初三数学中考模拟试题(带答案)

合集下载

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sin(A) = 1/2,则角A的度数是()A. 30°B. 45°C. 60°D. 90°4. 若一个等差数列的前三项分别是2、5、8,则该数列的公差是()A. 1B. 2C. 3D. 45. 在直角坐标系中,点P(2, -3)关于原点的对称点是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题1. 任何两个奇数之和都是偶数。

()2. 一元二次方程的判别式Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根。

()3. 在等边三角形中,每个角的度数是60°。

()4. 函数y=2x+3的图像是一条直线。

()5. 互质的两个数的最小公倍数是它们的乘积。

()三、填空题1. 若 a 3 = 5,则 a 的值为______。

2. 若一个等比数列的前三项分别是2、4、8,则该数列的公比是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若sin(α) = 1/2,且α是锐角,则cos(α)的值是______。

5. 一元二次方程x^2 5x + 6 = 0的解是______和______。

四、简答题1. 解释什么是等差数列,并给出一个例子。

2. 什么是锐角和钝角?给出一个锐角和一个钝角的例子。

3. 解释一元二次方程的解的意义。

4. 什么是平行线?在直角坐标系中如何判断两条线是否平行?5. 解释什么是函数的图像,并给出一个例子。

五、应用题1. 一个等差数列的前三项分别是2、5、8,求该数列的第10项。

中考数学考试模拟卷(带答案解析)

中考数学考试模拟卷(带答案解析)

中考数学考试模拟卷(带答案解析)一、选择题(本题包括12道小题,每小题3分,共36分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE 等于()A.15°B.30°C.45°D.60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y 尺,则符合题意的方程组是()A.B.C.D.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40°B.50°C.60°D.80°10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根11.如图,正方形ABCD及其内切圆O,随机地往正方形内投一粒米,落在阴影部分的概率是()A.B.1﹣C.D.1﹣12.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是()△BCDA.﹣6B.﹣6 C.﹣12D.﹣12二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为.14.(3分)如图,依据尺规作图的痕迹,求∠α的度数°.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.[来源:Z*xx*]19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;[来源:学§科§网]②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.参考答案与解析一、选择题1.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.11.【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.12.【分析】过点C作CE⊥y轴,延长BD交CE于点F,易证△COE≌△ABD,求得OE=,根据S△BCD=,求得CF=9,得到点D的纵坐标为4,设C(m,),则D(m+9,4),由反比例函数y=(x<0)的图象经过C,D两点,从而求出m,进而可得k的值.【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠ABD,∵BD与y轴平行,∴∠ADB=90°,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图象经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.二、填空题13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 5 .【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:514.(3分)如图,依据尺规作图的痕迹,求∠α的度数60 °.【分析】先根据矩形的性质得出AB∥DC,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠BEF的度数,根据三角形内角和定理得出∠BFE的度数,进而可得出结论.【解答】解:∵∠A=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB=60°.由作法可知,BF是∠ABD的平分线,∴∠EBF=∠ABD=30°.由作法可知,EF是线段BD的垂直平分线,∴∠BEF=90°,∴∠BFE=90°﹣30°=60°,∴∠α=60°.故答案为:60.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为,9或3 .【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为π.【分析】如图,取AB的中点J,首先证明∠APB=90°,推出点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,解直角三角形求出∠CJB=60°可得结论.【解答】解:如图,取AB的中点J,∵AC是直径,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠BAP=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,在Rt△CBJ中,BJ=,BC=3,∴tan∠CJB==,∴∠BJC=60°,∴当C,P两点距离最小时,动点P的运动路径长==π.故答案为:π.【点评】本题考查轨迹,解直角三角形,弧长公式等知识,解题的关键是正确判断出点P的运动轨迹,属于中考常考题型.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,[来源:学科网ZXXK]∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.【分析】(1)根据等腰三角形的性质,直角三角形的两锐角互余以及等量代换得出∠ODB+∠BDE=90°,即OD⊥EC,进而得出EC是切线;(2)根据直角三角形的边角关系可求出OD、CD、AC、OC,再根据相似三角形的性质可求出EC,根据S阴影部分=S△COE﹣S扇形进行计算即可.【解答】(1)证明:如图,连接OD,∵AC=CD,∴∠A=∠ADC=∠BDE,∵∠AOB=90°,∴∠A+∠ABO=90°,又∵OB=OD,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,即OD⊥EC,∵OD是半径,∴EC是⊙O的切线;(2)解:在Rt△COD中,由于sin∠OCD=,设OD=4x,则OC=5x,∴CD==3x=AC,在Rt△AOB中,OB=OD=4x,OA=OC+AC=8x,AB=4,由勾股定理得,OB2+OA2=AB2,即:(4x)2+(8x)2=(4)2,解得x=1或x=﹣1(舍去),∴AC=3x=3,OC=5x=5,OB=OD=4x=4,∵∠ODC=∠EOC=90°,∠OCD=∠ECO,∴△COD∽△CEO,∴=,即=,∴EC=,∴S阴影部分=S△COE﹣S扇形=××4﹣=﹣4π=,答:AC=3,阴影部分的面积为.【点评】本题考查切线的判定,扇形面积的计算以及直角三角形的边角关系,掌握切线的判定方法,直角三角形的边角关系以及扇形、三角形面积的计算方法是正确解答的前提.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【分析】(1)由正方形性质知∠AGE=∠D=90°、∠DAC=45°,据此可得、GE∥CD,利用平行线分线段成比例定理可得;(2)连接AE,只需证△ADG∽△ACE即可得;(3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.【解答】解:(1)∵四边形ABCD是正方形,四边形CEGF是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.【点评】本题是四边形综合题,考查了正方形的判定与性质,直角三角形的性质,相似三角形的判定与性质,勾股定理,熟练掌握相似三角形的判定与性质是解题的关键.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.【分析】(1)求出B、C点坐标,并将其代入y=﹣x2+bx+c,即可求解;(2)过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),PQ=|﹣t2+3t|,由题意可求=×3×|﹣t2+3t|,求出t的值即可求解;(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,由题意可得tan∠OCA=tan ∠BCE==,求出E(4,﹣1),用待定系数求出直线CE的解析式y=x﹣3,联立方程组,可求Q(,﹣).【解答】解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).。

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。

中考模拟数学试题及答案

中考模拟数学试题及答案

中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 以下哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 以下哪个选项是整式的乘法?A. (x + 2)(x - 2)B. x^2 + 2x + 1C. x/(x + 1)D. x^2 - 4x + 4答案:A7. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πD. 36π答案:C8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 以下哪个选项是不等式?A. x + 2 = 3B. 2x - 3 > 0C. 4x^2 - 9 = 0D. 3x + 2y = 510. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 1/xD. y = √x答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 一个角的余角是30°,那么这个角是______。

答案:60°13. 一个数的平方是16,这个数是______。

答案:±414. 一个等腰直角三角形的斜边长为5,那么这个三角形的面积是______。

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。

2024年中考数学模拟考试试卷(含有答案)

2024年中考数学模拟考试试卷(含有答案)
【详解】解:
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是



故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4

∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径



又∵

∴பைடு நூலகம்是等边三角形



∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为3cm和4cm,且这两边的夹角为90°,则这个三角形的周长为多少cm?A. 6cmB. 7cmC. 8cmD. 10cm2. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 若a、b为实数,且a≠b,则下列哪个选项是正确的?A. |a|=|b|B. a²=b²C. a+b=0D. a-b=04. 下列哪个选项是二次函数?A. y=2x+1B. y=3x²-2x+1C. y=x³+2x²+1D. y=4x-35. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为多少cm?A. 26cmB. 32cmC. 36cmD. 40cm二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为余角。

()2. 任何一个实数的平方都是非负数。

()3. 若a、b为实数,且a≠b,则|a|=|b|。

()4. 一次函数的图像是一条直线。

()5. 任何一个等腰三角形的底角相等。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为____cm。

2. 若|a|=3,则a的值为____。

3. 下列函数中,____是正比例函数。

4. 若两个角的和为180°,则这两个角互为____角。

5. 任何一个等腰三角形的底角相等,这个性质称为____。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述二次函数的定义。

3. 简述等腰三角形的性质。

4. 简述一次函数的图像特点。

5. 简述余角和补角的定义。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的周长。

2. 已知|a|=3,求a的值。

中考数学模拟考试卷(附带有答案)

中考数学模拟考试卷(附带有答案)

中考数学模拟考试卷(附带有答案)(满分:120分 ;考试时间:120分钟)第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3-的相反数是( )A .3B .-3C .31D .31-2. 下列运算正确的是( )A .326a a a =÷ B .222a b a b -=-)( C .6223b a ab =)( D .b 3-a 2-b 3-a 2-=)(3. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( ) A .∠AOD =∠BOC B .∠AOE +∠BOD =90° C .∠AOC =∠AOE D .∠AOD +∠BOD =180°4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26 5. 下列一元二次方程中,没有实数根的是( )A .2x +3x =0B .22x –4x +1=0C .2x –2x +2=0D .52x +x –1=06.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为A .8mB .6mC .5mD .4m7.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米EOD CBA8. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 ( ) A .(x +1)(4–0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3–0.5x )=15 D .(3+x )(4–0.5x )=159. 在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .10.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2; ②若将△GEF 沿EF 折叠,则点G 一定落在AC 上;③ BG =BF ; ④S 四边形GFOE =S △AOF ,上述结论中正确的个数是( ) A .1个 B .2个 C .3个 D .4个第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.GFE OD CBA11. 华为正式发布2020年财报,报告显示,华为去年销售收入8914亿元人民币,销售收入遥遥领先。

中考数学模拟测试题(附含答案)

中考数学模拟测试题(附含答案)

中考数学模拟测试题(附含答案)(满分:120分;考试时间120分钟)一、单选题。

(每小题4分,共40分) 1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.12023 D.﹣120232.如图是由6个相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3.山东省济南济阳区躯曲堤街道,号称中国黄瓜之乡,特产曲堤黄瓜,全国农产品地理标志,2022年,该街道黄瓜年产值超15 0000 0000元,将数字15 0000 0000用科学记数法表示为( ) A.15×108 B.1.5×109 C.0.15×1010 D.1.5×1084.如图,AB ∥CD ,点E 在AB 上,EC 平分∠AED ,若∠2=50°,则∠1的度数为( ) A.45° B.50° C.65° D.80°(第4题图) (第8题图) (第9题图)5.数学中的对称之美无处不在,下列是张强看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形,又是中心对称图形的是( )A.有害垃圾B.可回收物C.厨余垃圾D.其它垃圾 6.化简:x 2x 2-4÷xx -2=( )A.1B.xC.xx-2D.xx+27.现将正面分别标有“善”、“美”、“济”、“阳”图案的四张卡片(除卡片正面内容不同处,其余完全相同),背面朝上放在桌面上,混合洗匀后,王刚从中随机抽取两张,则这两张卡片的图案恰好可以组成济阳概率是()A.12B.13C.14D.168.反比例函数y=kx在第一象限的图案如图所示,则k的值可能是()A.9B.18C.25D.369.如图,点C是直线AB为4的半圆的中点,连接BC,分别以点B和点C为圆心,大于12BC的长为半径画弧,两弧相交于点D,作直线OD交BC于点E,连接AE,则阴影部分面积为()A.πB.2πC.3√3-πD.2√3-π10.把二次函数y=ax2+bx+c(a>0)的图象作关于y轴的对称变换,所的图象的解析式为y=a (x+1)2-a2,若(m-2)a+b+c≥0成立,则m的最小整数值为()A.2B.3C.4D.5二、填空题。

中考数学模拟考试卷(附有答案)

中考数学模拟考试卷(附有答案)

中考数学模拟考试卷(附有答案)(满分:120分 ;考试时间:120分钟)第I 卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣15的绝对值是( ) A .5 B .﹣5 C .﹣15 D .152.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 33.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°第3题 第6题 第7题4.若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .14B .12C .34D .15.若点()2,1A a b -+在第二象限,则点()3,2B a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-5,2).若反比例函数y =k x(x >0)的图象经过点A ,则k 的值为( )A .-5B .-10C .5D .10 7.如图,∠O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则∠O 的半径是( ) A .4 B .5 C .6 D .78.如图,在矩形ABCD 中4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .9.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,△ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .510.如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点E 在BC 边上,且CE=2BE ,连接AE 交BD 于点G ,过点B 作BF AE ⊥于点F ,连接OF 并延长,交BC 于点M ,过点O 作OP OF ⊥交DC 于占N ,94MONC S =四边形现给出下列结论:∠13GE AG = ∠sin 10BOF ∠= ∠5OF = ∠OG BG = 其中正确的结论有( )A .①②③B .②③④C .①②④D .①③④第II 卷(非选择题)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为___.12.因式分解:244ax ax a -+=______.13.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:22 0.075,0.04s s ==甲乙,这两名同学成绩比较稳定的是_______________(填“甲”或“乙”).14.如果关于x 的一元二次方程230x x k -+=有两个相等的实数根,那么实数k 的值是________. 15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为___.第15题 第16题 第17题16.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D 处,无人机测得操控者A 的俯角为37°,测得点C 处的俯角为45°.又经过人工测得操控者A 和教学楼BC 距离为57米,则教学楼BC 的高度为______米.(注:点A ,B ,C ,D 都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 17.如图,在平面直角坐标系xOy 中,A (8,0),∠O 半径为3,B 为∠O 上任意一点,P 是AB 的中点,则OP 的最小值是____.18.如图,在平面直角坐标系中,12OA = 130AOx ∠=︒ 以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒…按此规律进行下去,则2020A 的坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:.2012cos301(2019)2π-⎛⎫-+︒-+- ⎪⎝⎭ (2)解不等式组:.20.(8分)某校对九年级学生进行“综合素质”评价,评价的结果分为A (优秀)、B (良好)、C (合格)、D (不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B (良好)等级人数所占百分比是______________________;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是___________________;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A (优秀)等级或B (良好)等级的学生共有多少名?21.(8分)如图,在直角坐标系中,直线y 1=ax+b 与双曲线y 2=k x(k≠0)分别相交于第二、四象限内的A (m ,4),B (6,n )两点,与x 轴相交于C 点.已知OC =3,tan∠ACO =23. (1)求y 1,y 2对应的函数表达式;(2)求∠AOB 的面积;(3)直接写出当x <0时,不等式ax+b >k x的解集.22.(8分)某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同. (1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?23.(8分)如图,AB 为∠O 的直径,在AB 的延长线上,C 为∠O 上点,AD ⊥CE 交EC 的延长线于点D ,若AC 平分∠DAB .(1)求证:DE 为∠O 的切线;(2)当BE =2,CE =4时,求AC 的长.24.(10分)如图,已知二次函数2y x bx c =-++的图象经过点()1,0A - ()3,0B 与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在请写出点P 的坐标,并说明理由.若不存在,请说明理由.25.(12)分如图,在矩形ABCD 中,6AB cm = 8BC cm = 如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC , BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t=_______s 时,EF =(2)连接EP ,当EPC 的面积为23cm 时,求t 的值(3)若EQP ADC ∽△△,求t 的值参考答案1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】C 5.【答案】A6.【答案】D 7.【答案】B 8.【答案】C 9.【答案】D 10.【答案】D11.8210-⨯ 12.()221a x - 13.乙 14.94 15.8π 16.13 17.5218.(0,101013-)19.【答案】(1)原式=+1+1=6. (2)∠可化简为:,,∠;∠可化简为:,∠ ∠ 不等式的解集为. 21.【答案】解:(1)4=4010%, 40-18-8-4=10,; 10100%=25%40⨯ 故答案为:25%;(2)8360=7240⨯︒︒,故答案为:72°;(3)如图所示:(4)由题意得:1810100070040+⨯=(名);答:评价结果为A等级或B等级的学生共有700名.22.【答案】解:(1)设直线y1=ax+b与y轴交于点D;在Rt∠OCD中,OC=3,tan∠ACO=.∠OD=2,即点D(0,2);把点D(0,2),C(0,3)代入直线y1=ax+b得;b=2,3a+b=0,解得,a=﹣;∠直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2;∠A(﹣3,4),B(6,﹣2);∠k=﹣3×4=﹣12;∠反比例函数的关系式为y2=﹣,因此y1=﹣23x+2,y2=﹣12x;(2)由S∠AOB=S∠AOC+S∠BOC=×3×4+×3×2=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;(2)由S∠AOB=S∠AOC+S∠BOC,进行计算即可;(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.23.【答案】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料;根据题意,得100080030x x=+;解得x=120;经检验,x=120是所列方程的解;当x=120时,x+30=150;答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台;根据题意,得150a+120(20﹣a)≥2800;解得a≥40 3;∠a是整数;∠a≥14;答:至少购进A型机器人14台.24.【答案】解:(1)连接OC;∠AC平分∠OAD;∠∠DAC=∠OAC;∠OC=OA;∠∠OAC=∠OCA;∠∠OCA=∠DAC;∠OC∠AD;∠∠ADC=∠OCE;∠AD∠CE;∠∠ADC=90°;∠∠OCE =90°;∠OC∠ED;∠OC 是∠O 的半径;∠DE 是∠O 的切线. (2)设∠O 的半径为r; 在Rt∠OCE 中(r +2)2=r 2+42;∠r =3;∠OC∠AD;∠∠EOC∠∠EAD; ∠OC OE AD AE=; ∠358AD =; ∠AD =245; ∠由勾股定理可知:DE =325; ∠CD =DE ﹣CE =125; 在Rt∠ADC 中;由勾股定理可知:AC =525.【答案】(1)∠二次函数2y x bx c =-++的图象经过点A(-1,0),B(3,0);∠10930b c b c --+=⎧⎨-++=⎩; 解得:23b c =⎧⎨=⎩;∠抛物线的解析式为:2y x 2x 3=-++; (2)存在,理由如下: 当点P 在x 轴下方时;如图,设AP 与y 轴相交于E;令0x =,则3y =; ∠点C 的坐标为(0,3); ∠A(-1,0),B(3,0); ∠OB=OC=3,OA=1; ∠∠ABC=45︒;∠∠PAB=∠ABC=45︒; ∠∠OAE 是等腰直角三角形; ∠OA=OE=1;∠点E 的坐标为(0,-1); 设直线AE 的解析式为1y kx =-; 把A(-1,0)代入得:1k =-; ∠直线AE 的解析式为1y x =--; 解方程组2123y x y x x =--⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2245x y =⎧⎨=-⎩;∠点P 的坐标为(4,5-); 当点P 在x 轴上方时;如图,设AP 与y 轴相交于D;同理,求得点D 的坐标为(0,1);同理,求得直线AD 的解析式为1y x =+;解方程组2123y x y x x =+⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2223x y =⎧⎨=⎩; ∠点P 的坐标为(2,3);综上,点P 的坐标为(2,3)或(4,5-) 25.【答案】解:(1)由题意得:2,,BE t DF t ==矩形ABCD ,,FQ BC ⊥∴ 四边形FQCD 为矩形,83,6,QC DF t EQ t FQ CD ∴===-== 由勾股定理可得:()(222836,t -+=()28336,t ∴-=836t ∴-=或836,t -=- 23t ∴=或14,3t = 04t << 143t ∴=不合题意,舍去,取2.3t s =故答案为:23. (2)由题意知,2BE t = DF t = 82CE t =- CQ t = 在Rt ABC 中,3tan 4AB ACB BC ∠== 在Rt CPQ 中,3tan 4PQ PQ ACB CQ t ∠=== ∠34PQ t = ∠EPC 的面积为23cm ; ∠()113823224EPC S CE PQ t t =⋅=⨯-⨯=△ 2440,t t ∴-+=∠122t t ==,即t 的值为2 (3)∠四边形ABCD 是矩形 ∠//AD BC∠CAD ACB ∠=∠ ∠EQP ADC ∽△△ ∠CAD PEQ ∠=∠ ∠ACB PEQ ∠=∠ ∠EQ CQ =∠2CE CQ =由(2)知CQ t =,82CE t =- ∠822t t -=∠2t =,即t 的值为2。

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

2024年中考数学模拟考试试卷(带有答案)

2024年中考数学模拟考试试卷(带有答案)
6.在反比例函数 的图象上有两点 ,当 时有 ,则 的取值范围是()
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数 图象在一三象限,进而可得 ,解不等式即可求解.
【详解】解:∵当 时有
∴反比例函数 的图象在一三象限

解得:
故选:C.
【点睛】本题考查了反比例函数图象 性质,根据题意得出反比例函数 的图象在一三象限是解题的关键.
故答案为①③④.
【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
三、解答题(本大题共9个题,满分75分)
16.(1)计算: ;
(2)解分式方程: .
【答案】(1) ;(2)
【详解】解:如图:作 的垂直平分线 ,作 的垂直平分线 ,设 与 相交于点O,连接 ,则点O是 外接圆的圆心
由题意得:

∴ 是直角三角形



故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
8.如图,在 中 ,点 在边 上,且 平分 的周长,则 的长是()
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示较大的数时一般形式为 ,其中 , 为整数,据此判断即可.
【详解】解:数12910000用科学记数法表示为 .
故选:B.
【点睛】本题考查了科学记数法,科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时要看把原来的数,变成 时小数点移动了多少位, 的绝对值与小数点移动的位数相同.

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

数学初三模拟试卷及答案

数学初三模拟试卷及答案

一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √2B. πC. -3D. 0.1010010001…2. 下列运算中,正确的是()A. (-2)×(-3) = 6B. (-2)×3 = -6C. (-2)÷(-3) = -6D. (-2)÷3 = -63. 下列函数中,单调递增的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^34. 已知等差数列的前三项分别为2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 45. 下列不等式中,正确的是()A. 2x + 3 > 7B. 2x + 3 < 7C. 2x - 3 > 7D. 2x - 3 < 76. 已知一次函数y = kx + b的图象过点(2,3),且与y轴交于点(0,-1),则该函数的解析式为()A. y = 2x - 1B. y = -2x + 1C. y = 2x + 1D. y = -2x - 17. 已知正方形的边长为a,则对角线的长度为()A. √2aB. √3aC. 2aD. 3a8. 已知三角形的三边长分别为3,4,5,则该三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形9. 下列图形中,中心对称图形是()A. 正方形B. 等腰三角形C. 等边三角形D. 梯形10. 已知等比数列的前三项分别为2,4,8,则该数列的公比为()A. 2B. 3C. 4D. 6二、填空题(每题4分,共20分)11. 计算:-3 - (-2) + 1 = _______12. 若x = -3,则2x^2 - 5x + 3 = _______13. 已知函数y = 3x - 2,当x = 2时,y的值为 _______14. 已知等差数列的前三项分别为-1,2,5,则该数列的公差为 _______15. 已知一次函数y = kx + b的图象过点(1,2),且与x轴交于点(-2,0),则该函数的解析式为 _______三、解答题(每题10分,共30分)16. 已知函数y = 2x - 3,求以下问题:(1)当x = 4时,y的值为多少?(2)若y = 1,求x的值。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列实数中,绝对值最小的是()A. 2B. -3C. 0D. 1/22. 一个数的相反数是3,这个数是()A. 3B. -3C. 0D. 13. 下列运算中,正确的是()A. (-2)^2 = 4B. √16 = 4C. √(-4) = 2D. (-3)^3 = -274. 一个角的补角是120°,则这个角是()A. 60°B. 30°C. 90°D. 120°5. 下列方程中,是一元二次方程的是()A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 3x - 2 = 0D. x^2 - 2xy + y^2 = 06. 在直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (-2, 3)D. (2, -3)7. 下列不等式中,解集为x > 2的是()A. x - 2 < 0B. x + 2 > 0C. x - 2 > 0D. x + 2 < 08. 一个三角形的两边长分别为3和5,第三边的长x满足()A. 2 < x < 8B. 3 < x < 8C. 2 < x < 7D. 3 < x < 79. 函数y = 2x + 3的图象是()A. 一条直线B. 一条双曲线C. 一条抛物线D. 一条曲线10. 下列统计量中,描述数据集中趋势的是()A. 中位数B. 众数C. 方差D. 极差二、填空题(本题共5小题,每小题3分,共15分)11. 一个数的平方根是2,这个数是______。

12. 一个数的立方根是-8,这个数是______。

13. 一个角的余角是30°,则这个角是______。

14. 一个等腰三角形的底角是45°,则顶角是______。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级中考模拟考试数学试题一.选择题(共12小题,满分36分,每小题3分)1.下列说法正确的是()A.一个有理数的平方根有两个,它们互为相反数B.负数没有立方根C.无理数都是开不尽的方根数D.无理数都是无限小数2.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.一次函数y=(m﹣2)x+(m﹣1)的图象如图所示,则m的取值范围是()A.m<2B.1<m<2C.m<1D.m>2 5.将一条两边沿平行的纸带如图折叠,若∠1=62°,则∠2等于()A.62°B.56°C.45°D.30°6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,在△ABC中,∠BAC=90°,AB=8cm,AC=6cm,动点P从点C出发沿CB方向以3cm/s 的速度向点B运动,同时动点Q从点B出发沿BA方向以2cm/s的速度向点A运动,将△APQ沿直线AB翻折得△AP′Q,若四边形APQP′为菱形,则运动时间为()A.1s B.s C.s D.s8.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0B.1C.2D.39.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是()A.甲B.乙C.丙D.无法判断10.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则cos∠CBE的值是()A.B.C.D.11.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是()A.B.C.D.12.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或20°C.20°D.80°或50°二.填空题(共8小题,满分24分,每小题3分)13.的倒数是.14.写出一个二次项系数为1,且一个根是3的一元二次方程.15.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.16.如图所示,AB是⊙O的直径,弦CD交AB于点E,若∠DCA=30°,AB=3,则阴影部分的面积为.17.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=.18.用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个图案比前一个图案多4个等边三角形和1个正方形,则第n个图案中等边三角形的个数为个.19.△ABC在平面直角坐标系中的位置如图所示,将△ABC绕点A顺时针旋转90°得到△AB'C′,则点B的对应点B'的坐标为.20.如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交x轴于点P.若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为.三.解答题(共8小题)21.计算:×(1﹣)﹣(8﹣)22.解方程:﹣=1.23.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.24.CE是△ABC的一个外角∠ACD的平分线,且EF∥BC交AB于点F,∠A=60°,∠CEF=50°,求∠B的度数.25.如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.26.水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?27.某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?28.在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】解答本题可以有排除法解答,根据平方根的性质可以排除A,根据立方根的意义可以排除B,根据无理数的定义可以排除C,故可以得到正确答案.【解答】解:(1)由平方根的性质可以得知,负有理数没有平方根,0的平方根是0,∴A错误.(2)∵任何实数都有立方根,∴B答案错误.(3)∵无理数的定义是无限不循环小数叫做无理数,∴C答案错误.∴D答案正确.故选:D.【点评】本题是一道涉及无理数和平方根的试题,考查了无理数的定义,平方根的性质,立方根的性质等几个知识点.2.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.3.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】根据一次函数的图象经过第二、三、四象限判断出函数k及b的符号,得到关于m的不等式组,解不等式组即可.【解答】解:∵一次函数y=(m﹣2)x+(m﹣1)的图象在第二、三、四象限,∴,解得1<m<2.故选:B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.【分析】先根据∠1=62°可求出∠EAB=180°﹣∠1=180°﹣62°=118°,根据AE∥BF可知,∠ABF=180°﹣∠EAB=62°,进而可求出∠2的度数.【解答】解:∵∠1=62°,∴∠EAB=180°﹣∠1=180°﹣62°=118°,∵AE∥BF,∴∠ABF=180°﹣∠EAB=62°,∴∠2=180°﹣2∠ABF=180°﹣2×62°=56°.故选:B.【点评】本题考查的是图形翻折变换的性质及平行线的性质,熟知图形翻折变换的性质是解答此题的关键.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】连接P′P,交AB于O,根据菱形的判定定理得到点O为AQ的中点时,四边形APQP′为菱形,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:连接P′P,交AB于O,当点O为AQ的中点时,四边形APQP′为菱形,则AO=OQ==4﹣t,∵∠BAC=90°,AB=8cm,AC=6cm,∴BC==10,∵OP∥AC,∴=,即=,解得,t=,即当四边形APQP′为菱形,则运动时间为s,故选:D.【点评】本题考查的是翻转变换的性质、菱形的性质、平行线分线段成比例定理,掌握翻转变换的性质、平行线分线段成比例定理是解题的关键.8.【分析】将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式≥0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6﹣m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.【解答】解:一元二次方程(x﹣2)(x﹣3)=m化为一般形式得:x2﹣5x+6﹣m=0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣5)2﹣4(6﹣m)=4m+1>0,解得:m>﹣,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6﹣m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m=x2﹣5x+(6﹣m)+m=x2﹣5x+6=(x﹣2)(x﹣3),令y=0,可得(x﹣2)(x﹣3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.故选:C.【点评】此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是中考中常考的综合题.9.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:根据统计图波动情况来看,此次射击成绩最稳定的是乙,波动比较小,比较稳定.故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.【分析】折叠后形成的图形相互全等,利用三角函数的定义可求出.【解答】解:根据题意,BE=AE.设CE=x,则BE=AE=8﹣x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8﹣x)2=62+x2解得x=,BE=,BC=6,∴cos∠CBE=,故选:D.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.11.【分析】求出黑色方砖在整个地板中所占的面积的比值即可解决问题;【解答】解:∵由图可知,黑色方砖2块,共有9块方砖,∴黑色方砖在整个地板中所占的面积的比值=,∴米粒停在黑色区域的概率是.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.12.【分析】分别从:①若100°是等腰三角形顶角的外角,②若100°是等腰三角形底角的外角,去分析,即可求得答案.【解答】解:①若100°是等腰三角形顶角的外角,则它的顶角的度数为:180°﹣100°=80°;②若100°是等腰三角形底角的外角,则它的底角的度数为:180°﹣100°=80°;∴它的顶角为:180°﹣80°﹣80°=20°;∴它的顶角的度数为:80°或20°.故选:B.【点评】此题考查了等腰三角形的性质:等边对等角.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.二.填空题(共8小题,满分24分,每小题3分)13.【分析】根据倒数的定义即可求解.【解答】解:的倒数是4.故答案为:4.【点评】考查了倒数,关键是熟悉乘积是1的两数互为倒数.14.【分析】本题根据一元二次方程的根的定义,确定一元二次方程.【解答】解:根据题意,设该一元二次方程为:(x+b)(x+a)=0;∵该方程的一个根是3,∴该一元二次方程可以是:x(x﹣3)=0.即x2﹣3x=0故答案是:x2﹣3x=0.【点评】本题考查了一元二次方程的解的定义,利用待定系数法求出方程式.15.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【解答】解:解3m﹣2x<5,得x>.由不等式的解集,得=3.解得m=.故答案为:.【点评】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.16.【分析】作DN⊥AB,垂足为N,求出∠BOD的度数,进而求出扇形BOD的面积,再求出△BOD的面积,即可求出阴影部分的面积.【解答】解:作DN⊥AB,垂足为N,∵∠DCA=30°,∴∠AOD=2∠ACD=60°,∴∠BOD=120°,∵AB=2,∴OB=,∴S==π,扇形BOD在Rt△DON中,sin60°==,∴DN=,=××=,∴S△BOD∴S阴影=π﹣,故答案为π﹣.【点评】本题主要考查了扇形面积的计算,解题的关键是根据题意得到阴影面积=扇形BOD的面积﹣三角形BOD的面积.17.【分析】根据∠BAC=40°的条件,求出∠ACB+∠ABC的度数,再根据∠ACB=∠ABC,∠ACP =∠CBP,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.【解答】解:∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ACB=∠ABC,∠ACP=∠CBP,∴∠PBA=∠PCB,∴∠ACP+∠ABP=∠PCB+∠PBC=140°×=70°,∴∠BPC=180°﹣70°=110°.故答案为110°.【点评】此题考查了三角形的内角和定理,熟记三角形的内角和定理是解题的关键.18.【分析】根据题目中的图形,可以发现正三角形个数的变化情况,从而可以求得第n个图案中等边三角形的个数.【解答】解:当n=1时,等边三角形的个数为:2,当n=2时,等边三角形的个数为:2+4×1=6,当n=3时,等边三角形的个数为:2+4×2=10,当n=4时,等边三角形的个数为:2+4×3=14,故第n个图案中等边三角形的个数为:2+4(n﹣1)=4n﹣2,故答案为:(4n﹣2).【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.19.【分析】根据△ABC绕点A顺时针旋转90°得到△AB'C′,画出图形即可解决问题.【解答】解:将△ABC绕点A顺时针旋转90°得到△AB′C′,图形如图所示,∴点B'的坐标为(4,0),故答案为:(4,0).【点评】本题考查了坐标与图形的变化,解答本题的关键是依据旋转的三要素,找到点B的对应点B'的位置.20.【分析】根据等腰直角三角形,可得AB的长,再根据锐角三角函数,可得AD,BD的长,再根据待定系数法,可得函数解析式,根据自变量与函数值得对应关系,可得P点坐标,根据中点坐标公式,可得答案.【解答】解:如图:点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2,∠ABD=45°,∴BD =AD =2,A (4,3),设AB 的解析式为y =kx +b ,将A ,B 点坐标代入,得,解得,AB 的解析式为y =x ﹣1,当y =0时,x =1,即P (1,0),由中点坐标公式,得x A ′=2x P ﹣x A =2﹣4=﹣2,y A ′=2y A ′﹣y A =0﹣3=﹣3,A ′(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查了等腰直角三角形,利用等腰直角三角形得出AB 的长是解题关键.三.解答题(共8小题)21.【分析】先把与化成最简二次根式,再去掉括号,然后合并同类二次根式即可.【解答】解:原式=×(1﹣)﹣(8×﹣2) =﹣2﹣4+2=﹣﹣2. 【点评】此题考查了二次根式的混合运算,掌握运算步骤和法则是解题的关键.22.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:x 2﹣2x +2=x 2﹣x ,解得:x =2,检验:当x =2时,方程左右两边相等,所以x =2是原方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.【分析】根据整式的乘法,可得相等的整式,根据相等整式中同类项的系数相等,可得答案.【解答】解:x 2+Ax +B =(x ﹣3)(x +5)=x 2+2x ﹣15,得A=2,B=﹣15.3A﹣B=3×2+15=21.【点评】本题考查了因式分解,利用整式的乘法得出相等整式中同类项的系数相等是解题关键.24.【分析】依据平行线的性质以及角平分线的定义,即可得到∠ACB的度数,再根据三角形内角和定理,即可得到∠B的度数.【解答】解:∵EF∥BC,∴∠CEF=∠ECD=50°,∵CE平分∠ACD,∴∠ACE=∠ECD,∴∠ACE=∠ACE+∠ECD=100°,∴∠ACB=180°﹣∠ACD=180°﹣100°=80°,∴∠B=180°﹣(∠A+∠ACB)=180°﹣60°﹣80°=40°.【点评】本题考查了平行线的性质,三角形的角平分线的定义,熟记平行线的性质是解题的关键.25.【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)设CD=2x,则DE=x,CE=x,构建方程即可解决问题;【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC===20(米)答:坡底C点到大楼距离AC的值是20米.(2)设CD=2x,则DE=x,CE=x,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴60﹣x=20+x,∴x=40﹣60,∴CD=2x=80﹣120,∴CD的长为(80﹣120)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.26.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);故答案为:100+200x(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.4﹣1=3,答:老板需将每斤的售价定为3元.【点评】本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.27.【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【点评】本题主要考查二次函数的应用和一元二次方程的应用,由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.28.【分析】(1)先求出PC=6、PB=10、RP=2,再证△PBC∽△PRQ得,据此可得;(2)证△RMQ∽△PCB得,根据PC=6、BC=8知,据此可得答案;(3)由PD∥AB知,据此可得、PN=,由、RM=y知,根据PD∥MQ得,即,整理可得函数解析式,当点R与点A重合时,PQ取得最大值,根据△ABQ∽△NAB知=,求得x=,从而得出x的取值范围.【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.【点评】本题主要考查相似三角形的综合题,解题的关键是熟练掌握正方形的性质、勾股定理及相似三角形的判定与性质.。

相关文档
最新文档