八年级数学下册四边形测试题及详细答案(新人教版)
人教版八年级数学下册 平行四边形 测试卷 含答案
人教版八年级数学下册平行四边形测试卷一、选择题1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直 D.对角线互相垂直平分4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB =cm.三、解答题15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.参考答案1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A 不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选B.【点评】考查菱形和矩形的基本性质.2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个【考点】平行四边形的判定.【专题】选择题.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分【考点】菱形的判定.【专题】选择题.【分析】根据菱形的判定方法:对角线互相垂直平分来判断即可.【解答】解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.【点评】本题考查菱形对角线互相垂直平分的判定.4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角【考点】正方形的性质;菱形的性质;矩形的性质.【专题】选择题.【分析】根据正方形、菱形、矩形对角线的性质,分析求解即可求得答案.【解答】解:∵正方形的对角线互相平分,互相垂直,相等且平分一组对角,菱形的对角线互相平分,互相垂直且平分一组对角,矩形的对角线互相平分且相等,∴正方形、菱形、矩形都具有的性质是:对角线互相平分.故选B.【点评】此题考查了正方形、菱形、矩形的性质.此题比较简单,注意熟记正方形、菱形、矩形对角线的性质是解此题的关键.5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形 D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【专题】选择题.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形【考点】矩形的判定;菱形的判定;正方形的判定.【专题】选择题.【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【解答】解:A、正确,有三个角是直角的四边形是矩形是矩形的判定定理;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、正确,对角线互相垂直的矩形是正方形;D、正确,对角线互相垂直的平行四边形是菱形.故选B.【点评】考查了对四边形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【考点】矩形的性质;三角形内角和定理.【专题】选择题.【分析】本题首先根据∠ADE:∠EDC=3:2可推出∠ADE以及∠EDC的度数,然后求出△ODC各角的度数便可求出∠BDE.【解答】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°﹣36°=54°,根据矩形的性质可得∠DOC=180°﹣2×54°=72°所以∠BDE=180°﹣∠DOC﹣∠DEO=18°故选B.【点评】本题考查的是三角形内角和定理以及矩形的性质,难度一般.8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC 的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:如图∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.【考点】菱形的性质.【专题】填空题.【分析】根据菱形的性质利用勾股定理可求得菱形的边长,根据面积公式可求得菱形的面积.【解答】解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.【点评】本题考查的是菱形的性质以及其面积的计算方法的运用.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.【考点】三角形中位线定理;梯形中位线定理.【专题】填空题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出EF的长,再利用梯形的中位线等于两底和的一半求出MN的长度.【解答】解:∵EF是△ABC的中位线,BC=8cm,∴EF=BC=×8=4cm,∵M、N分别是EB、CF的中点,∴MN=(EF+BC)=(4+8)=6cm.故答案为4,6.【点评】本题主要利用三角形的中位线定理和梯形的中位线定理求解,熟练掌握定理是解题的关键.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.【考点】矩形的性质.【专题】填空题.【分析】根据矩形的性质得出∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,求出AO=BO=4cm,得出△AOB是等边三角形,推出AB=AO=4cm,在Rt△ABC中,由勾股定理求出BC即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,∵AC=BD=8cm,∴AO=BO=4cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4cm,在Rt△ABC中,由勾股定理得:BC===4,即矩形的边长是4cm,4cm,4cm,4cm,故答案为:4;4.【点评】本题考查了矩形性质,等边三角形的性质和判定,勾股定理的应用,注意:矩形的对角线互相平分且相等.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.【考点】矩形的判定;平行四边形的性质;菱形的判定.【专题】填空题.【分析】根据矩形是对角线相等的平行四边形,菱形是邻边相等的平行四边形可得.【解答】解:在▱ABCD中,若添加一个条件AC=BD,则四边形ABCD是矩形;若添加一个条件AB=BC,则四边形ABCD是菱形.故答案为:AC=BD;AB=BC.【点评】本题主要考查的是矩形和菱形的判定定理.但需要注意的是本题的知识点是关于平行四边形、矩形、菱形之间的关系.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB= cm.【考点】平行四边形的判定.【专题】填空题.【分析】过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【解答】解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.【点评】此题考查平行四边形的判定及梯形中常见的辅助线的作法.15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】解答题.【分析】由平行四边形的性质得AD=CB,∠DAE=∠BCF,再由已知条件,可得△ADE≌△CBF,进而得出结论.【解答】证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题主要考查平行四边形的性质及全等三角形的判定问题,应熟练掌握.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【专题】解答题.【分析】(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=AC•BD=×2×2=2(cm2).【点评】此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.【考点】矩形的性质.【专题】解答题.【分析】(1)AE⊥BD,∠1+∠ABD=∠ADB+∠ABD,得出∠ACB=∠ADB=∠2=∠1=30°,可知△AOB为等边三角形,继而求出∠BOC的度数;(2)由(1)知,△DOC≌△AOB,OD=OC=CD=OB,继而求出△DOC的周长.【解答】解:(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=18.【点评】本题考查矩形的性质,难度适中,解题关键是根据矩形的性质求出∠1=∠2=∠ACB=30°.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】解答题.【分析】由题意可得四边形AEDF是平行四边形,得DE=AF再由等腰三角形的性质及平行线可得DF=CF,进而可求出其结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴AC=AF+FC=DE+DF.【点评】本题主要考查平行四边形的判定及性质以及等腰三角形的性质问题,能够熟练求解.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.【考点】菱形的性质;平行四边形的判定与性质.【专题】解答题.【分析】由菱形的性质可证AC⊥BD,又已知EF⊥AC,所以AG=BG,GE=BD,AD∥BC,可证四边形EDBF为平行四边形,可证GE=GF,即证结论.【解答】证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,∴四边形AEBF为平行四边形,即AB与EF互相平分.【点评】本题是简单的推理证明题,主要考查菱形的性质,同时综合利用平行四边形的判定方法及中位线的性质.。
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
人教版初二数学8年级下册 第18章(平行四边形)单元测试题(含答案)
人教版八年级数学下册 第十八章 平行四边形 单元测试题一、选择题(30分)1.甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测,你认为最有说服力的是( )A .甲量得窗框的一组邻边相等B .乙量得窗框两组对边分别相等C .丙量得窗框的对角线长相等D .丁量得窗框的两组对边分别相等且两条对角线也相等2.菱形ABCD 的边长为5,一条对角线长为6,则菱形面积为( )A .20B .24C .30D .483.平行四边形ABCD 中,若∠A =2∠B ,则∠C 的度数为( )A .120°B .60°C .30°D .15°4.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,H 为CD 边中点,正方形ABCD 的周长为8,则OH 的长为( )A .4B .3C .2D .15.如图,菱形ABCD 的面积为24cm 2,对角线BD 长6cm ,点O 为BD 的中点,过点A 作AE ⊥BC 交CB 的延长线于点E ,连接OE ,则线段OE 的长度是( )A .3cmB .4cmC .4.8cmD .5cm 6.如图,矩形中,,如果将该矩形沿对角线折叠,那么图中阴影部分的面积是22.5,则()ABCD 6AB =BD BED BC =A.8B.10C.12D.147.将图1所示的长方形纸片对折后得到图2,图2再对折后得到图3,沿图3中的虚线剪下并展开,所得的四边形是( )A.矩形B.菱形C.正方形D.梯形8.如图,为了测量池塘边A、B两地之间的距离,在线段AB的一侧取一点C,连接CA并延长至点D,连接CB并延长至点E,使A、B分别是CD、CE的中点,若DE=16m,则线段AB的长度是( )A.12m B.10m C.9m D.8m9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD10.如图,在平行四边形ABCD 中,,,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于的长为半径画弧,两弧相交于点N,射线CN 交BA 的延长线于点E ,则AE 的长是( )A .1B .2C .3D .4二、填空题(15分)11.已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .12.已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.13.如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则等于______.14.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.15.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.①;②;③.上述结论正确的是__________.4AB =5BC =12PQ PE PF +BG CE =CE BG ⊥120AME ∠=︒三、解答题(75分)16.如图,点O 是△ABC 外一点,连接OB 、OC ,线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,连接DE 、EF 、FG 、GD .(1)判断四边形DEFG 的形状,并说明理由;(2)若M 为EF 的中点,OM =2,∠OBC 和∠OCB 互余,求线段DG 的长.17. 如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1)求证:BD =EC .(2)当∠DAB =60°时,四边形BECD 为菱形吗?请说明理由.18.如图,四边形是平行四边形.求:(1)和的度数;(2)和的长度.19.如图,在矩形ABCD 中,已知AB =4,∠DBC =30°,求AC的长.ABCD ADC ∠BCD ∠AB BC20.如图,在中,点E ,H ,F ,G 分别在边上,,,与相交于点O ,图中共有多少个平行四边形?21.如图,A ,B 两地被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A ,B 间的距离:先在外选一点C ,然后步测出的中点M ,N ,并测出的长,如果M ,N 两点之间还有阻隔,你有什么解决办法?说明你的理由.22.如图,在平行四边形中,过点作于点,点在边上,且,连接、.(1)求证:四边形是矩形;(2)若平分,,,求的长.23.如图,在四边形ABCD 中,,,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作交AB 的延长线于点E.ABCD ,,,AB BC CD DA //AD EF //CD GH EFGH AB ,AC BCMN ABCD D DE AB ⊥E F CD FC A E =AFBF DEBF AF DAB ∠6FC =10DF =BF AB DC ∥AB AD =CE AB⊥(1)求证:四边形ABCD 是菱形;(2)若,,求CE 的长.【参考答案】1.D 2.B 3.A 4.D 5.B 6.C 7.B 8.D 9.B 10.A11.412.513.814.15.①②16.解:(1)四边形DEFG 是平行四边形,理由是:∵线段AB 、OB 、OC 、AC 的中点分别为D 、E 、F 、G ,∴EF ∥BC ,EF=BC ,DG ∥BC ,DG =BC ,∴EF ∥DG ,EF =DG ,∴四边形DEFG 是平行四边形;(2)∵∠OBC 和∠OCB 互余,∴∠OBC +∠OCB =90°,∴∠BOC =180°﹣90°=90°,∴∠EOF =90°,△EOF 为直角三角形,∵M 为EF 的中点,OM =2,∴EF =2OM =4,∵EF =DG ,∴DG =4.17.(1)证明:四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,又∵BE =AB ,∴BE =CD ,BE ∥CD ,∴四边形BECD 是平行四边形,∴BD =EC ;(2)解:结论:四边形BECD 是菱形.理由:∵四边形ABCD 是菱形,8AC =6BD =6+1212∴AD =AB ,∵∠DAB =60°,∴△ADB ,△DCB 都是等边三角形,∴DC =DB ,∵四边形BECD 是平行四边形,∴四边形BECD 是菱形.18.解:(1)∵四边形ABCD 是平行四边形∴ ,∵∴(2)∵四边形ABCD 是平行四边形∴∵∴19.解:∵四边形ABCD 是矩形,∴CD =AB =4,AC =BD ,∠BCD =90°,又∵∠DBC =30°,∴BD =2CD =2×4=8,∴AC =8.20.四边形是平行四边形,,,,平行四边形有:ABCD ,ABHG ,CDGH ,BCFE ,ADFE ,AGOE ,BEOH ,OFCH ,OGDF 共9个,共有9个平行四边形.21.解:用步测出CM ,CN 中点D 、E , 只要测量出DE 长便可求出AB ,∵点D 、E 分别为CM ,CN 的中点,∴DE =(三角形的中位线平行于第三边,并且等于第三边的一半),又∵点M ,N 分别为的中点,∴MN =(三角形的中位线平行于第三边,并且等于第三边的一半),∴AB =2MN =4DE .∴只要测量出DE 长便可求AB .=ADC B ∠∠180B BCD ∠+∠=56B =∠5618056124ADC BCD ∠=∠=-=,=,AB DC BC AD=25,30DC AD ==25,30AB BC == ABCD ∴//,//AB CD AD BC //AD EF //CD GH //,//AB GH BC EF∴∴ ∴12MN ,AC BC 12AB22.解:(1)证明:∵四边形是平行四边形,∴,,∵,∴,即,∴四边形是平行四边形,又∵,∴,∴平行四边形是矩形;(2)∵平分,∴,∵,∴,∴,∴,在中,,由勾股定理得:,由(1)得四边形是矩形,∴.23.(1)证明:∵,∴,∵AC 平分∠BAD ,∴,∴,∴,∵AB=AD ,∴,∵,ABCD //CD AB CD AB =FC A E =CD FC AB AE -=-DF BE =DEBF DE AB ⊥90DEB ∠=︒DEBF AF DAB ∠DAF BAF ∠=∠//CD AB DFA BAF ∠=∠DFA DAF ∠=∠10AD DF ==Rt AED △6AE FC ==8DE ===DEBF 8BF DE ==//AB DC OAB DCA ∠=∠OAB DAC ∠=∠DAC DCA ∠=∠CD AD =AB CD =//AB DC∴四边形ABCD 是平行四边形,又∵,∴四边形ABCD 是菱形;(2)∵四边形ABCD 是菱形,BD =6,AC =8,∴,,,∴,在中,根据勾股定理可知,,∴菱形的面积,∵,∴菱形面积,∴AB AD =118422OA OC AC ===⨯=BD AC ⊥116322OB OD BD ===⨯=90AOB ∠=︒Rt AOB△5AB ===11862422S AC BD ==⨯⨯= CE AB ⊥524S AB CE CE === 245CE =。
2022年人教版八年级数学下册第十八章-平行四边形综合测评试题(含答案解析)
人教版八年级数学下册第十八章-平行四边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.B.C.485D.2452、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.23、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE4、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A B.C.1cm D.2cm5、下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等6、ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm7、如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为()A.1 B C..2 D.8、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3)B.(8,2)C.(3,7)D.(5,3)9、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为()A.3 B.4 C.2.5 D.510、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是()A.2.5 B.6 C.6.5 D.13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF 的长为___.2、如图,在矩形ABCD中,AB=2,AD=E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.3、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.4、已知如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,若6BE =,8DF =,则EF =_________.5、如图,将矩形ABCD 折叠,使点C 与点A 重合,折痕为EF .若AF =5,BF =3,则AC 的长为 _____.三、解答题(5小题,每小题10分,共计50分)1、在△ABC 中,AB =AC =x ,BC =12,点D ,E 分别为BC ,AC 的中点,线段BE 的垂直平分线交边BC 于点F ,(1)当x =10时,求线段AD 的长.(2)x取何值时,点F与点D重合.(3)当DF=1时,求x2的值.2、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.3、如图,四边形ABCD是平行四边形,∠BAC=90°.(1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD 于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.4、如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,过点A作射线l∥BC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t>0),作∠PCB的平分线交射线l于点D,记点D 关于射线CP的对称点是点E,连接AE、PE、BP.(1)求证:PC=PD;(2)当△PBC是等腰三角形时,求t的值;(3)是否存在点P,使得△PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由.5、如图,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F,作EG∥AB交CB于点G.(1)求证:△CEF是等腰三角形;(2)求证:CF=BG;(3)若F是CG的中点,EF=1,求AB的长.---------参考答案-----------一、单选题1、D【解析】【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】解:∵四边形ABCD是菱形,∴CO=12AC=3,BO=12BD=4,AO⊥BO,∴BC,∴S菱形ABCD=16824 22BD AC⋅=⨯⨯=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=24245 BC=,故选:D.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.2、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.3、B【解析】【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.4、B【解析】【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB cm),∴BD=2OB=cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.5、D【解析】【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C 、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C 不符合题意;D 、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D 符合题意;故选:D .【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.6、C【解析】【分析】根据平行四边形的性质,可得AB =CD ,BC =AD ,然后设3cm,5cm AB x BC x == ,可得到()23532x x += ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,BC =AD ,∵AB :BC =3:5,∴可设3cm,5cm AB x BC x == ,∵ABCD 的周长为32cm ,∴()232AB BC += ,即()23532x x += ,解得:2x = ,∴6cm,10cm AB BC == .故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键.7、C【解析】【分析】根据题意连接BD ,过点E 作EF ⊥AC 于点F ,根据菱形的性质可以证明三角形ABD 是等边三角形,根据平移的性质可得AD ∥A ′E ,可得A E CA AD AC ''=,6A E 'A ′E ,再利用30度角所对直角边等于斜边的一半即可得出结论.【详解】解:如图,连接BD ,过点E 作EF ⊥AC 于点F ,∵四边形ABCD 是菱形,∴AD =AB ,BD ⊥AC ,∵∠BAD =60°,∴三角形ABD 是等边三角形,∵菱形ABCD 的边长为6cm ,∴AD =AB =BD =6cm ,∴AG =GC cm ),∴AC cm ),∵AA cm ),∴A ′C cm ),∵AD ∥A ′E , ∴A E CA AD AC''=,∴6A E '= ∴A ′E =4(cm ),∵∠EA ′F =∠DAC =12∠DAB =30°,∴EF =12A ′E =2(cm ).故选:C .【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性质.8、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D 点和C 点的纵坐标相等,再求出CD =AB =5,得到C 点横坐标,最后得到C 点的坐标.【详解】解:四边形ABCD为平行四边形。
人教版新课标八年级数学下册四边形综合测试题及答案
八年级数学下册四边形综合测试题(一)( 时间 45 分钟,共100 分)姓名: ___________班级:_____________得分:_______________一、选择题(每题 5 分,共 30 分)1、十二边形的内角和为() A.1080° B.1360°C、 1620° D 、 1800°2、能判断四边形ABCD 为平行四边形的题设是().( A ) AB∥ CD , AD=BC;(B)∠ A=∠ B,∠ C=∠D;(C)AB=CD,AD=BC;(D)AB=AD,CB=CD3、以下图案中既是轴对称图形又是中心对称图形的是().(A)(B)(C)(D)4、菱形 ABCD 的对角线长分别为6cm 和 8cm,则菱形的面积为()A.12,B.24C.36D.485.以下说法不正确的选项是()( A )对角线相等且相互均分的四边形是矩形;( B)对角线相互垂直均分的四边形是菱形; ( C)对角线垂直的菱形是正方形;(D )底边上的两角相等的梯形是等腰梯形6、如图 1,在平行四边形ABCD 中, CE ⊥ AB , E 为垂足.假如∠A 125o,则∠BCE()A. 55oB. 35oC. 25oD. 30o二、填空题(每题 5 分,共30 分)7、按序连接随意四边形各边中点所获得的四边形必定是_____.8、如图 2,矩形ABCD的对角线AC和BD订交于点O ,过点 O 的直线分别交 AD 和 BC 于点 E、F,AB 2,BC 3 ,则图中暗影部分的面积为.9、如图 3,若□ABCD与□EBCF对于BC所在直线对称,∠ABE= 90°,则∠F=°10、如图 4,把一张矩形纸片ABCD 沿 EF 折叠后,点 C,D 分别落在 C ,D 的地点上, EC 交 AD于点 G .则△EFG形状为12.如图 6, AC 是正方形ABCD 的对角线, AE 均分∠ BAC,EF⊥ AC 交 AC 于点 F,若 BE=2 ,则 CF 长为三、解答题(每题10 分,共 40 分)13、( 10 分)已知:如图7, E、 F 是平行四边行ABCD 的对角线AC 上的两点, AE=CF 。
八年级数学下册《平行四边形的性质》练习题及答案(人教版)
八年级数学下册《平行四边形的性质》练习题及答案(人教版) 一、单选题1.平行四边形四个顶点分别为O、A、B、C,已知O(0,0)、A(2,3)、B(5,3),且OC边在x 轴上,则点C的坐标为()A.(3,0)B.(5,0)C.(3,0)或(﹣3,0)D.(5,0)或(﹣5,0)2.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误..的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD3.如图在8×5的正方形网格中,AB,AC是经过格点的线段,如果能找到这样的格点M,使得S∠ACM=S∠ABM,这样的点M的个数是()A.1B.2C.3D.44.如图,在平行四边形 ABCD中,CE平分∠BCD交AD于点E.若∠B=46°,则∠AEC的大小为()A.110°B.113°C.125°D.134°5.如图,在平行四边形ABCD中,∠BDC=47°42′,依据尺规作图的痕迹,计算α的度数是()A.67°29′B.67°9′C.66°29′D.66°9′6.如图,在平面直角坐标系中,∠MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2)B.(-3,2)C.(-2,3)D.(2,3)7.如图:平行四边形ABCD的周长为24,A、B、D相交于点O, EO⊥BD交AD于点E,则△ABE 的周长为()A.8B.10C.12D.168.在□ABCD中,∠C、∠D的度数之比为3∠1,则∠A等于()A.45°B.50°C.135°D.130°9.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16B.14C.26D.2410.在∠ABCD中(如图),连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=()A.80°B.100°C.120°D.140°二、填空题11.如图,在平面直角坐标系中,AD∠BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P 是线段BC上一动点,当PB=时,以点P、A、D、E为顶点的四边形是平行四边形.12.在平面直角坐标系中,AB//x轴,点A(−1,2),AB=3,则点B的坐标为.13.如图,已知直角三角形ABC,∠A=90°,AB=4厘米,AC=3厘米,BC=5厘米,将△ABC沿AC方向平移1.5厘米,线段BC在平移过程中所形成图形的面积为平方厘米.14.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.15.如图,平行四边形ABCD的对角线AC,BD交于点O,三角形AOB是等边三角形,AB=4cm ,求平行四边形ABCD的面积.三、解答题16.如图,在平行四边形ABCD中,对角线AC,BD交于点O,EF过点O交AD于点E,交BC于点F.求证:OE=OF.17.如图,∠ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.18.在平行四边形ABCD中,E为CD的中点,连接BE并延长交AD的延长线于F.求证:AD= DF.19.如图,四边形ABCD是平行四边形,延长AB至点E.使BE = AB.连接DE交BC于点F.求证:CF = BF.20.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F在AC上,且AF=CE.求证:BE=DF.参考答案1.【答案】C2.【答案】D3.【答案】C4.【答案】B5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】C10.【答案】C11.【答案】1或1112.【答案】(2,2)或(-4,2)13.【答案】614.【答案】80°15.【答案】16√3cm 216.【答案】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC∴∠OAE =∠OCF ,∠OEA =∠OFC在△AOE 和△COF 中{∠OAE =∠OCF ∠OEA =∠OFC OA =OC∴△AOE ≅△COF(AAS)∴OE =OF .17.【答案】证明:∵四边形ABCD 是平行四边形,∴OA=OC ,AD∠BC ,∴∠OAE=∠OCF ,在∠OAE和∠OCF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴∠AOE∠∠COF (ASA ),∴OE=OF 18.【答案】证明: ∵ 平行四边形 ABCD ∴AD//BC , AD =BC∴∠C =∠FDE∵E 为 DC 的中点∴DE =CE在 △BCE 与 △FDE 中{∠C=∠FDE CE=DE∠BEC=∠FED∴△BCE≌△FDE∴BC=FD∴AD=DF.19.【答案】证明:∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴∠DCF=∠EBF,∠CDF=∠BEF∵BE=AB∴BE=CD∴△DCF≌△EBF∴CF=BF20.【答案】证明:∵四边形ABCD是平行四边形∴AB=CD∴∠BAE=∠DCF∵AF=CE∴AF−EF=CE−EF即AE=CF∴ΔCDF≌ΔABE∴BE=DF.。
人教版数学八年级下册:第十八章 平行四边形 专题练习(附答案)
第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。
人教版八年级数学下册第十八章平行四边形检测试题(附答案)
精品基础教育教学资料,仅供参考,需要可下载使用!第十八章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2019·十堰)矩形具有而平行四边形不一定具有的性质是CA .对边相等B .对角相等C .对角线相等D .对角线互相平分2.(株洲中考)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,E 是BC 的中点,以下说法错误的是DA .OE =12 DCB .OA =OC C .∠BOE =∠OBAD .∠OBE =∠OCE 第2题图 第3题图 第6题图3.如图,矩形ABCD 的对角线AC =8 cm ,∠AOD =120°,则AB 的长为DA .3 cmB .2 cmC .23 cmD .4 cm4.(2019·泸州)四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是BA .AD ∥BCB .OA =OC ,OB =OD C .AD ∥BC ,AB =DC D .AC ⊥BD5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是CA .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形6.(2019·赤峰)如图,菱形ABCD 周长为20,对角线AC ,BD 相交于点O ,E 是CD 的中点,则OE 的长是AA .2.5B .3C .4D .57.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为CA .8B .12C .16D .328.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB ′=60°,则矩形ABCD 的面积是DA .12B .24C .123D .163第8题图 第9题图 第10题图9.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为CA .1B .2C .4-22D .32 -410.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F ,将△DEF 沿EF 折叠,点D 恰好落在BE 上点M 处,延长BC ,EF 交于点N ,有下列四个结论:①DF =CF ;②BF ⊥EN ;③△BEN 是等边三角形;④S △BEF =3S △DEF ,其中正确的结论是BA .①②③B .①②④C .②③④D .①②③④二、填空题(每小题3分,共15分)11.(2019·长沙)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第11题图 第12题图 第13题图第14题图12.(江西中考)如图,在▱ABCD 中,∠C =40°,过点D 作CB 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为50°.13.(2019·湘潭)如图,在四边形ABCD 中,若AB =CD ,则添加一个条件AD =BC ,能得到平行四边形ABCD .(不添加辅助线,任意添加一个符合题意的条件即可)14.如图,菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是5.15.(2019·内江)如图,点A ,B ,C 在同一直线上,且AB =23AC ,点D ,E 分别是AB ,BC 的中点,分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作S 1,S 2,S 3,若S 1=5 ,则S 2+S 3=354. 三、解答题(共75分)16.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF .(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形 (2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm17.(9分)(2019·柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:连接AC ,如图,在△ABC 和△CDA 中,⎩⎪⎨⎪⎧AB =CD CB =AD AC =CA,∴△ABC ≌△CDA (SSS),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形18.(9分)(2019·新疆)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 中点,连接OE .过点C 作CF ∥BD 交OE 的延长线于点F ,连接DF .求证:(1)△ODE ≌△FCE ;(2)四边形OCFD 是矩形. 证明:(1)∵CF ∥BD ,∴∠ODE =∠FCE ,∵E 是CD 中点,∴CE =DE ,在△ODE 和△FCE 中,⎩⎪⎨⎪⎧∠ODE =∠FCE ,DE =CE ,∠DEO =∠CEF , ∴△ODE ≌△FCE (ASA)(2)∵△ODE ≌△FCE ,∴OD =FC ,∵CF ∥BD ,∴四边形OCFD 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°,∴四边形OCFD 是矩形19.(9分)(2019·大庆)如图,在矩形ABCD 中,AB =3,BC =4.点M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM ≌△CDN ;(2)点G 是对角线AC 上的点,∠EGF =90°,求AG 的长.(1)证明∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠MAB =∠NCD .在△ABM 和△CDN 中,⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD ,AM =CN ,∴△ABM ≌△CDN (SAS)(2)解:如图,连接EF ,交AC 于点O .在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA =∠FOC ,∠EAO =∠FCO ,AE =CF ,∴△AEO≌△CFO (AAS),∴EO =FO ,AO =CO ,∴O 为EF ,AC 中点.∵∠EGF =90°,OG =12 EF =32 ,∴AG =OA -OG =1或AG =OA +OG =4,∴AG 的长为1或420.(9分)如图,在▱ABCD 中,E ,F 两点在对角线BD 上,BE =DF .(1)求证:AE =CF ;(2)当四边形AECF 为矩形时,请求出BD -AC BE的值. 解:(1)由SAS 证△ABE ≌△CDF 即可 (2)连接CE ,AF ,AC .∵四边形AECF 是矩形,∴AC =EF ,∴BD -AC BE =BD -EF BE =BE +DF BE =2BE BE=221.(10分)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM ≌△DCM ;(2)填空:当AB ∶AD =1∶2时,四边形MENF 是正方形,并说明理由.解:(1)由SAS 可证 (2)理由:∵AB ∶AD =1∶2,∴AB =12 AD ,∵AM =12AD ,∴AB =AM ,∴∠ABM =∠AMB ,∵∠A =90°,∴∠AMB =45°,∵△ABM ≌△DCM ,∴BM =CM ,∠DMC =∠AMB =45°,∴∠BMC =90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM =MF ,∴四边形MENF 是菱形,∵∠BMC =90°,∴菱形MENF 是正方形22.(10分)如图,在正方形ABCD 中,AC 是对角线,今有较大的直角三角板,一边始终经过点B ,直角顶点P 在射线AC 上移动,另一边交DC 于点Q .(1)如图①,当点Q 在DC 边上时,猜想并写出PB 与PQ 所满足的数量关系,并加以证明;(2)如图②,当点Q 落在DC 的延长线上时,猜想并写出PB 与PQ 满足的数量关系,并证明你的猜想.解:(1)PB =PQ .证明:连接PD ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD ,∠BCD =90°,BC =CD ,又∵PC =PC ,∴△DCP ≌△BCP (SAS),∴PD =PB ,∠PBC =∠PDC ,∵∠PBC +∠PQC =180°,∠PQD +∠PQC =180°,∴∠PBC =∠PQD ,∴∠PDC =∠PQD ,∴PQ =PD ,∴PB =PQ (2)PB =PQ .证明:连接PD ,同(1)可证△DCP ≌△BCP ,∴PD =PB ,∠PBC =∠PDC ,∵∠PBC =∠Q ,∴∠PDC =∠Q ,∴PD =PQ ,∴PB =PQ23.(11分)(2019·重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连接AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若DP =2AP =4,CP =17 ,CD =5,求△ACD 的面积.(2)若AE =BN ,AN =CE ,求证:AD =2 CM +2CE .解:(1)作CG ⊥AD 于G ,如图①所示:设PG =x ,则DG =4-x ,在Rt △PGC 中,GC 2=CP2-PG 2=17-x 2,在Rt △DGC 中,GC 2=CD 2-GD 2=52-(4-x )2=9+8x -x 2,∴17-x 2=9+8x-x 2,解得:x =1,即PG =1,∴GC =4,∵DP =2AP =4,∴AD =6,∴S △ACD =12 ×AD ×CG =12×6×4=12(2)证明:连接NE ,如图②所示:∵BH ⊥AE ,AF ⊥BC ,AE ⊥EM ,∴∠AEB +∠NBF =∠AEB +∠EAF =∠AEB +∠MEC =90°,∴∠NBF =∠EAF =∠MEC ,在△NBF 和△EAF 中,⎩⎪⎨⎪⎧∠NBF =∠EAF ,∠BFN =∠AFE ,BN =AE ,∴△NBF ≌△EAF (AAS),∴BF =AF ,NF =EF ,∴∠ABC =45°,∠ENF =45°,∵∠ANB =90°+∠EAF ,∠CEA =90°+∠MEC ,∴∠ANB =∠CEA ,在△ANB 和△CEA 中,⎩⎪⎨⎪⎧AN =CE ,∠ANB =∠CEA ,BN =AE ,∴△ANB ≌△CEA (SAS),∴∠CAE =∠ABN ,∵∠NBF =∠EAF ,∴∠ABF =∠FAC =45°∴FC =AF =BF ,∴∠ANE =∠BCD =135°,AD =BC =2AF ,在△ANE 和△ECM 中,⎩⎪⎨⎪⎧∠EAF =∠MEC ,AN =EC ,∠ANE =∠ECM ,∴△ANE ≌△ECM (ASA),∴CM =NE ,又∵NF =22 NE =22 MC ,∴AF =22 MC +EC ,∴AD =2 MC +2EC。
人教版初中数学八年级数学下册第三单元《平行四边形》测试卷(有答案解析)
(2)现有三个论断:
① ;
② 90°;
③ .
请从上述三个论断中选择一个论断作为条件,证明四边形 是菱形.
22.如图,已知点 在 的 边上, 交 于 , 交 于 .
(1)求证: ;
(2)若 平分 ,试判断四边形 的形状,并说明理由.
23.如图,已知在 中, 是斜边 上的中线,点 是边 延长线上一点,连结 过点 作 于点 ,且 .
3.如图, 是直线 上的一点,且 .已知 的面积为 ,则 的面积为()
A.52B.26C.13D.39
4.如图,已知正方形ABCD的边长为4,点Р是对角线BD上一动点(不与D,B重合), 于点F, 于点E,连接AP,EF.则下列结论错误的是()
A. B. ,且
C.四边形 的周长是8D.
5.如图,在平行四边形 中,对角线 交于点O, ,E,F,G分别是 的中点, 交 于点H.下列结论:① ;② ;③ ;成立的个数有( )
15.在四边形 中, ∥ ,要使四边形 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)
16.生活中,有人喜欢把传送的便条折成形状 ,折叠过程如图所示(阴影部分表示纸条的反面):
已知由信纸折成的长方形纸条(图①)长为 ,宽为 .如果能折成图④的形状,且为了美观,纸条两端超出点 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点 与点 的距离(用 表示)为______ .
(1)求证:
(2)若四边形 是菱形,且 ,求 的值.
26.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.
2020—2021年新人教版初中数学八年级下册平行四边形单元检测题及答案解析精品试卷.docx
《第18章平行四边形》一、选择题(本大题共10小题,每题2分,共20分)1.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A. B. C. D.2.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.AB=CD,AD=BC C.∠A=∠B,∠C=∠D D.AB=AD,CB=CD3.菱形和矩形一定都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分4.①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()A.0个B.1个C.3个D.4个5.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2 C.D.6.如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形 B.矩形C.菱形D.正方形7.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE:EF:BE为()A.4:1:2 B.4:1:3 C.3:1:2 D.5:1:28.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm9.在四边形ABCD中,若有下列四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有()A.3组B.4组C.5组D.6组10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定二、填空题(本大题共8小题,每题2分,共16分)11.如图,AB=DC.(1)当AB DC时,四边形ABCD是平行四边形;(2)当AD BC时,四边形ABCD是平行四边形.12.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.13.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.14.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.15.在平行四边形ABCD中,∠C=∠B+∠D,则∠A= ,∠D= .16.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为.17.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.18.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P 是AC上一动点,则PB+PE的最小值是.三、解答题(本大题共9小题,第19-26每题7分,第27题8分,共64分)19.如图:在平行四边形ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25°,求∠C、∠B的度数.20.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.21.已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是,试证明:这个多边形是菱形.22.在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D 两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF ≌△BAE.23.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.24.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.25.如图,在正方形ABCD中,M为AB的中点,MN⊥MD,BN平分∠CBE并交MN于N.试说明:MD=MN.26.如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)求△BDG的面积.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB 的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.《第18章平行四边形》参考答案与试题解析一、选择题(本大题共10小题,每题2分,共20分)1.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A. B. C. D.【考点】平行四边形的性质.【分析】由对顶角的性质得出A正确;由平行四边形的性质得出B、D 正确.【解答】解:A正确;∵∠1和∠2是对顶角,∴∠1=∠2;B、D正确;∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠1=∠2;C不正确;故选:C.【点评】本题考查了平行四边形的性质、对顶角的性质、平行线的性质;熟练掌握平行四边形的性质时解决问题的关键.2.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.AB=CD,AD=BC C.∠A=∠B,∠C=∠D D.AB=AD,CB=CD【考点】平行四边形的判定.【分析】根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.【解答】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.3.菱形和矩形一定都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【考点】菱形的性质;矩形的性质.【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.4.①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()A.0个B.1个C.3个D.4个【考点】命题与定理;平行四边形的判定.【分析】根据平行四边形的判定方法分别进行判断.【解答】解:一组对边平行,另一组对边相等的四边形不一定是平行四边形,所以①错误;对角线互相平分的四边形是平行四边形,所以②正确;在四边形ABCD中,AB=AD,BC=DC,那么这个四边形不一定为平行四边形,所以③错误;一组对边相等,一组对角相等的四边形不一定是平行四边形,所以④错误.故选B.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.5.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为()A.B.2 C.D.【考点】矩形的性质.【分析】本题只要根据矩形的性质,利用面积法来求解.【解答】解:因为BC=4,故AD=4,AB=3,则S△DBC=×3×4=6,又因为BD==5,S△ABD=×5AE,故×5AE=6,AE=.故选A.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.6.如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形 B.矩形C.菱形D.正方形【考点】矩形的性质;菱形的判定.【分析】由题意易得四边形EFGH是平行四边形,又因为矩形的对角线相等,可得EH=HG,所以平行四边形EFGH是菱形.【解答】解:由题意知,HG∥EF∥AC,EH∥FG∥BD,HG=EF=AC,EH=FG=BD,∴四边形EFGH是平行四边形,∵矩形的对角线相等,∴AC=BD,∴EH=HG,∴平行四边形EFGH是菱形.故选C.【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.7.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE:EF:BE为()A.4:1:2 B.4:1:3 C.3:1:2 D.5:1:2【考点】平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质和已知条件进行求解.【解答】解:∵平行四边形∴∠CDE=∠DEA∵DE是∠ADC的平分线∴∠CDE=∠ADE∴∠DEA=∠ADE∴AE=AD=4∵F是AB的中点∴AF=AB=3∴EF=AE﹣AF=1,BE=AB﹣AE=2∴AE:EF:BE=4:1:2.故选A.【点评】本题直接通过平行四边形性质的应用以及角的等量代换、线段之间的关系解题.8.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm【考点】三角形中位线定理;等腰三角形的性质;勾股定理;正方形的性质.【专题】计算题.【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选D.【点评】本题考查了相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.9.在四边形ABCD中,若有下列四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有()A.3组B.4组C.5组D.6组【考点】平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①③组合能根据平行线的性质得到∠B=∠D,从而利用两组对角分别相等的四边形是平行四边形判定平行四边形;①④组合能利用一组对边平行且相等的四边形是平行四边形判定平行四边形;②④组合能利用两组对边分别相等的四边形是平行四边形判定,故选A.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【专题】压轴题.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题(本大题共8小题,每题2分,共16分)11.如图,AB=DC.(1)当AB ∥DC时,四边形ABCD是平行四边形;(2)当AD = BC时,四边形ABCD是平行四边形.【考点】平行四边形的判定.【分析】(1)根据“一组对边平行且相等的四边形是平行四边形”进行填空;(2)根据“两组对边分别相等的四边形是平行四边形”进行填空.【解答】解:(1)当AB=DC,且AB∥DC时,四边形ABCD是平行四边形;(2)当当AB=DC,且AD=BC时,四边形ABCD是平行四边形.故答案是:∥;=.【点评】本题考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.12.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2cm2.【考点】菱形的性质;勾股定理.【分析】因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.【解答】解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.【点评】本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.13.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 3 厘米.【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.14.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是8 .【考点】菱形的判定与性质;矩形的性质.【分析】先证明四边形CODE是平行四边形,再根据矩形的性质得出OC=OD,然后证明四边形CODE是菱形,即可求出周长.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC=2,OD=BD,AC=BD,∴OC=OD=2,∴四边形CODE是菱形,∴DE=CEOC=OD=2,∴四边形CODE的周长=2×4=8;故答案为:8.【点评】本题考查了菱形的判定与性质以及矩形的性质;证明四边形是菱形是解决问题的关键.15.在平行四边形ABCD中,∠C=∠B+∠D,则∠A= 120°,∠D= 60°.【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的对边平行,对角相等,可得AD∥BC,∠B=∠D,∠A=∠C,易得∠C=2∠D,∠C+∠D=180°,解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∠A=∠C,∴∠C=2∠D,∠C+∠D=180°,∴∠A=∠C=120°,∠D=60°.故答案为:120°,60°.【点评】此题考查了平行四边形的性质:平行四边形的对边平行;平行四边形的对角相等.解题的关键是数形结合思想的应用.16.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为10 .【考点】平行四边形的判定与性质.【分析】根据平行四边形的面积=AE×BC=CD×AF,即可求出AD与BC 之间的距离.【解答】解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.由题意得,S四边形ABCD=AE×BC=CD×AF,∴24×5=12×AF,∴AF=10,即AB与CD间的距离为10.故答案是:10.【点评】本题考查了平行四边形的性质,解答本题的关键是熟练平行四边形的面积公式.17.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【考点】菱形的性质.【专题】压轴题;规律型.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.【点评】此题主要考查菱形的性质、等边三角形的判定和性质以及学生探索规律的能力.18.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P 是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.三、解答题(本大题共9小题,第19-26每题7分,第27题8分,共64分)19.如图:在平行四边形ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25°,求∠C、∠B的度数.【考点】平行四边形的性质.【分析】根据角平分线的定义得到∠BAD=2∠DAE=50°,再根据平行四边形的邻角互补和平行四边形的对角相等,就可求得∠C和∠B的度数.【解答】解:∵∠BAD的平分线AE交DC于E,∠DAE=25°,∴∠BAD=50°.∴在平行四边形ABCD中:∠C=∠BAD=50°,∠B=180°﹣∠C=130°.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.20.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.【考点】菱形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得BF=BE.【解答】证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴BF=BE.【点评】此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形的四条边都相等.21.已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是AE=AF ,试证明:这个多边形是菱形.【考点】菱形的判定.【专题】证明题;开放型.【分析】根据DE∥AC,DF∥AB,可直接判断出四边形AEDF是平行四边形,要使其变为菱形,只要邻边相等即可,从而可以得出.【解答】解:条件AE=AF(或AD平分∠BAC,等)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又AE=AF,∴四边形AEDF是菱形.故答案为:AE=AF.【点评】此题主要考查了菱形的判定,正确区分菱形与平行四边形的区别,是解决问题的关键.22.在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D 两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF ≌△BAE.【考点】正方形的性质;全等三角形的判定.【专题】证明题.【分析】根据正方形的性质,可以证得DA=AB,再根据同角的余角相等即可证得∠2=∠3,∠1=∠4,根据ASA即可证得两个三角形全等.【解答】证明:∵四边形ABCD是正方形,∴DA=AB,∠1+∠2=90°又∵BE⊥AG,DF⊥AG∴∠1+∠3=90°,∠2+∠4=90°∴∠2=∠3,∠1=∠4又∵AD=AB∴△ADF≌△BAE.【点评】本题主要考查了正方形的性质以及全等三角形的证明,正确证明∠2=∠3,∠1=∠4是解题的关键.23.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.【考点】菱形的性质;平行四边形的判定与性质.【专题】证明题.【分析】由菱形的性质可证AC⊥BD,又已知EF⊥AC,所以AG=BG,GE=BD,AD∥BC,可证四边形EDBF为平行四边形,可证GE=GF,即证结论.【解答】证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,∴四边形AEBF为平行四边形,即AB与EF互相平分.【点评】本题是简单的推理证明题,主要考查菱形的性质,同时综合利用平行四边形的判定方法及中位线的性质.24.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【考点】菱形的判定;平行四边形的判定;矩形的性质.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8∴S四边形OCED=OE•CD=×8×6=24.【点评】本题主要考查矩形的性质,平行四边形、菱形的判定,菱形面积的求法;菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.25.如图,在正方形ABCD中,M为AB的中点,MN⊥MD,BN平分∠CBE并交MN于N.试说明:MD=MN.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】如图,将△BMN以∠DMN的角平分线为轴翻折至△PDM的位置,即取AD的中点P,连接PM.从而△MPD≌△NBM,故DM=MN.【解答】解:取AD的中点P,连接PM,∵M为AB的中点,且四边形ABCD是正方形,∴AB=AD;∴AM=AP=BM=PD;∴∠AMP=∠APM=45°;∴∠DPM=135°;而BN平分∠CBE,∴∠NBE=45°;∴∠MBN=135°;∵MN⊥MD,∴∠ADM+∠AMD=∠NMB+∠AMD=90°,∴∠ADM=∠NMB,即∠MDP=∠NMB.在△MPD与△NBM中,∴△MPD≌△NBM(ASA),∴DM=MN.【点评】此题把正方形和全等三角形的知识结合起来,主要利用正方形的性质,全等三角形的性质与判定来解题.26.如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)求△BDG的面积.【考点】翻折变换(折叠问题).【分析】(1)根据翻折的性质可得∠CBD=∠DBG,根据两直线平行,内错角相等可得∠BDG=∠CBD,然后求出∠DBG=∠BDG,根据等角对等边可得BG=DG,再根据矩形的对边相等和翻折的性质可得AD=BC=BC′,然后分别表示出AG、C′G即可得证;(2)设BG=DG=x,表示出AG,在Rt△ABG中,利用勾股定理列出方程求解得到DG,再利用三角形的面积公式列式计算即可得解.【解答】(1)证明:由翻折的性质得,∠CBD=∠DBG,∵四边形ABCD是矩形,∴AD∥BC,∴∠BDG=∠CBD,∴∠DBG=∠BDG,∴BG=DG,又∵BC′是BC经过翻折得到,∴AD=BC=BC′,∵AG=AD﹣DG,C′G=BC′﹣BG,∴AG=C′G;(2)解:设BG=DG=x,则AG=8﹣x,在Rt△ABG中,AB2+AG2=BG2,即62+(8﹣x)2=x2,解得x=,所以,△BDG的面积=××6=.【点评】本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后的两个图形能够完全重合得到相等的边和角是解题的关键,(2)利用勾股定理列出方程是解题的关键.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB 的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
八年级数学 下册第十八章《平行四边形》测试卷-人教版(含答案)
八年级数学 下册第十八章《平行四边形》测试卷-人教版(含答案)一、单选题(共30分)1.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AD =BCB .AB =CDC .AD ∥BC D .∥A =∥C 2.如图,在∥ABCD 中,连接AC ,∥ABC =∥CAD =45°,AB =2,则BC 的长是( )A 2B .2C .2D .4 3.如图,在长方形ABCD 中无重叠放入面积分别为216cm 和212cm 的两张正方形纸片,则图中空白部分的面积为( )2cmA .1683-B .1283-+C .843-D .423- 4.如图,已知平行四边形ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,则边AB 的长可以是( )A .1B .8C .10D .12 5.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,4),(1,1),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 7.如图,菱形ABCD 对角线AC ,BD 交于点O ,15ACB ∠=︒,过点C 作CE AD ⊥交AD 的延长线于点E .若菱形ABCD 的面积为4,则菱形的边长为( )A .22B .2C .2D .4 8.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .5D .10 9.如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∥ABC 和∥BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:∥EB ∥CF ,CE ∥BF ;∥BE =CE ,BE =BF ;∥BE ∥CF ,CE ∥BE ;∥BE =CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A .1个B .2个C .3个D .4个 10.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当∥CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0)二、填空题(共24分)11.在菱形ABCD 中,∥BAD =72°,点F 是对角线AC 上(不与点A ,C 重合)一动点,当ADF 是等腰三角形时,则∥AFD 的度数为_____.12.如图,在ABC 中,点M 为BC 的中点,AD 平分,BAC ∠且BD AD ⊥于点D ,延长BD 交AC 于点,N 若12,18AB AC ==,则MD =_______________________.13.如图,在Rt ∥ABC 中,∥ABC =90º,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =6,则DE =_____.14.平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,∥AOB 的周长比∥BOC 的周长为8cm ,则AB 的长为_____cm .15.如图,在平行四边形ABCD 中,BF 平分∥ABC ,交AD 于点F ,CE 平分∥BCD ,交AD 于点E ,AB =8,BC =12,则EF 的长为__________.16.如图在Rt △ABC 中,∥ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.如图,在平行四边形ABCD 中,AB =10,AD =6,AC ∥BC .则BD =_____.18.如图所示,在ΔABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF ,给出下列条件:∥BE ∥EC ;∥BF∥EC ;∥AB =AC∥从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____(只填写序号).三、解答题(共66分)19.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点,E F 分别为,OB OD 的中点,连接,AE CF .求证:AE CF .20.如图,∥ABCD 的对角线AC 、BD 交于点O ,E 、F 是对角线AC 上两点,AE =CF .求证:四边形DEBF 是平行四边形.21.如图,将∥ABCD 的边AB 延长至点E ,使BE=AB ,连接DE 、EC 、BD 、DE 交BC 于点O .(1)求证:∥ABD∥∥BEC ;(2)若∥BOD=2∥A ,求证:四边形BECD 是矩形.22.如图,在ABC ∆中,AD 是高,E F 、分别是AB AC 、的中点.(1)EF 与AD 有怎样的位置关系?证明你的结论;(2)若6,4BC AD ==,求四边形AEDF 的面积.23.如图,等边AEF ∆的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且45CEF ∠=. 求证:矩形ABCD 是正方形.24.如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.25.如图,在▱ABCD 中,AE∥BC ,AF∥CD ,垂足分别为E ,F ,且BE=DF (1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.26.如图,在矩形ABCD 中,AB =15,E 是BC 上的一点,将∥ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将∥ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,且CE =45BE , (1)求AD 的长;(2)求FG 的长27.如图,BD是∥ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∥ABC=60°,∥ACB=45°,CD=6,求菱形BEDF的边长.28.(1)如图1,正方形ABCD中,E为边CD上一点,连接AE,过点A作AF∥AE 交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM∥AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中∥A=∥C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.参考答案1.A2.C3.B4.B5.C6.C7.A8.A9.D10.D11.108°或72°12.313.614.1915.416.7517.1318.∥22.(1)EF 垂直平分AD ;(2)6AEDF S 四边形. 24.5.25.S 平行四边形ABCD =24 26.(1)AD = 9;(2)FG =7.5 27.(2)628.(1)AE=AF (2)CE=MF ,。
【精品】人教版八年级数学下册 第十八章 平行四边形 复习检测题(含答案)【3套】试题
人教版八年级数学下册第十八章平行四边形复习检测题(含答案)一、选择题。
1.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等2.在▱ABCD中,已知AB=(x+1)cm,BC=(x-2)cm,CD=4 cm,则▱ABCD的周长为()A.5 cm B.10 cm C.14 cm D.28 cm3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.54.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C. 3 D.1+ 35.正方形的一条对角线长为4,则这个正方形面积是()A.8 B.4 2 C.8 2 D.166.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.167.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH等于()A.245B.125C .5D .48.如图,把矩形纸片ABCD 沿对角线BD 折叠,设重叠部分为△EBD ,则下列说法错误的是( )A .AB =CD B .∠BAE =∠DCEC .EB =ED D .∠ABE 一定等于30°9.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 中点,连接AF ,BE ,CE ,DF 分别交于点M ,N ,四边形EMFN 是( )A .正方形B .菱形C .矩形D .无法确定10.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图1,测得AC =2,当∠B =60°时,如图2,AC =( ) A. 2 B .2 C. 6 D .2 2二、填空题11.如图,在菱形ABCD 中,AC ,BD 相交于点O ,若∠BCO =55°,则∠ADO =____________.12.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为____________.13.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD =8,AB=4,则DE的长为____________.14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________.(写出一个即可)15.如图,正方形ABCO的顶点C,A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是____________.16.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是____________.三、解答题(共52分)17.(10分)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)请写出图中两对全等的三角形;(2)求证:四边形BCEF是平行四边形.18.(10分)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.19.(10分)如图,已知,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.20.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?21.(12分)已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG,当点E在线段BC上时,如图1,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图2),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图3),直接写出AB,CG,CE之间的关系.参考答案一、选择题1.C2.B3.D4.A5.A6.A7.A8.D9.B 10.A 二、填空题。
人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)
第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。
D.8错误!未找到引用源。
3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。
C.4-2 错误!未找到引用源。
D.3 错误!未找到引用源。
-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。
人教版八年级下册数学第十八章《平行四边形》检测卷及答案解析
八年级下册数学第十八章《平行四边形》检测卷时间:90分钟满分:120分一、选择题(每小题4分,共40分)1.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16B.14<α<26C.12<α<20D.以上答案都不正确2.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.45°B.35°C.22.5°D.15.5°3.将矩形纸片ABCD按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形AECF,若AB=3,则BC的长为()A.1B.2C2D34.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD5.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2∶3,△AOB的周长为13cm,那么BC的长是()A.y x=B.1902y x=-+C.2180y x=-+D.90y x=-+9.如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米第6题第7题A.6cm B.9cm C.3cm D.12cm7.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.108.如图,在△ABC中,AE⊥BC于点E,BD⊥AC于点D;点F是AB的中点,连结DF,EF,设DFE x∠=°,ACB y∠=°,则()10.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2B.3C.4D.5二、填空题(每小题4分,共20分)11.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是_________cm.12.如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=_________.第12题第13题13.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是____________.14.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为_________.第14题第15题15.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是__________.三、解答题(16-20小题,每小题8分;21-22小题,每小题10分)16.如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.17.如图,在矩形ABCD中,以点B为圆心、BC长为半径画弧,交AD边于点E,连接BE,过C点作CF⊥BE,垂足为F.猜想线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,并加以证明.结论:BF=______.证明:18.如图,在□ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.19.如图,在□ABCD中,对角线AC,BD交于点O,E为AB中点,点F在CB的延长线上,且EF∥BD.(1)求证:四边形OBFE是平行四边形;(2)当线段AD和BD之间满足什么条件时,四边形OBFE是矩形?并说明理由.20.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.21.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.22.我们规定:横、纵坐标相等的点叫做“完美点”.(1)若点A(x,y)是“完美点”,且满足x+y=4,求点A的坐标;(2)如图1,在平面直角坐标系中,四边形OABC是正方形,点A坐标为(0,4),连接OB,E点从O向B运动,速度为2个单位/秒,到B点时运动停止,设运动时间为t.①不管t为何值,E点总是“完美点”;②如图2,连接AE,过E点作PQ⊥x轴分别交AB、OC于P、Q两点,过点E作EF⊥AE交x轴于点F,问:当E点运动时,四边形AFQP的面积是否发生变化?若不改变,求出面积的值;若改变,请说明理由.八年级下册数学第十八章《平行四边形》检测卷参考答案一、选择题(每小题4分,共40分)1.B2.C3.D4.D5.B6.A7.B8.B9.C10.C二、填空题(每小题4分,共20分)11;12.4;13.AD=BC;14.1;15.18.三、解答题(16-20小题,每小题8分;21-22小题,每小题10分)16.【分析】(1)由等腰三角形的性质可得∠C=∠A,由平行线的性质可得∠C=∠ADE,从而∠A=∠ADE;(2)先由三角形内角和求出∠ABC=50°,再由三线合一的性质可求出∠EBD=∠DBC=12∠ABC=25°,然后根据平行线的性质求解即可.【解析】(1)证明:∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE.(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°-65°-65°=50°,∵AB=BC,D为AC中点,∴∠EBD=∠DBC=12∠ABC=25°,∵DE∥BC,∴∠BDE=∠DBC=25°.17.【分析】猜想:BF=AE.根据已知及矩形的性质利用AAS判定△BFC≌△EAB,从而得到BF=AE.【解析】猜想:BF=AE.证明:∵四边形ABCD是矩形,∴∠A=90°.∵CF⊥BE,∴∠A=∠BFC=90°,∠AEB=∠FBC.∵BC=BE(同一半径),∴△BFC≌△EAB,∴BF=AE.18.【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE∥CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【解析】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.19.【分析】(1)首先证明OE是△ABC的中位线,推出OE∥BC,由EF∥OB,即可得出四边形OBFE是平行四边形;(2)当AD⊥BD时,四边形OBFE是矩形.只要证明∠EOB=90°即可解决问题.【解析】(1)∵四边形ABCD是平行四边形,∴点O是AC的中点,又∵点E是边AB的中点,∴OE是△ABC的中位线,∴OE∥BC,又∵点F在CB的延长线上,∴OE∥BF,∵EF∥BD,即EF∥OB,∴FC ⊥BD ,∴∠OBF =90°,∴四边形OBFE 是矩形.20.【分析】(1)先根据等腰三角形的三线合一可得BAD CAD ∠=∠,再根据角平分线的定义可得MAE CAE ∠=∠,从而可得90DAE ∠=°,然后根据垂直的定义可得90ADC AEC ∠=∠=°,最后根据矩形的判定即可得证;(2)先根据等腰直角三角形的性质可得45ACB B ∠=∠=°,再根据直角三角形的性质可得45CAD ACD ∠=∠=°,然后根据等腰三角形的定义可得CD =AD ,最后根据正方形的判定即可得.【解析】(1)∵在△ABC 中,AB =AC ,AD ⊥BC ,∴12BAD CAD BAC ∠=∠=∠(等腰三角形的三线合一),∵AN 是△ABC 外角∠CAM 的平分线,∴12MAE CAE CAM ∠=∠=∠,∴11118090222DAE CAD CAE BAC CAM ∠=∠+∠=∠+=⨯︒=∠︒,又∵AD BC ⊥,CE AN ⊥,∴90ADC AEC ∠=∠=︒,∴四边形ADCE 为矩形.(2)当△ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形.证明如下:∵AB AC =,90BAC ∠=︒,∴45ACB B ∠=∠=︒,∵AD BC ⊥,∴45CAD ACD ∠=∠=︒,∴CD AD =,∵四边形ADCE 为矩形,∴矩形ADCE 是正方形,故当90BAC ∠=︒时,四边形ADCE 是一个正方形.21.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF 的长,即可根据直角三角形斜边上的中线性质得出CO 的长.(3)根据平行四边形的判定以及矩形的判定得出即可.【解析】(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6.∵MN∥BC,∴∠1=∠5,∠3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴EF=13=.∴OC=12EF=6.5.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.22.【分析】(1)根据“完美点”定义可求点A坐标;(2)①由题意可求直线OB的解析式y=x,点E在直线OB上移动,则可证结论;②根据题意可证△EFQ≌△APE,可求PE=FQ,则可求四边形AFQP的面积.【详解】(1)∵点A(x,y)是“完美点”,∴x=y,∵x+y=4,∴x=2,y=2,∴A点坐标(2,2).(2)①∵四边形OABC是正方形,点A坐标为(0,4),∴AO=AB=BC=4,∴B(4,4).设直线OB 的解析式y =kx 过B 点,∴4=4k ,k =1.∴直线OB 解析式y =x ,设点E 坐标(x ,y ),∵点E 在直线OB 上移动,∴x =y ,∴不管t 为何值,E 点总是“完美点”.②∵E 点总是“完美点”,∴EQ =OQ .∵∠BAO =∠AOC =90°,PQ ⊥x 轴,∴四边形AOQP 是矩形,∴AP =OQ ,AO =PQ =4,∴AP =EQ .∵AE ⊥EF ,∴∠AEP +∠FEQ =90°,∠EAP +∠AEP =90°,∴∠FEQ =∠EAP .∵AP =EQ ,∠FEQ =∠EAP ,∠APE =∠EQF =90°,∴△APE ≌△EFQ ,∴PE =FQ .∵S 四边形AFQP =()2AP FQ AO =2(PE +EQ )=2×PQ =8,∴当E 点运动时,四边形AFQP 的面积不变,面积为8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、对角线_____平行四边形是矩形。
2、如图⑴已知O 是□ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____。
3、在平行四边形ABCD 中,∠C =∠B+∠D,则∠A =___,∠D =___。
4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm 。
5、已知菱形的一条对角线长为12cm ,面积为30cm 2,则这个菱形的另一条对角线长为__________cm 。
6、菱形ABCD 中,∠A =60o ,对角线BD 长为7cm ,则此菱形周长_____cm 。
7
,那么它的面积______。
8、如图2矩形ABCD 的两条对角线相交于O,∠AOB =60o ,AB =8,则矩形对角线的长___。
9、如图3,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC =8,AB =6,AD =5则△CDE 周长___。
10、正方形的对称轴有___条
11、如图4,BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需增加的一个条件是___ 12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为18cm ,宽为12cm 的矩形纸片,最多能剪出______张。
13、在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
A 、1:2:3:4
B 、1:2:2:1
C 、2:2:1:1
D 、2:1:2:1 14、菱形和矩形一定都具有的性质是( ) A 、对角线相等 B 、对角线互相垂直 C 、对角线互相平分 D 、对角线互相平分且相等 15、下列命题中的假命题是( ) A 、等腰梯形在同一底边上的两个底角相等 B 、对角线相等的四边形是等腰梯形 C 、等腰梯形是轴对称图形 D 、等腰梯形的对角线相等
16、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是( ) A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥BD C 、AO =OC ,OB =OD ,AC ⊥BD D 、AO =OC =OB =OD 17、给出下列四个命题
⑴一组对边平行的四边形是平行四边形 ⑵一条对角线平分一个内角的平行四边形是菱形 ⑶两条对角线互相垂直的矩形是正方形 ⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形。
其中正确命题的个数为( )
A 、1个
B 、2个
C 、3个
D 、4个
18、下列矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是( )
19、(8分)如图:在□ABCD 中,∠BAD 的平分线AE 交DC 于E ,若∠DAE =25o ,求∠C 、∠B 的度数。
⑴
⑵
⑶
⑷
中
点
A
B
20、(8分)已知在梯形ABCD 中,AD ∥BC ,AB =DC ,∠D =120o ,对角线CA 平分∠BCD ,且梯形的周长20,求AC 。
21、(8分)如图:在正方形ABCD 中,E 为CD 边上的一点,F 为BC 的延长线上一点,CE =CF 。
⑴△BCE 与△DCF 全等吗?说明理由; ⑵若∠BEC =60o ,求∠EFD 。
22、证明题:(8分)
如图,△ABC 中∠ACB =90o ,点D 、E 分别是AC ,AB 的中点,点F 在BC 的延长线上,且∠CDF =∠A 。
求证:四边形DECF 是平行四边形。
23、(8分)已知:如图所示,△ABC 中,E 、F 、D 分别是AB 、AC 、BC 上的点,且DE ∥AC ,DF ∥AB ,要使四边形AEDF 是菱形,在不改变图形的前提下,你需添加的一个条件是_______________试证明:这个多边形是菱形。
24、应用题(8分) 某村要挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,渠底宽为1.2米,腰与渠底的夹角为135o ,问挖
此渠需挖出土多少方?
25、附加题(10分)(计入总分,但总分不超过100分)
已知:如图,在直角梯形ABCD 中,∠B =90o ,AD ∥BC ,AD =24cm ,BC =26cm ,动点P 从A 点开始沿AD 边向D 以1cm/秒的速度运动,动点Q 从C 点开始沿CB 边向B 以3cm/秒的速度运动,P 、Q 分别从A 、C 同时出发,当其一点到端点时,另一点也随之停止运动,设运动时间为t 秒,t 分别为何值时,四边形PQCD 是平行四边形?等腰梯形?
A B
D
C
F
E
A B
D
C
F
E
八年级数学单元测试答案
一、⑴相等;⑵45;⑶∠A =120o ,∠D =60o ;⑷22.5,12.5;⑸5;⑹28;⑺1;⑻16;⑼15;⑽4;⑾略;⑿3。
二、⒀D ;⒁C ;⒂B ;⒃B ;⒄B ;⒅B
19、解:∠BAD =2∠DAE =2×25o =50o (2分) 又∵□ABCD ∴∠C =∠BAD =50o (4分) ∴AD ∥BC
∴∠B =180o -∠BAD (6分) =180o -50o =130o (8分) 20、解:∵AD ∥BC ∴∠1=∠2 又∠2=∠3
∴∠1=∠3 AD =DC (2分) 又AB =DC 得AB =AD =DC =x
在△ADC 中∵∠D =120o
∠1=∠3=
180120302
o o
o -= 又∠BCD =2∠3=60o ∴∠B=∠BCD=60o (4分) ∠BAD =180o -∠B -∠2=90o ∠2=30o 则BC =2AB =2x (6分)
2204x x x x x +++==
AB =4 BC =8 在Rt △ABC 中AC
== (8分)
21、⑴△BCE ≌△DCF (1分) 理由:因为四边形ABCD 是正方形∴BC =CD ,∠BCD =90o ∴∠BCE =∠DCF 又CE =CF ∴△BCE ≌△DCF (4分) ⑵∵CE =CF ∴∠CEF =∠CFE ∵∠FCE =90o ∴∠CFE =
1
(18090)452
o o o -= 又∵△BCE ≌△DCF ∴∠CFD =∠BEC =60o (6分) ∴∠EFD =∠CFD -∠CFE =60o -45o =15o (8分)
22、证明:∵D 、E 分别是AC 、AB 的中点 ∴DE ∥BC (1分) ∵∠ACB =90o ∴CE=
1
2
AB =AE (3分)
∵∠A =∠ECA ∴∠CDF =∠A (4分) ∴∠CDF =∠ECA ∴DF ∥CE (7分) ∴四边形DECF 是平行四边形 (8分)
23、答条件AE =AF (或AD 平分角BAC ,等) (3分) 证明:∵DE ∥AC DF ∥AB
∴四边形AEDF 是平行四边形 (6分) 又AE =AF
∴四边形AEDF 是菱形(8分)
24、如图所示设等腰梯形ABCD 为渠道横断面,分别作DE ⊥AB ,CF ⊥AB (2分) 垂足为E 、F 则CD =1.2米,DE =CF =0.8米∠ADC =∠BCD =135o (4分) AB ∥CD ∠A+∠ADC =180o ∴∠A =45o =∠B 又DE ⊥AB CF ⊥AB ∴∠EDA =∠A ∠BCF =∠B ∴AE =DE =CF =BF =0.8米
又∵四边形CDEF是矩形∴EF=CD=1.2米(6分)
S梯形ABCD=11
()(1.20.82 1.2)0.8 1.6 22
AB CD DE
+⋅=+⨯+⨯=
∴所挖土方为1.6×1500=2400(立方米)(8分)
(解析:解决本题的关键是数学建模,求梯形面积时,注意作辅助线,把梯形问题向三角形和矩形转化)
25、①4,4(2分)②9,9(4分)③13,13(6分)④在直角三角形中两直角边的平方和等于斜边的平方(10分)
26、解因为AD∥BC,所以,只要QC=PD,则四边形PQCD就是平行四边形,此时有3t=24-t。
(3分)
解之,得t=6(秒)(4分)
当t=6秒时,四边形PQCD平行四边形。
(5分)
同理,只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形。
过P、D分别作BC的垂线交BC于E、F,则
由等腰梯形的性质可知,EF=PD,QE=FC=26-24=2,
所以2
3(24)
2
t t
--
=,解得7()
t=秒。
(10分)
所以当t=7秒时,四边形PQCD是等腰梯形。