴f(0)﹣1=0,即 f(0)=1,
令 g(x)= ,
,
则 g′(x)=
>0,
故 g(x)在 f(x)>cosx,
【答案】 【解析】 【分析】
2018届湖北省高三4月调研考试理科数学试题(解析版)
2018年湖北省高三4月调考理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,集合,则( )A. B. C. D.【答案】B【解析】分析:现根据指数函数与对数函数的图象与性质,求得集合,即可求解.详解:由题意,所以,故选B.点睛:本题主要考查了集合的运算,对于集合的基本运算,要注意三个方面:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2. 欧拉公式为虚数单位)是由著名数学家欧拉发明的,她将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,若将表示的复数记为,则的值为( )A. B. C. D.【答案】A【解析】分析:根据题意,现求得,则根据复数的四则运算,即可求解.详解:由题意的,所以,故选A.点睛:复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.3. 记不等式组的解集为,若,则实数的最小值是( )A. 0B. 1C. 2D. 4【答案】C【解析】分析:由约束条件作出可行域,结合直线,求出过点的直线的斜率得到答案. 详解:作出约束条件所表示的可行域,如图所示,直线经过点,而经过两点的直线的斜率为,所以要使得,成立,则,所以实数的最小值是,故选C.点睛:线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题.4. 已知,则的值等于( )A. B. C. D.【答案】C【解析】分析:由已知求得,结合,展开两角差的正弦求解.详解:因为,所以,由,得,则,故选C.点睛:本题考查了三角函数的化简求证,考查了同角三角函数基本关系式的应用,关键是“拆角配角”思想的应用,属于基础题.5. 函数的图像大致为( )A. B. C. D.【答案】C【解析】分析:研究的函数的基本性质,和利用特殊点的函数值,即可作出选择.详解:由函数,满足且,所以排除A、D;又,排除D,故选C.点睛:函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象.6. 已知双曲线的一条渐近线方程为分别是双曲线的左、右焦点,点在双曲线上,且,则( )A. 1B. 3C. 1或9D. 3或7【答案】C【解析】分析:由双曲线的方程,渐近线的方程求出,由双曲线的定义求出即可.详解:由双曲线的方程,渐近线方程可得,因为,所以,所以,由双曲线的定义可得,所以或,故选C.点睛:本题考查了双曲线的定义和双曲线的标准方程,以及双曲线的简单的几何性质的应用,其中由双曲线的方程、渐近线的方程求出的解题的关键.7. 执行如图所示的程序框图,若输出的值为6,且判断框内填入的条件是,则的取值范围是( )A. B. C. D.【答案】C【解析】分析:程序运行的,根据输出的值,从而可得判断框的条件.详解:由程序框图知,程序运行的,当,所以,因为输出的,所以,所以实数满足,故选C.点睛:利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8. 党的十九打报告指出,建设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展.现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教.将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校男女毕业至少安排一名的概率为( )A. B. C. D.【答案】C【解析】分析:根据题意求得基本事件的总数为种,每所学校毕业至少安排一名包含的基本事件的个数为种,利用古典概型的概率计算公式,即可求解.详解:由题意,将这六名毕业生全部进行安排,每所学校至少名毕业生,基本事件的总数为种,每所学校那女毕业生至少安排一名共有:一是其中一个学校安排一女一男,另一个学校有一女三男,有种,二是其中一个学校安排一女二男,另一个学校有一女两男,有种,共有种,所以概率为,故选C.点睛:本题考查了古典概型及概率的计算,排列组合的综合应用,对于排列组合问题:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).9. 已知,则( )A. B. C. D.【答案】B【解析】分析:设,得,利用导数研究其单调性可得的大小关系,又由,即可得出结论.详解:设,则,可得函数在内单调递增,所以,即,可化为,即,又,所以,故选B.点睛:本题考查了指数函数与对数函数基本性质的应用,利用导数研究函数的单调性,利用函数单调性比较大小是解答的关键,着重考查了学生的推理与运算能力,属于中档试题.10. 锐角中,角所对的边为的面积,给出以下结论:①;②;③;④有最小值8.其中正确结论的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】分析:由三角形的面积公式得,结合正弦定理证得①正确;把①中的用表示,化弦为切证得②正确;由,展开两角和的正切证得③正确;由,结合②转化为关于的代数式,换元即可求得最值,证得④正确.详解:由,得,又,得,故①正确;由,得,两边同时除以,可得,故②正确;由且,所以,整理移项得,故③正确;由,,且都是正数,得,设,则,,当且仅当,即时取“=”,此时,,所以的最小值是,故④正确,故选D.点睛:本题考查了命题的真假判定与应用,其中解答中涉及到两家和与差的正切函数,以及基本不等式的应用等知识点的综合运用,着重考查了学生的推理与运算能力,属于中等试题.11. 已知正三棱锥的顶点均在球的球面上,过侧棱及球心的平面截三棱锥及球面所得截面如图所示,已知三棱锥的体积为,则球的表面积为( )A. B. C. D.【答案】A【解析】分析:根据图示,这个截面三角图形和球的体积,求得正三棱锥的底面边长,进而求得球的半径,求的球的表面积.详解:设正三棱锥的底面边长为,外接球的半径为,因为正三棱锥的底面为正三角形,边长为,则,则,所以,即,又因为三棱锥的体积为,所以,解得,所以球的表面积为,故选A.点睛:本题考查了空间想象能力,关键是抓住这个截面三角形由原正三棱锥的一条棱,一个侧面三角形的中线和侧面是正三角形的中线围成,正三棱锥的外接球的球心在截面正三角形的重心上,着重考查学生分析问题和解答问题的能力.12. 设,其中,则的最小值为( )A. B. C. D.【答案】C【解析】分析:由表示两点与点的距离,而点在抛物线上,抛物线的焦点,准线为,则表示与的距离和与准线的距离的和加上1,由抛物线的定义可得表示与的距离和加上1,画出图象,当三点共线时,可求得最小值.详解:由题意,,由表示两点与点的距离,而点在抛物线上,抛物线的焦点,准线为,则表示与的距离和与准线的距离的和加上1,由抛物线的定义可得表示与的距离和加上1,由图象可知三点共线时,且为曲线的垂线,此时取得最小值,即为切点,设,由,可得,设,则递增,且,可得切点,即有,则的最小值为,故选C.点睛:本题考查直线与抛物线的综合应用问题,解答中注意运用两点间的距离公式和抛物线的定义,以及三点共线等知识综合运用,着重考查了转化与化归思想,以及推理与运算能力,属于中档试题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在的展开式中,常数项为__________.(用数字填写答案)【答案】112【解析】分析:利用二项展开式的通项公式求出展开式的通项,令的指数为,求出,将的值代入通项求出展开式的常数项.详解:二项式展开式的通项为,令,解得,所以常数项为.点睛:本题主要考查二项式定理的通项与系数,属于简单题,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.14. 已知向量与的夹角为30°,,则的最大值为_________.【答案】【解析】分析:由题意,利用基本不等式和向量的运算,求的,进而可求得的最大值.详解:由题意,则,所以,即,又因为,即,所以,所以,当且仅当时,等号成立,所以.点睛:平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.15. 已知函数在区间上恰有三个零点,则的取值范围是__________.【答案】【解析】分析:函数在区间上恰有三个零点,转化为和函数在区间上恰有三个交点,利用余弦函数的图象即可求解.详解:由题意函数在区间上恰有三个零点,转化为和函数在区间上恰有三个交点,当时,,当时,,根据余弦函数的图象,要使的图象有三个交点,则,解得,点睛:本题主要考查了三角函数的图象与性质,以及函数的零点问题的判定问题,属于中档试题,对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.16. 点是直线上的动点,是圆的两条切线,是切点,则三角形面积的最小值为__________.【答案】【解析】分析:由圆的方程求得圆心坐标和半径,在由是圆的两条切线,利用点到直线的距离公式,进而求解三角形面积的最小值.详解:由圆的大风车,可得圆心,半径,则圆心到直线的距离为,设,则,则,所以,所以函数在单调递增,所以.点睛:本题题考查直线与圆的位置关系的应用,解答的关键在于根据题意得到面积的表示,进而求解函数的最值,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列,其中,且满足,.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】分析:由题意,化简得,且,即可证得数列是首项为4,公比为2的等比数列;由(1)得,进而求得,利用裂项法,即可求解数列的和.详解:(1),又,所以是首项为4,公比为2的等比数列(2)由(1)知,①又又,所以为常数数列,)②联立①②得:,所以点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18. 如图,在平行四边形中,°,四边形是矩形,,平面平面.(1)若,求证:;(2)若二面角的正弦值为,求的值.【答案】(1)见解析;(2)或.【解析】分析:连接,在中,利用余弦定理和勾股定理,得到,再由四边形为矩形,得到,进而得到,,利用线面垂直的判定定理证得面,即可证得;(2)以为原点,所在的直线为轴,建立空间直角坐标系,求解平面和平面的法向量,利用向量的夹角公式,即可求解二面角的余弦值,即可求解的值.详解:(1)连接,在中,由,由余弦定理易得,又,则;同理由余弦定理易得:,由四边形是矩形,则,又平面平面,所以平面,所以,同理,由勾股定理易求得,,显然,故;由,所以面,所以,所以面,所以;(2)以点为原点,所在的直线分别为轴,轴,过点与平面垂直的直线轴建立空间直角坐标系,则设平面的法向量为,则,即,取,则,即,同理可求得平面的法向量为设二面角的平面角为,则则,即,解之得或,又,所以或点睛:本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立体几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19. 随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用表示所选3人中使用支付宝用户的人数,求的分布列与数学期望.附:,其中.【答案】(1)见解析;(2)见解析.【解析】分析:(1)列出列联表,利用公式求得,即可作出判断;(2)把频率作为概率,从所有无现金支付用户(人数最多)中抽取人,可以近似看作次独立重复实验,所以的取值依次为,且服从二项分布,即可求解分布列和数学期望.详解:(1)列联表补充如下,故有99%的把握认为支付宝用户与年龄有关系.(2)把频率作为概率,从所有无现金支付用户(人数最多)中抽取3人,可以近似看作3次独立重复实验,所以的取值依次为0,1,2,3,且服从二项分布所以的分布列为点睛:本题考查了独立性检验思想的应用,离散型随机变量的分布列与数学期望,求解离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些,当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.20. 已知椭圆的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时,内切圆的半径为.(1)求椭圆的方程;(2)已知直线与椭圆相较于两点,且,当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】(1) 椭圆的方程为;(2)见解析.【解析】分析:(1)依据题意,得到,又由,求得的值,即可得到椭圆的标准方程;(2)直线与椭圆的方程的联立,求得,由,代入整理,求得的值,再由点到直线的距离公式,设,即可求得距离的最大值,得到结论.详解:(1)依题意:,则,即又,联立解得:,故,所以椭圆的方程为(2)设,联立直线和椭圆的方程得:,当时有:由得:,即,整理得:,所以,化简整理得:,代入得:,解之得:或,点到直线的距离,设,易得或,则,当时;当时,,若,则;若,则,当时,综上所述:,故点到直线的距离没有最大值.点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 已知函数.(1)当时,讨论函数的单调性;(2)求函数的极值.【答案】(1)时,递减;时,递增;(2)见解析.【解析】分析:(1)求得函数,代入,得,设,得,得到函数的单调性,进而求得函数的单调性;(2)由(1),得到,由在区间递减,在递增,得到时,分类讨论即可求得的极值.详解:(1)函数的定义域为,其导数为.当时,设,则,显然时递增;时,递减,故,于是,所以时,递减;时,递增;(2)由(1)知,函数在递增,在递减,所以又当时,,讨论:①当时,,此时:因为时,递增;时,递减;所以,无极小值;②当时,,此时:因为时,递减;时,递增;所以,无极大值;③当时,又在递增,所以在上有唯一零点,且,易证:时,,所以,所以又在递减,所以在上有唯一零点,且,故:当时,递减;当,递增;当时,递减;当,递增;所以,,,.点睛:本题主要考查导数在函数中的应用,着重考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22. 在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程;(2)已知射线与曲线分别交于点(异于原点),当时,求的取值范围.【答案】(1)曲线的极坐标方程为;(2).【解析】分析:(1)先把曲线的参数方程化为直角坐标方程,再根据极坐标与直角坐标的互化公式,即可得到的极坐标方程;(2)由(1)得,即可得到的取值范围.详解:(1)因为,所以曲线的普通方程为:,由,得曲线的极坐标方程,对于曲线,,则曲线的极坐标方程为(2)由(1)得,,因为,则点睛:本题考查了极坐标方程的求法及应用.重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.23. 已知函数的最小值为3.(1)求的值;(2)若,求证:.【答案】(1);(2)见解析.【解析】分析:由绝对值三角不等式,得,即,进而得到的值;(2)由(1),得,进而利用基本不等式,即可作出证明.详解:(1)解:所以,即(2)由,则原式等价为:,即,而,故原不等式成立点睛:本题考查了绝对值不等式的性质,同时考查了基本不等式的应用,绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
湖北省武汉市高三毕业生四月调研数学(理)试题含答案
武汉市2018届高中毕业生四月调研测试理 科 数 学武汉市教育科学研究院命制2018.4.19本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4 选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5 考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 复数5i-2的共轭复数是A 2+iB -2+iC -2-iD 2-i2 已知集合M={x|x2=1},N={x|ax=1},若N M,则实数a的取值集合为A {1}B {-1,1}C {1,0}D {1,-1,0}3 执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S属于A [-4,2]B [-2,2]C [-2,4]D [-4,0]4 某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为槡A 3槡B 6槡C 23槡D 265 一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为A 25B 310C 15D 1106 若实数a,b满足a>b>1,m=loga(logab),n=(logab)2,l=logab2,则m,n,l的大小关系为A m>l>nB l>n>mC n>l>mD l>m>n7 已知直线y=kx-1与双曲线x2-y2=4的右支有两个交点,则k的取值范围为A (0,槡52)B [1,槡52]C (-槡52,槡52)D (1,槡52)8 在△ABC中,角A、B、C的对应边分别为a,b,c,条件p:a≤b+c2,条件q:A≤B+C2,那么条件p是条件q成立的A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件9 在(x+1x-1)6的展开式中,含x5项的系数为A 6B -6C 24D -2410 若x,y满足|x-1|+2|y+1|≤2,则M=2x2+y2-2x的最小值为A -2B 211C 4D -4911 函数f(x)=2sin(wx+π3)(w>0)的图象在[0,1]上恰有两个最大值点,则w的取值范围为A [2π,4π]B [2π,9π2)C [13π6,25π6)D [2π,25π6)12 过点P(2,-1)作抛物线x2=4y的两条切线,切点分别为A,B,PA,PB分别交x轴于E,F两点,O为坐标原点,则△PEF与△OAB的面积之比为A 槡32B 槡33C 12D 34二、填空题:本大题共4小题,每小题5分,共20分。
2018年4月武汉市九年级数学调考(附答案)
2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2018年4月17日14:30~16:30一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃D .7℃2.若代数式41+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果( )A .1B .x 2C .x 4D .5x 2 4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.49 0.510.50A .0.7B .0.6C .0.5D .0.4 5.计算(a +2)(a -3)的结果是( ) A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体的三视图如左图所示,则该几何体是( )8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) 职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人)532x0.89.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( )A .552 B .5102 C .556 D .5106 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2)32(-+的结果是__________ 12.计算1112+--x x x 的结果是__________13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE19.(本题8分)学校食堂提供A 、B 、C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图 (1) 一共抽查了_________人(2) 购买A 套餐人数对应的圆心角的度数是_________(3) 如果A 、B 、C 套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元20.(本题 月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0.20 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费(1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB 、AD 、DC 相切,切点分别为E 、G 、F ,其中E 为边AB 的中点 (1) 求证:BC 与⊙O 相切(2) 如图2,若AD =3,BC =6,求EF 的长22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD (1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标. (2) 如图2,若点C 、D 在双曲线xky(x >0)上,且点D 的横坐标是3,求k 的值; (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB (1) 求证:∠BAC =∠CBD(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD② 若BP =2,PD =1,锐角∠BCD 的正弦值为33,直接写出BF 的长24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2018年4月17日14:30~16:30 武汉巨人童威编辑 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃D .7℃2.若代数式41+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果( )A .1B .x 2C .x 4D .5x 2 4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.49 0.510.50A .0.7B .0.6C .0.5D .0.4 5.计算(a +2)(a -3)的结果是( ) A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体的三视图如左图所示,则该几何体是( )8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) A .2、4B .1.8、1.6C .2、1.6D .1.6、1.89.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( )A .552 B .5102 C .556 D .5106 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2)32(-+的结果是__________ 12.计算1112+--x x x的结果是__________ 13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB16.已知二次函数y =x 2+2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE19.(本题8分)学校食堂提供A 、B 、C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图 (1) 一共抽查了_________人(2) 购买A 套餐人数对应的圆心角的度数是_________(3) 如果A 、B 、C 套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元20.(本题 月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0.20 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费(1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB 、AD 、DC 相切,切点分别为E 、G 、F ,其中E 为边AB 的中点 (1) 求证:BC 与⊙O 相切(2) 如图2,若AD =3,BC =6,求EF 的长22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD (1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标 (2) 如图2,若点C 、D 在双曲线xky(x >0)上,且点D 的横坐标是3,求k 的值 (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB (1) 求证:∠BAC =∠CBD(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD② 若BP =2,PD =1,锐角∠BCD 的正弦值为33,直接写出BF 的长24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标2017-2018学年度武汉市部分学校九年级调研测试数学参考答案及评分标准1112、21 1x-;13、13;14、105;15、83或163;16、14.三、解答题17、解:①+②,得5x=10x=2…………………4分把x=2代入①,得4+y=4y=0…………………7分∴这个方程组的解是2xy=⎧⎨=⎩…………………8分18、证明:∵BE=CF,∴BC=EF…………………2分在△ABC和△DEF中,∵AC DF AB DE CB FE=⎧⎪=⎨⎪=⎩∴△ABC≌△DEF…………………5分∴∠ABC=∠DEF…………………6分∴AB∥DE…………………8分19、⑴100;…………………2分⑵108°;………………4分⑶解:根据样本信息,可知订A类套餐的人数占30%,订B类套餐的人数占45%,、估计食堂当天中餐的总销售额大约是:1000×(0.3×5+0.48×12+0.22×18)=11220(元)答:食堂当天中餐的总销售额大约是11220元.…………………8分20、解:设主叫时间为x min⑴当x≤200时,方式一收费低于方式二收费;当200<x≤400时,依题意,得0.2(x-200)+58=88 ……………………2分解这个方程,得x=350 ……………………………3分答:当主叫时间为350min时,两种方式收费相同…………………4分⑵当x>400时,方式一收费:0.2(x-200)+58=0.2x+18……………5分方式二收费:0.25(x-400)+88=0.25x-12……………6分计算两种收费的差,得0.2x+18-(0.25x-12)=-0.05x+30当x=600时,-0.05x+30=0;当x>600时,-0.05x+30<0;当x>600时,-0.05x+30>0.所以,当主叫时间大于600min时,选择方式一更省钱;当主叫时间等于600min时,选择两种方式收费相同;当主叫时间少于600min时,选择方式二更省钱;21、⑴证明:连接OE,OG,过点O作OH⊥BC于点H,则∠BHO=90°∵AB⊥BC,∴∠B=90°∵AD∥BC,∠A=90°∵AB、AD与⊙O相切∴∠AEO=∠AGO=90°x yD C O B A y x O N M A B C D∴四边形AEOG 为矩形 ……………………2分 ∴OG =AE∵AE =BE , ∴BE =OG∵∠BEO =∠B =∠BHO =90° ∴四边形EBHO 为矩形 ∴OH =BE , ∴OH =OG∴BC 与⊙O 相切 ……………………4分⑵过点D 作DP ⊥BC 于点P ,延长BA 、CD 相交于点N ,连接ON 交EF 于点M . 设⊙O 的半径为r ,则DF =DG =3-r ,PD =AB =2r ,PC =3,CF =CH =6-r , 在Rt △DPC 中,(3-r +6-r )2=(2r )2+9,解得 r =2 ……………5分 ∴AB =4,AE =OE =2∵△NAD ∽△NBC ,BC =2AD ,NB =2AB =8 ∴NE =6∵NE 、NF 与⊙O 相切,∴NE =NF ,NO 平分∠ENF ,NO 垂直平分EF在Rt △NEO 中,ON 2226 10 ……………………6分 因为EM ⊥ON ,∴∠OEM =∠ONE因为tan ∠ONE =OE NE =13, tan ∠OEM =OM EM =13,tan ∠EMN =EM NM =13,即EM =3OM ,NM =3EM =9OM ,EM =310ON 3105所以,EF =2EM 6105……………………8分22.解:(1)图如下:∵点C (3,7),点D (7,4). …………………………………3分(2)以AB 为边作正方形ABCD , 过点C 作CM ⊥y 轴于M ,过点D 作DN ⊥x 轴于N . 则△BCM ≌△ABO ≌△DAN , ∴CM =BO =AN ,BM =AO =DN , ∴C (q ,q +p ),D (q +p ,p ). ………………………………5分 ∵点C ,D 在同一双曲线上,∴q (q +p )=p (q +p )=k .∵点D 的横坐标是3,∴q +p =3,∴p =q =32.∴k =92 ………………………………7分同理 k =-92. ………………………………8分(3)453 或457 . ………………………………10分23、解:(1)∵CD 2=DP ·DB ,∴DC DP =DBDC.∵∠PDC =∠CDB ,∴△PDC ∽△CDB . ………………………2分∴∠PCD =∠CBD .∵AB ∥CD ,∴∠PCD =∠CAB . ∴∠PBC =∠BAC .∴∠BCP =∠ACB . ……………………………………4分(2)延长EP 交BC 于点N .M P E F D G O C NB∵EP∥DC,∴△APE∽△ACD.∴EPDC=APAC.同理,PNDC=BP BD.∵AB∥CD,∴BPBD=AP AC.∴EP=PN.……………………………………6分∵EF⊥BC,∴PF=PN∴∠PFN=∠PNF∵PN∥DC∴∠PNF=∠DCB∵△PDC∽△CDB∴∠CPD=∠DCB∴∠PFC=∠CPD………………………………8分②3………………………………10分24、⑴∵抛物线经过A(1,0),B(3,0)两点∴a+b+0,9a+3b+0解得a b=-∴抛物线的解析式为:y2-+………………3分⑵连接BC,延长CD交x轴于点M∵B(3,0),C(∴OC=OB=3∴tan∠OBC∴∠ABC=60°∵∠ACD=60°,∴∠ABC=∠ACD∵∠CAM=∠BAC,∴△ACB∽△AMC…………………………4分∴AC2=AB AM∵A(1,0),∴OA=1在Rt△OAC中,AC2=OA2+OC2=28∵AB=OB-OA=2,∴AM=14∴OM=15,∴M(15,0)…………………………5分设直线CM的解析式为y=kx+∴15k+0,解得k∴直线CM的解析式为y x+与抛物线解析式y2-+解得x=195或x=0(舍去)∴点D的横坐标是195……………7分⑶过点P作PQ⊥直线DE,垂足为Q,抛物线的对称轴与x轴和直线y为点H、M,则M(23AD的解析式为y=mx+n ∵点A(1,0),∴m+n=0,即m=-n,则点P的坐标为(2,m)联立y=mx-m和y32-3+3得32-(3m)x+3m=0(x-1)3-3m)=0∴x1=1,x2=33m………………9分∴点D的横坐标是33∴ME 3+1在Rt△PME中,PM=m3ME 3+1,∴tan∠PEM3∴∠PEM=60°∴∠PEQ=30°∴PE=2PQ∵PE2,∴PQ2∴∠PQD=45°…………………………11分∵PQ∥x轴,所以直线AP与x轴的夹角为45°,则△PHA为等腰直角三角形∴PH=AH=1∴点P的坐标是P(2,1)…………………………12分。
2018年武汉中等职业学校技能高考四月调考
2018年武汉市中等职业学校技能高考四月调考数学部分参考答案及评分标准五、填空题(本大题共4小题,每小题6分,共24分) 25.(3,4) 26.1827.1228.4π六、解答题(本大题共3小题,每小题12分,共36分) 29. (Ⅰ)解:∵(sin )4a p -=∴sin 4a -=即sin 4a =- ……(1分)又,302pa 骣÷çÎ÷ç÷ç桫 ∴,32p a p 骣÷çÎ÷ç÷ç桫 ……(2分) 由平方和关系可知1cos 4α===- ……(3分) 又sin cos tan 1a a a --sin cos 1cos sin cos 4cos αααααα-===-- ……(5分) (Ⅱ)解:Q22sin ()cos()tan(5)tan(2)sin(4)sin (cos )tan tan (sin )sin cos a a p a p a p p a a a aa a a a-??-???=?=? ……(2分)……(3分)又1sin()cos(3)sin cos ,3p a a p a a +--=-+=- ……(4分) 两边平方得112sin cos ,9a a -=∴4sin cos .9a a = ……(6分)故原式4sin cos .9a a ==……(7分) . 30.(Ⅰ)解:在方程360x y -+=中令0y =,则2x =-,故直线360x y -+=与x 轴的交点为A (-2,0)令0x =,则 6y =,故直线360x y -+=与y 轴的交点为B (0,6) ……(1分)由中点公式可得, AB 中点M 的坐标为(-1,3) ……(2分) (Ⅱ)解:设直线1:4310l x y +-=的斜率为1k ,则143k =- ……(3分)设直线l 的斜率为k ,∵1l l ⊥故11k k ⋅=- 则34k = ……(4分) 又直线l 过点M (-1,3),故其方程为 ()3314y x -=+ ……(5分) 即 34150x y -+= ……(6分)(Ⅲ)解:将22240x y x y m +--+=化成圆的标准方程,得()()22125x y m -+-=- ……(7分)因此,圆心为点C (1,2),半径)5r m < ……(8分) ∵直线l 与圆C 相切,∴圆心C 到直线l 的距离d r ==……(10分)2=,故1m = ……(12分) 31.(Ⅰ)解:设此等差数列的三个正数分别为,,a d a a d -+,其中d 为公差, ……(1分) ① ② ……(3分)()()()()()2155213a d a a d a a d a d -+++=⎧⎪⎨+=-+++⎪⎩由①得5a =, ……(4分) 代入②则有()()210718d d =-+即211260d d +-=得213d d ==-或 ……(5分)235,7d =当时,这三个数分别为,-135,-8d =当时,这三个数分别为18,,不合题意,舍去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年度武汉市部分学校九年级四月调研测试
数学试卷(及标准答案)
考试时间:2018年4月17日14:30~16:30
一、选择题(共10小题,每小题3分,共30分)
1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃ D .7℃
2.若代数式
4
1
x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4
3.计算3x 2-2x 2的结果( ) A .1
B .x 2
C .x 4
D .5x 2
4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )
投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率
0.40
0.70
0.60
0.52
0.52
0.49
0.51
0.50 A .0.7
B .0.6
C .0.5
D .0.4
5.计算(a +2)(a -3)的结果是( ) A .a 2-6
B .a 2+6
C .a 2-a -6
D .a 2+a -6
6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5)
B .(-2,-5)
C .(2,-5)
D .(5,-2)
7.一个几何体的三视图如左图所示,则该几何体是( )
8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) A .2、4
B .1.8、1.6
C .2、1.6
D .1.6、1.8 职务 经理 副经理 A 类职员
B 类职员
C 类职员
人数
1 2 2 4 1 月工资/(万元/人)
5
3
2
x
0.8
9.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )
A .7种
B .8种
C .9种
D .10种
10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( ) A .552 B .510
2
C .5
5
6 D .
5
10
6
二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:2)32(-+的结果是__________ 12.计算
1
1
1
2+-
-x x x 的结果是__________ 13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________ 14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°
15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB
16.已知二次函数y =x 2+2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组⎩
⎨⎧=-=+634
2y x y x
18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE
19.(本题8分)学校食堂提供A、B、C三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图
订购各类套餐人数条形统计图订购各类套餐人数所占百分比扇形统计图
(1) 一共抽查了_________人
(2) 购买A套餐人数对应的圆心角的度数是_________
(3) 如果A、B、C套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元
20.(本题8分)下表中有两种移动电话计费方式
月使用费/元主叫限定时间/min主叫超时费/(元/min)方式一58 200 0.20
方式二88 400 0.25
其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费
(1) 如果每月主叫时间不超过400 min,当主叫时间为多少min时,两种方式收费相同?
(2) 如果每月主叫时间超过400 min,选择哪种方式更省钱?
21.(本题8分)如图,在四边形ABCD中,AD∥BC,AB⊥BC,⊙O分别与边AB、AD、DC相切,切点分别为E、G、F,其中E为边AB的中点
(1) 求证:BC与⊙O相切
(2) 如图2,若AD=3,BC=6,求EF的长
22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD
(1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标 (2) 如图2,若点C 、D 在双曲线x
k
y
(x >0)上,且点D 的横坐标是3,求k 的值 (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长
23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB (1) 求证:∠BAC =∠CBD
(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD
② 若BP =2,PD =1,锐角∠BCD 的正弦值为
3
3
,直接写出BF 的长
24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式
(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标
(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标
参考答案。