纳米二氧化硅
纳米sio2母粒
纳米sio2母粒
纳米二氧化硅母粒是一种高科技材料,它是将纳米二氧化硅粉体通过特殊的工艺处理后制成的颗粒状物质。
这种母粒具有许多独特的性能和优点,因此在多个领域得到了广泛的应用。
纳米二氧化硅母粒的主要成分是纳米二氧化硅,它是一种非常细小的无机材料,直径在1 到 100 纳米之间。
这种微小的尺寸使得纳米二氧化硅具有许多特殊的性能,如高表面积、高活性、高纯度等。
纳米二氧化硅母粒在塑料、橡胶、涂料、油墨等领域有着广泛的应用。
在塑料中添加纳米二氧化硅母粒可以提高塑料的强度、韧性、耐热性和耐磨性等性能;在橡胶中添加纳米二氧化硅母粒可以提高橡胶的弹性、耐磨性和抗老化性等性能;在涂料和油墨中添加纳米二氧化硅母粒可以提高涂料和油墨的附着力、遮盖力和耐候性等性能。
此外,纳米二氧化硅母粒还具有良好的生物相容性和低毒性,因此在生物医药领域也有着广泛的应用前景。
总之,纳米二氧化硅母粒是一种性能优异、应用广泛的高科技材料,它的出现为塑料、橡胶、涂料、油墨等领域的发展带来了新的机遇和挑战。
纳米二氧化硅密度
纳米二氧化硅密度
纳米二氧化硅是一种常见的纳米材料,具有广泛的应用前景。
其密度与普通二氧化硅相比有所不同,下面将对纳米二氧化硅的密度进行详细介绍。
纳米二氧化硅的密度通常在2.2-2.6 g/cm³之间,这个范围的密度与普通二氧化硅的密度相当。
但是,纳米二氧化硅的密度也受到其制备方法和表面修饰等因素的影响。
例如,通过溶胶-凝胶法制备的纳米二氧化硅密度通常较低,约为2.2 g/cm³,而通过气相沉积法制备的纳米二氧化硅密度则较高,约为2.6 g/cm³。
纳米二氧化硅的密度对其性质和应用有着重要的影响。
首先,纳米二氧化硅的密度越大,其比表面积越小,表面活性也越低。
这意味着,密度较大的纳米二氧化硅在某些应用中可能不如密度较小的纳米二氧化硅表现出色。
例如,在催化剂和吸附剂等应用中,密度较小的纳米二氧化硅通常更具活性和吸附能力。
其次,纳米二氧化硅的密度还影响着其物理和化学性质。
例如,密度较大的纳米二氧化硅通常具有较高的热稳定性和机械强度,而密度较小的纳米二氧化硅则更易于形成纳米多孔结构和表现出较好的光学性能。
总之,纳米二氧化硅的密度是其性质和应用的重要参数之一。
在选择纳米二氧化硅作为材料时,需要根据具体的应用需求和制备方法等因素综合考虑其密度等性质。
纳米二氧化硅的发展现状及前景
纳米二氧化硅的发展现状及前景一、引言纳米二氧化硅(SiO2)是一种具有特殊结构和性质的纳米材料,具有广泛的应用前景。
本文将对纳米二氧化硅的发展现状及前景进行详细探讨。
二、纳米二氧化硅的制备技术纳米二氧化硅的制备技术主要包括溶胶-凝胶法、热解法、气相法等。
其中,溶胶-凝胶法是最常用的制备方法之一。
该方法通过溶胶的制备、凝胶的形成和热处理等步骤,可以制备出粒径可控的纳米二氧化硅材料。
三、纳米二氧化硅的性质和特点纳米二氧化硅具有许多独特的性质和特点,包括高比表面积、优异的化学稳定性、良好的生物相容性等。
这些特点使得纳米二氧化硅在许多领域具有广泛的应用前景。
四、纳米二氧化硅的应用领域1. 生物医学领域纳米二氧化硅在生物医学领域具有广泛的应用前景。
例如,可以用于药物传递系统、生物传感器、组织工程等方面。
纳米二氧化硅可以作为药物的载体,通过调控其粒径和表面性质,实现药物的靶向输送和控释。
此外,纳米二氧化硅还可以用于制备生物传感器,用于检测生物标志物的存在和浓度。
在组织工程方面,纳米二氧化硅可以用于制备材料支架,促进组织再生和修复。
2. 环境领域纳米二氧化硅在环境领域也有重要的应用价值。
例如,可以用于水处理、气体吸附等方面。
纳米二氧化硅具有高比表面积和优异的吸附性能,可以用于去除水中的重金属离子、有机污染物等。
此外,纳米二氧化硅还可以用于吸附空气中的有害气体,如甲醛、苯等。
3. 功能材料领域纳米二氧化硅还可以用于制备各种功能材料。
例如,可以用于制备防晒剂、涂料、催化剂等。
纳米二氧化硅可以作为防晒剂的成份,可以有效地吸收紫外线,保护皮肤免受紫外线辐射的伤害。
在涂料方面,纳米二氧化硅可以提高涂料的耐候性和抗污性。
此外,纳米二氧化硅还可以作为催化剂的载体,用于促进化学反应的进行。
五、纳米二氧化硅的发展现状目前,纳米二氧化硅的研究和应用已经取得了一些发展。
在制备技术方面,溶胶-凝胶法、热解法等方法已经得到了广泛应用。
介孔二氧化硅与纳米二氧化硅_解释说明
介孔二氧化硅与纳米二氧化硅解释说明1. 引言1.1 概述介孔二氧化硅和纳米二氧化硅都是在纳米尺度下具有特殊结构和性质的材料。
介孔二氧化硅具有大量的孔道结构,而纳米二氧化硅则具有极小的粒径。
这两种材料在各自的领域中具有广泛应用,并且在材料科学和纳米技术领域引起了越来越多的关注。
1.2 文章结构本文将分为五个主要部分进行论述,每个部分将对不同方面涉及到的内容进行详细阐述。
首先,我们将概述介孔二氧化硅和纳米二氧化硅的定义和特点,以帮助读者更好地了解这两种材料。
然后,我们将探讨介孔二氧化硅和纳米二氧化硅的制备方法,并介绍它们在不同领域中的应用。
接下来,我们将比较介孔二氧化硅与纳米二氧化硅在物理性质、制备方法以及应用前景上的差异。
最后,在结论部分我们将总结介孔二氧化硅和纳米二氧化硅各自的优势和应用价值,并对它们的优缺点进行比较并给出未来的展望。
1.3 目的本文的目的是全面介绍介孔二氧化硅和纳米二氧化硅以及它们之间的差异。
我们旨在帮助读者更好地理解这两种材料的定义、特点、制备方法和应用领域,并提供一个对它们进行比较和评估的框架。
通过深入了解这些材料,读者将能够更好地应用它们于相关领域,并为未来的研究提供启示。
2. 介孔二氧化硅2.1 定义和特点介孔二氧化硅是一种具有高特殊表面积和可调控孔径的无机材料。
其特点主要体现在以下几个方面:- 高比表面积:介孔二氧化硅具有较大的比表面积,可以提供更多的活性表面,使其在吸附、催化和药物释放等领域具有潜在应用价值。
- 可调控孔径:通过不同的制备方法和条件,可以调节介孔二氧化硅材料中微米级别的孔道大小,从而实现对其性能的精确调控。
- 多功能性:介孔二氧化硅具有良好的生物相容性和可降解性,在医药领域中可以作为载体来实现药物控释和靶向传递。
2.2 制备方法目前,制备介孔二氧化硅的方法主要包括模板法、溶胶-凝胶法、反相微乳液法等。
其中,最常用的是模板法。
模板法使用有机或无机物作为模板,在模板表面生成相应孔道,并通过去除模板来得到所需的介孔结构。
纳米二氧化硅
纳米二氧化硅简介:纳米二氧化硅是极其重要的高科技超微细无机新材料之⼀一,因其粒径很小,比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。
纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。
应用领域:由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。
纳米二氧化硅是应用较早的纳米材料之⼀一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。
行业领导者上海那博化工科技有限公司于2012 年在上海市嘉定区建成,成为那博化工在中国的综合服务平台,并辐射至亚太区众多客户。
那博化工致力于通过品牌、产品及服务,为涂料、塑料、造纸和特殊用品市场创造更好的、更令人满意的价值。
那博研发团队优势从概念到商业化应用,那博的技术团队帮助客户快速实现产品的商业化应用。
• 通过提升产品设计以改进性能• 更短的加工周期以提高生产力• 成本优势和出众的性能•领先的实验设备消费者作为精细化工行业的重要原料供应商,我们在纳米技术领域有着独到的见解。
我们愿用专业的知识给您最中肯的建议,帮您选择最适合您的技术解决方案。
商业伙伴我们的承诺是理解客户,提供卓越的产品、服务和整体价值,在满足您的独特需要的同时,为您的企业的快速成长贡献自己的绵薄之力。
混凝土中添加纳米二氧化硅技术规程
混凝土中添加纳米二氧化硅技术规程一、前言混凝土是一种重要的建筑材料,它具有高强度、耐久性、耐磨性等优点。
但是,传统的混凝土存在着一些缺陷,如易开裂、易渗水等问题。
为了改善混凝土的性能,近年来人们开始研究在混凝土中添加纳米材料的方法。
纳米二氧化硅是一种常用的纳米材料,其在混凝土中的应用已经得到了广泛的关注和研究。
本文将详细介绍混凝土中添加纳米二氧化硅的技术规程。
二、纳米二氧化硅的特性纳米二氧化硅是一种尺寸在1-100纳米之间的二氧化硅颗粒。
它具有以下特性:1. 高比表面积:纳米二氧化硅的比表面积很大,可以达到200-400平方米/克。
这种高比表面积使得纳米二氧化硅具有很强的活性。
2. 高反应活性:纳米二氧化硅具有很强的反应活性,可以与水化产物反应生成钙硅石等化合物,从而提高混凝土的强度和耐久性。
3. 高弹性模量:纳米二氧化硅的弹性模量比传统的二氧化硅高很多,可以提高混凝土的强度和刚性。
4. 显微结构调控:纳米二氧化硅可以通过表面修饰等方法进行结构调控,从而控制混凝土的性能。
三、纳米二氧化硅在混凝土中的应用1. 提高混凝土的强度和耐久性:纳米二氧化硅可以与水化产物反应生成钙硅石等化合物,从而提高混凝土的强度和耐久性。
此外,纳米二氧化硅可以填充混凝土中的微孔和裂缝,从而提高混凝土的密实性和耐久性。
2. 减少混凝土的收缩和开裂:混凝土在硬化过程中会发生收缩,容易导致开裂。
纳米二氧化硅可以填充混凝土中的微孔和裂缝,从而减少混凝土的收缩和开裂。
3. 改善混凝土的渗透性:纳米二氧化硅可以填充混凝土中的微孔和裂缝,从而减少混凝土的渗透性。
4. 提高混凝土的耐久性:纳米二氧化硅可以与混凝土中的氢氧化钙反应生成钙硅石等化合物,从而提高混凝土的耐久性。
四、混凝土中添加纳米二氧化硅的技术规程1. 材料准备:(1)水泥:采用普通硅酸盐水泥;(2)骨料:采用粗细骨料比例为1:2.5;(3)纳米二氧化硅:纳米二氧化硅的掺量为水泥质量的2%。
纳米二氧化硅的作用和用途
纳米二氧化硅的作用和用途纳米二氧化硅(SiO2)是一种微细的无机化合物,具有许多独特的物理和化学性质,使其具有广泛的应用价值。
本文将着重介绍纳米二氧化硅的作用和用途。
作用:1. 催化剂:纳米二氧化硅可以作为催化剂应用于化学反应中,特别是在石油化工领域中具有非常重要的应用,例如精细化学品和生物燃料的生产。
2. 增强材料:在复合材料中添加纳米二氧化硅可以提高材料的强度和耐久性,应用于建筑、汽车、航空等领域,也可作为体育器材和安全装备的防护层。
3. 表面润滑剂:纳米二氧化硅表面具有很高的活性和可变形性,可以在减少磨损和摩擦降低的同时提高材料表面的抗腐蚀性和润滑性。
4. 生物医学:纳米二氧化硅在生物医学领域的应用非常广泛,可以用于药物传递、细胞成像和治疗等方面,同时也可以作为药物快速检测和生物传感器的载体。
5. 光电领域:纳米二氧化硅是高透明度材料,可以用于光学透镜、太阳能电池和LED等的制造。
用途:1. 建筑材料:纳米二氧化硅可以作为建筑材料中的改良剂,可以增强材料的强度和韧性,同时提高隔音和隔热性能,还可以防水防潮、防火。
2. 填料材料:纳米二氧化硅被广泛用作填料材料,如在聚合物、橡胶、涂料和粘合剂中作为增稠剂和抗沉淀剂,以提高这些材料的稠度、附着性和耐久性。
3. 食品工业:纳米二氧化硅可以用于食品加工中的乳化和稳定膜的制造,同时还可以作为食物添加剂的防腐剂和保鲜剂,延长食品的保质期。
4. 医药工业:纳米二氧化硅可以用作生产药物的载体,并用于可口服、易吸收的颗粒剂、注射液、滴眼剂和保健品的制造。
5. 环保工程:纳米二氧化硅可以用于废水处理和环境污染控制,特别是在提取重金属和其他污染物的方面。
总之,纳米二氧化硅的作用和用途十分广泛,涉及到许多不同的领域。
通过对纳米二氧化硅的了解和应用,可以发现它具有很高的应用价值和经济效益,未来还有更大的发展前景。
纳米二氧化硅
纳米级二氧化硅目录编辑本段编辑本段纳米二氧化硅应用领域1 在涂料领域纳米二氧化硅(SP30)具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。
在建筑内外墙涂料中,若添加纳米氧化硅(SP30),可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施工性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。
纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters等用溶胶凝胶法合成了含纳米二氧化硅(同VK-SP30)的全透明的耐温涂料 H.Schmidt等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。
明显增强了涂料的弹性和强度。
纳米氧化硅(同VK-SP30)具有常规SiO2所不具有的特殊光学性能,它具有极强的紫外吸收,红外反射特性。
经紫外一可见分光光度计测试表明,它对波长400nm以内的紫外光吸收率高达70%以上,对波长800nm 以外的红外光反射率也达70%以上,它添加到涂料中能对涂料形成屏蔽作用,达到抗紫外老化和热老化的目的,同时增加了涂料的隔热性,徐国财等通过纳米微粒填充法,将纳米氧化硅作掺杂到紫外光同化涂料中,明显地提高了紫外光固化涂料的硬度和附着力,还减弱了紫外光同化涂料吸收UV辐射的程度,从而降低了紫外光同化涂料的同化速度。
2 在粘结剂和密封胶领域密封胶和粘结剂是量大、使用范围广的重要产品。
产品粘度、流动件、旧化速度等有严格要求。
目前,国内高档的密封胶和粘结剂都依赖进口。
据介绍,国外在这个领域的产品已经采用纳米材料作添加剂,而纳米二氧化硅是首选材料。
其作用机理是纳米SiO2表面包覆一层有机材料,使之具有疏水特性,将它添加到密封胶中能很快形成一种网络结构,抑制胶体流动,同化速率加快,提高粘接效果,同时由于颗粒细小,更增加了胶的密封性。
纳米二氧化硅结构式
纳米二氧化硅结构式纳米二氧化硅,也被称为硅酸盐二氧化硅,是一种具有高度结晶性和高比表面积的无机非金属材料。
其化学式为SiO2,属于氧化物类。
纳米二氧化硅具有许多杰出的特性,如高比表面积、优异的热稳定性、化学惰性和光学透明性等,这使得它被广泛应用于化妆品、医药、材料科学和能源等领域。
纳米二氧化硅的结构式如下:O||O-Si-O||O纳米二氧化硅的结构由无数个硅和氧原子通过共价键连接而成。
在固态结构中,二氧化硅可存在于几种不同的晶型,如α-石英、β-石英、兰德结构和尖晶石结构等。
这些不同晶型具有不同的晶胞参数和结构对称性。
在纳米尺度下,纳米二氧化硅表现出与传统二氧化硅不同的特性。
其最引人注目的特点之一是具有极高的比表面积。
由于纳米二氧化硅由纳米级颗粒组成,其较大的表面积使其在吸附、催化、分离和传感等应用中具有很大潜力。
此外,纳米二氧化硅还表现出优异的光学性质,在光学器件和传感器中有广泛应用。
纳米二氧化硅的制备方法有多种,包括溶胶-凝胶法、气相沉积法、溶剂热法和高温煅烧法等。
其中,溶胶-凝胶法是一种常用的工艺,通过水解和聚合反应在水溶液中合成纳米二氧化硅。
纳米二氧化硅在化妆品中的应用是其最常见的应用之一。
其具有优异的吸油、吸湿和抗菌性能,常用于制备粉体化妆品、防晒霜和护肤品等。
此外,纳米二氧化硅还可用于药物传递系统的载体、生物传感器的制备和材料增强等领域。
在材料科学领域,纳米二氧化硅常用于合成纳米复合材料和纳米涂层。
其高比表面积和良好的耐热性能可以增强材料的力学性能、热稳定性和防腐蚀性。
此外,纳米二氧化硅还可用于制备光学材料、介电材料和传感器等。
纳米二氧化硅在能源及环境领域也有广泛的应用。
在能源存储方面,纳米二氧化硅可用作锂离子电池的负极材料,具有较高的储能密度和长循环寿命。
在环境污染治理方面,纳米二氧化硅具有良好的吸附性能,可用于处理废水中的有机污染物和重金属离子。
总之,纳米二氧化硅作为一种重要的无机材料,具有许多独特的特性和广泛的应用前景。
纳米二氧化硅的制备方法
纳米二氧化硅的制备方法
纳米二氧化硅是一种重要的纳米材料,具有广泛的应用前景。
近年来,随着纳米技术的不断发展,纳米二氧化硅的制备方法也越来越多。
下面,我们将介绍几种常见的纳米二氧化硅的制备方法。
1. 物理法
物理法是制备纳米二氧化硅最常用的方法之一。
这种方法通常是通过机械粉碎或热蒸发等物理手段将大颗粒的二氧化硅转化为纳米
颗粒。
其中,机械粉碎法是一种比较简单的方法,可以通过球磨、振动磨等设备将二氧化硅颗粒粉碎成纳米级别。
热蒸发法是将二氧化硅加热蒸发,然后通过冷凝收集纳米颗粒。
2. 化学法
化学法是另一种制备纳米二氧化硅的常用方法。
这种方法通常是通过化学反应来合成纳米二氧化硅。
其中,溶胶凝胶法是一种比较常见的化学法。
该方法是将硅酸盐和酸反应得到溶胶,然后通过加热或干燥等处理将溶胶转化为纳米二氧化硅颗粒。
另外,还有其他一些化学法,如气相合成法、水热法、溶剂热法等。
3. 生物法
生物法是一种比较新型的制备纳米二氧化硅的方法。
这种方法通常是通过生物体的代谢活动来合成纳米二氧化硅。
其中,微生物法是一种比较常见的生物法。
该方法是将二氧化硅添加到微生物培养基中,通过微生物的代谢活动将二氧化硅转化为纳米颗粒。
此外,还有其他一些生物法,如植物提取法等。
以上几种方法各有优缺点,适用范围也有所不同。
选择合适的制备方法需要考虑多种因素,如成本、效率、纯度、粒度分布等。
纳米二氧化硅
1.SiO2的基本性质
纳米二氧化硅,又名水合二氧化硅,分子式为SiO2·nH2O,是一种白色、无毒、无定形微细粉状物,具有多孔性、高分散性、质轻、化学稳定性好、耐高温、不燃烧、电绝缘性好等优异性能的重要无机硅化合物。
纳米二氧化硅微粒直径很小,一次粒子粒径大约在0.01~1nm范围,其细小微粒表面有不同的羟基存在,故显示出亲水性。
红外光谱研究证实,纳米二氧化硅粒子表面有三种羟基,未受干扰的孤立羟基、彼此形成氢键的连生的缔合羟基以及两个羟基连在一个硅原子上的双生羟基。
其中,孤立、双生羟基都没有形成氢键,这也就为改性提供了改性条件[1]。
纳米二氧化硅分子结构中的一Si一O活性与其所处的位置有关,处于结构中心的一Si一O键具有极性,结合能力大,处于微粒表面的一Sj一O键活性大,能与其他分子发生力的结合作用。
纳米二氧化硅表面的Si一OH基团具有很强的活性,易与其周围离子键合而起到补强作用。
就化学组成而言,纳米二氧化硅表面的特点是有一层均匀的硅氧烷和硅烷醇基团、这些基团具有强烈的吸水性。
硅烷醇[2]易于进行化学反应,从而使纳米二氧化硅表面比较容易被改性。
纳米二氧化硅的其他理化特性见表1。
这些特殊的结构及理化特性,使纳米二氧化硅具有优良的耐酸、耐碱、耐高温和电绝缘性、吸收性、分散性、增稠性、触变性及削光性等性能。
表1 纳米SiO2理化性质[3]
比表面积BET 150~250㎡/g
密度(1.9~2.0)×10-3㎏/m2
PH值5~7
热失重量(150℃)6%~8%
挥发性状200~240mL/100g
聚集性中等
对溶剂的亲和性亲水性
透光性大
折射性 1.45。
纳米二氧化硅结构式
纳米二氧化硅结构式纳米二氧化硅(nano silica)是一种具有纳米级尺寸的二氧化硅颗粒,其结构与普通的二氧化硅相似,但具有更小的粒径和更大的比表面积。
纳米二氧化硅的结构式可表示为SiO2。
纳米二氧化硅的结构与晶体二氧化硅相似,由硅原子和氧原子组成,呈现出典型的四面体结构。
在晶体中,硅原子与四个氧原子形成四面体,而每个氧原子又与两个硅原子相连接,形成了连续的Si-O-Si键。
纳米二氧化硅的结构可以是非晶态或晶态的。
在非晶态结构中,硅原子和氧原子以较随机的方式排列,没有长程有序性。
而在晶态结构中,硅原子和氧原子以一定的规则排列,形成晶格。
晶体二氧化硅可分为α-晶型和β-晶型,它们具有不同的空间群和晶胞参数。
纳米二氧化硅由于其小尺寸和高比表面积,具有许多特殊的性质和应用。
首先,纳米二氧化硅具有高度的化学稳定性和热稳定性,可用于制备高温稳定的纳米复合材料。
其次,纳米二氧化硅具有较大的比表面积,使其在吸附、催化和传感等领域具有广泛的应用。
纳米二氧化硅还具有优异的光学性能和生物相容性,可用于制备光电材料和生物医学材料。
纳米二氧化硅的制备方法多种多样,常见的方法包括溶胶-凝胶法、气相沉积法、溶液法、等离子体法等。
其中,溶胶-凝胶法是最常用的工艺之一。
该方法通过水解硅醇溶液或硅酸盐溶液,生成纳米级的二氧化硅颗粒。
溶胶-凝胶法适用于制备大量的纳米二氧化硅,并可以通过控制反应条件来调控颗粒的尺寸和形态。
总之,纳米二氧化硅是一种具有特殊结构和特殊性质的材料。
它的结构与晶体二氧化硅相似,但具有更小的粒径和更大的比表面积。
纳米二氧化硅可通过多种方法制备,并广泛应用于催化、吸附、光电和生物医学等领域。
纳米二氧化硅疏水
纳米二氧化硅疏水一、什么是纳米二氧化硅疏水?纳米二氧化硅疏水是一种新型的材料,它是由纳米级的二氧化硅粒子组成的。
这种材料具有特殊的表面性质,能够使其表面变得非常疏水。
这意味着它可以阻止水分子渗透到其表面上,从而具有防水和防潮的效果。
二、纳米二氧化硅疏水的制备方法1. 溶胶-凝胶法该方法将硅醇或硅酸作为原料,在一定条件下通过溶胶-凝胶法制备出纳米级的SiO2颗粒。
然后通过改变反应条件,如温度、pH值等,来控制SiO2颗粒的大小和形态。
2. 气相沉积法该方法将SiCl4或SiH4等硅源与O2或N2O等气体在高温下反应,生成SiO2颗粒,并通过控制反应条件来控制其大小和形态。
3. 等离子体处理法该方法利用等离子体处理技术,将SiCl4或TEOS等硅源在气相中裂解成原子态或离子态,然后在高温下通过氧化反应形成SiO2颗粒。
三、纳米二氧化硅疏水的应用1. 防水涂料纳米二氧化硅疏水可以用于制备防水涂料,这种涂料能够有效地阻止水分子渗透到墙面或屋顶等表面,从而起到防水的作用。
此外,它还具有很好的耐候性和抗污染性能。
2. 防潮材料纳米二氧化硅疏水也可以用于制备防潮材料,如木材、纸张等。
这种材料可以有效地阻止空气中的湿度渗透到内部,从而起到防潮的作用。
3. 医疗器械纳米二氧化硅疏水还可以用于制备医疗器械,如手术刀、注射器等。
这些器械表面覆盖有一层纳米二氧化硅疏水涂层,能够有效地减少细菌和病毒的附着和生长。
4. 纺织品纳米二氧化硅疏水还可以用于制备各种纺织品,如衣服、鞋子等。
这些纺织品表面覆盖有一层纳米二氧化硅疏水涂层,能够有效地防止水和污渍的渗透,保持其干爽和清洁。
四、纳米二氧化硅疏水的优点1. 高效性纳米二氧化硅疏水具有非常高的防水和防潮性能,能够有效地阻止水分子和湿度的渗透。
2. 耐久性纳米二氧化硅疏水具有很好的耐候性和抗污染性能,能够长期保持其防水和防潮效果。
3. 环保性纳米二氧化硅疏水是一种无毒、无害、环保的材料,在制备过程中不会产生任何有害物质。
纳米二氧化硅 分散剂
纳米二氧化硅分散剂
纳米二氧化硅分散剂是一种高效能的助剂,适用于聚合物改性、涂料、胶黏剂、复合材料、密封剂等高聚物基体,能赋予体系高流动性和搞
加工性的同时赋予材料高光泽度及抑制交联作用,具有良好的增稠、
触变和抗析出效果,具有优良的耐候性能。
此外,纳米二氧化硅还可以用作塑料的填充剂,具有较高的白度和较
佳的尺寸精度,有利于简化生产工序和降低成本。
同时纳米二氧化硅
还具有高活性、高活性度、粒度均匀、表面活性高等优点,可以提高
产品的物理力学性能,如硬度、强度、耐磨性、抗腐蚀性等。
需要注意的是,在添加纳米二氧化硅时,需要控制添加量和加工温度,以确保产品的性能不受影响。
此外,纳米二氧化硅也存在一些潜在的
缺点和风险,如可能影响材料的韧性、耐热性等性能,以及存在吸潮性、易分离等问题。
因此在使用时需要谨慎考虑。
宁国纳米二氧化硅用途
宁国纳米二氧化硅用途
宁国纳米二氧化硅是一种高纯度的纳米级硅材料,具有许多优异的物理化学性质,被广泛应用于多个领域。
以下是宁国纳米二氧化硅的主要用途:
一、医药领域
宁国纳米二氧化硅可以用于制备医用材料和药物,如缓释药物、口腔修复材料、生物传感器等。
它的高比表面积和特殊的表面化学性质可以提高药物的生物利用度和疗效,同时还可以减少药物的副作用。
二、食品领域
宁国纳米二氧化硅可以用于食品添加剂,如防结剂、增稠剂、乳化剂等。
它可以提高食品的稳定性和质量,同时还可以延长食品的保质期。
三、化妆品领域
宁国纳米二氧化硅可以用于化妆品,如防晒霜、粉底、口红等。
它可以提高化妆品的质感和稳定性,同时还可以增强化妆品的防晒效果。
四、涂料领域
宁国纳米二氧化硅可以用于涂料,如防腐涂料、防火涂料、高温涂料等。
它可以提高涂料的耐久性和性能,同时还可以降低涂料的成本。
五、材料领域
宁国纳米二氧化硅可以用于制备高强度、高韧性的材料,如高分子材料、陶瓷材料、复合材料等。
它可以提高材料的力学性能和耐磨性能,同时还可以降低材料的密度和成本。
总之,宁国纳米二氧化硅具有广泛的应用前景,将在未来的科技和工业领域中发挥重要作用。
纳米二氧化硅制备方法
纳米二氧化硅制备方法
纳米二氧化硅是一种常见的纳米材料,其制备方法有很多种。
下面就让我们来分步骤阐述一下纳米二氧化硅的制备方法。
第一步,制备硅源。
纳米二氧化硅的制备需要用到硅源,可用三氯化硅、硅烷等进行制备。
其中,三氯化硅是一种常用的硅源。
将三氯化硅加入适量的水中,室温下静置数小时,水解出氯化氢,剩下的成硅酸。
此时,筛网过滤得到硅酸粉末,这就是硅源。
第二步,制备二氧化硅溶胶。
将硅源加入适量的水中,搅拌至完全溶解,得到硅酸水溶液。
接下来,在硅酸水溶液中加入一定量的盐酸,并不断搅拌,使硅酸水溶液中的硅酸逐渐转化为二氧化硅溶胶。
溶胶中二氧化硅的浓度越高,所制得的纳米二氧化硅颗粒就越小。
第三步,制备纳米二氧化硅。
将制好的二氧化硅溶胶加入大量的去离子水中,并同时不断搅拌和加热,直至水蒸发完毕,得到纳米二氧化硅。
此时,所得的纳米二氧化硅经过必要的后处理,即可用于实际应用了。
总之,纳米二氧化硅的制备方法主要包括硅源制备、二氧化硅溶胶制备和纳米二氧化硅制备三个步骤。
各个步骤的操作顺序和参数设置对纳米二氧化硅的性质和质量等方面都会有一定的影响。
因此,在实际制备过程中,需要掌握一定的实验技能和知识,才能得到理想的纳米二氧化硅制品。
亲水型纳米二氧化硅
亲水型纳米二氧化硅亲水型纳米二氧化硅是一种具有优异表面活性和水相分散能力的纳米材料。
其制备方法直接影响了其性质和应用领域。
下面将分别从定义、制备方法、性质与应用等方面进行介绍。
一、定义纳米二氧化硅是指粒径小于100纳米的二氧化硅微粒,其颗粒大小的减小使其光学、电学、力学和热学等性质得到了显著的改变。
亲水型纳米二氧化硅是表面经过改性处理,能够在水相中稳定分散的纳米材料。
其表面含有亲水基团,具有良好的水相分散性能。
二、制备方法亲水型纳米二氧化硅的制备方法主要包括溶胶-凝胶法、微乳液法、水热法等。
其中微乳液法是目前应用最广泛的制备方法。
微乳液法是将表面活性剂、油相、水相混合,在适当的条件下形成均匀无定形的微胶束,存在于水和油相之间。
然后通过向微胶束中加入硅酸四酯等硅源,在碱性条件下形成二氧化硅。
最后,将合成的二氧化硅制备为亲水型纳米二氧化硅。
三、性质1. 良好的水相分散性:亲水型纳米二氧化硅表面含有亲水性基团,具有良好的水相分散性能,能够均匀地分散在水环境中,不易形成团聚。
2. 优异的表面活性:亲水型纳米二氧化硅表面活性高,可作为表面活性剂,与水中的污染物发生作用,可以使水中的污染物有效分散,从而达到净化水质的目的。
3. 大比表面积:亲水型纳米二氧化硅颗粒细小,比表面积大,有更好的吸附性能和反应性能,可应用于吸附、催化等领域。
4. 生物相容性高:亲水型纳米二氧化硅表面活性基团的引入,使其表面具有亲水性,有良好的生物相容性。
四、应用1. 水处理领域:亲水型纳米二氧化硅可作为水处理剂,能够吸附水中的污染物,达到净化水质的效果。
2. 催化剂:亲水型纳米二氧化硅由于表面积大,具有良好的催化性能。
可以用作高效催化剂,应用于化工、石化等方面。
3. 纳米材料制备:亲水型纳米二氧化硅制备方便,能够与其他材料共同制备成功能性复合材料,可应用于医疗、生物等领域。
4. 玻璃材料:亲水型纳米二氧化硅可作为玻璃材料的添加剂,可改善玻璃材料的透明性和强度,应用于玻璃行业。
硅酸钠制备纳米二氧化硅步骤
硅酸钠制备纳米二氧化硅步骤
纳米二氧化硅是一种应用广泛的新型纳米材料,其制备方法有很多种。
其中,硅酸钠制备纳米二氧化硅是一种比较简单、易操作的方法。
本文将详细介绍该方法的步骤。
步骤一:准备原料
制备纳米二氧化硅的原料是硅酸钠和盐酸。
其中,硅酸钠的浓度可以根据需要进行调节,一般建议使用浓度为10%的硅酸钠。
盐酸的浓度为37%。
步骤二:混合制备
将硅酸钠加入盐酸中,然后充分混合,直到出现白色沉淀。
这个白色沉淀就是纳米二氧化硅。
步骤三:分离纯化
将混合液过滤,用纯水洗涤至中性,过滤后的沉淀即为纳米二氧化硅。
将纳米二氧化硅干燥即可。
步骤四:表征检测
将制备的纳米二氧化硅进行表征,检测其粒径、分布情况等性质。
可使用动态光散射(DLS)、比表面积测试、扫描电镜(SEM)等方法进行检测。
需要注意的是,硅酸钠制备纳米二氧化硅的反应过程中会放出大量的热量,因此需要注意温度控制和安全操作。
此外,制备过程中还需要注意溶液的酸碱度、浓度等条件的控制,才能制备出合格的纳米二氧化硅。
综上所述,硅酸钠制备纳米二氧化硅的步骤包括准备原料、混合制备、分离纯化和表征检测。
该方法简单易操作、成本低廉,适合中小规模纳米材料制备。
纳米级二氧化硅
化学气相沉积法:该方法是在高温下将气体反应物通过化学反应生成二氧化硅,然后 将其沉积在基底上。该方法的优点是制备的二氧化硅纯度高、结晶性好,但制备成本 较高
溶胶-凝胶法:该方法是将硅酸盐溶液通过水解、缩合等化学反应生成二氧化硅溶胶, 然后将其干燥、热处理后得到纳米级二氧化硅。该方法的优点是制备过程简单、成本 较低,但产物中易含有杂质
有杂质且结晶性较差
PART 5
总结
总结
1
纳米级二氧化硅是一种具有重 要应用价值的材料,其独特的 物理和化学性质使其在许多领
域中都具有广泛的应用
2
随着科技的不断进步 和发展,纳米级二氧 化硅的应用前景将会
更加广阔
-
汇报结束
不妥之处敬请批评指正
纳米级二氧化硅
汇报人:xxx
-
01 物理性质 02 化学性质 03 应用领域
04 制备方法
05
总结
纳米级二氧化硅
纳米级二氧化硅是一 种具有重要应用价值 的材料,其独特的物 理和化学性质使其在 许多领域中都具有广 泛的应用
PART 1
物理性质
Байду номын сангаас 物理性质
01
纳米级二氧化硅具有 非常大的表面积,这 使得它具有很高的反 应活性和吸附能力
光学领域:纳米级二氧化硅可以用于 制备光学器件的介质层和反射层。由 于其具有高光学性能和稳定性,它可 以提高器件的光学性能和稳定性
其他领域:除了上述领域外,纳米级 二氧化硅还可以用于制备玻璃、陶瓷、 涂料等领域。由于其具有高透明性和 耐高温性,它可以提高制品的性能和 可靠性
PART 4
制备方法
制备方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1前言1.1纳米二氧化硅的发展现状及前景纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。
当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。
纳米SiO是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎2粉体的行业。
我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO2划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。
1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成[1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO2国之后,国际上第五个能批量生产此产品的国家。
纳米SiO的批量生产为其研究开发提2供了坚实的基础。
目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。
专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。
但总地来讲,我国纳米SiO的生2产与应用还落后于发达国家,该领域的研究工作还有待突破。
1.2 纳米二氧化硅的性质[3]~[5]纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。
微结构呈絮状和网状的准颗粒结构,为球形。
这种特殊结构使它具有独特的性质:纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。
纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。
纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,与高分子链结合形成立体网状结构,从而提高材料的强度、弹性等基本性能。
纳米二氧化硅的三维硅石结构、大比表面积、不饱和的配位数,使其对色素离子具有极强的吸附作用,可降低因紫外线照射而造成的色素衰减。
1.3 纳米二氧化硅的应用[5]~[6]1.3.1在橡胶改性中的应用常规的SiO2用作橡胶补强剂时,在橡胶中以二次聚集体的形态存在,因而不能充分发挥其补强橡胶的功能。
如改用纳米SiO2作添加剂,采用溶胶-凝胶技术,既可改善其在橡胶中的分散程度而赋予橡胶优越的力学性能,同时还可以根据需要进行控制和人工设计具有特殊性能的新型橡胶,如通过控制纳米SiO2的颗粒尺寸,可以制备对不同波段光敏感性不同的橡胶,既可作为抗紫外辐射的橡胶,又可作为红外反射橡胶或利用它的高介电性能制成绝缘性能好的橡胶。
另外,还可利用纳米SiO2改性轮胎侧面胶,生产彩色轮胎。
1.3.2在涂料中的应用纳米SiO2具有常规SiO2所不具有的特殊光学性能,它具有极强的紫外吸收,红外反射特性。
经分光光度仪测试表明,它对波长400mn以内的紫外光吸收率高达70%以上,对波长400nm以内的红外光反射率也达70%以上。
它添加到涂料中能对涂料形成屏蔽作用,达到抗紫外老化和热老化的目的,同时增加了涂料的隔热性。
通过纳米微粒填充法,将纳米SiO2作掺杂到紫外光固化涂料中,明显地提高了紫外光固化涂料的硬度和附着力,还减弱了紫外光固化涂料吸收UV辐射的程度.从而降低了紫外光固化涂料的固化速度。
纳米SiO2具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构.同时增加了涂料的强度和光洁度,而且还提高了颜料的悬浮性,能保持涂料的颜色长期不变。
在建筑内外墙涂料中,若添加纳米SiO2,可明显改善涂料的开罐效果,涂料不分层.具有触变性、防流挂、施工性能良好,尤其是抗沾污性能大大提高,具有优良的自清洁能力和附着力。
1.3.3在纺织行业中的应用随着科学技术的发展和人类生活水平的提高,人们对服装提出了舒适、新颖、保健的要求,各种功能化的纺织品应运而生。
在此,纳米SiO2发挥了巨大的作用。
目前,人们已将其应用于防紫外、远红外、抗菌消臭、抗老化等方面。
例如,以纳米SiO2和纳米TiO2的适当配比而成的复合粉体是抗紫外辐射纤维的重要添加剂。
又如,日本帝人公司将纳米SiO2和纳米ZnO混入化学纤维中,得到的化学纤维具有除臭及净化空气的功能。
这种纤维可被用于制造长期卧床病人和医院的消臭敷料、绷带、睡衣等。
1.3.4 在树脂基复合材料改性中的应用1.3.4.1环氧树脂复合材料改性环氧树脂具有良好的机械、电气、粘结性、化学稳定性等性能,使其在粘合剂、电气绝缘材料和复合材料等方面有着重要的应用。
但是.环氧树脂最大的弱点是固化物的脆性大,传统的增韧方法可使材料强度成倍提高,却不可避免地使材料的其它性能有所粒下降。
纳米技术的兴起,为这种材料的改性迎来了新的革命。
刘竞超等,将纳米SiO2子添加到环氧树脂中,实验结果表明:适量的纳米SiO可使复合材料的冲击强度、断裂2伸长率有较大的提高,同时改善了材料的耐热性。
1.3.4.2聚丙烯树脂改性制成聚丙烯产品,其强度和韧性明显提高,在聚丙烯树脂中添加2%~5%的纳米SiO2具有良好的低温冲击性能,且尺寸稳定,加工性能改善,有较好的表面光洁度,适合于制作汽车车身防护板、保险杠和设备仪表组件等,可代替尼龙改性聚苯醚和塑料合金等高级材料,从而降低汽生产成本。
1.3.5 其它方面的应用可用于木材中,所制得的复合材料,既能保持木材的原始细胞结构,外观纳米SiO2的透明度好,作为瓷土的重要原及可加工性,又能使木材的使用性得到改善。
纳米SiO2可用于油墨中作料不但可以使涂层变得更加致密,而且使表面变得更加光滑。
纳米SiO2为分散剂和流量控制剂;可用于封装材料中改善封装材料的性能;还可以作为人造莫来石的重要材料。
在护肤产品、电子组装材料、隔热材料、传感材料等方面都有着重要的应用。
甚至能节约能源、保护环境。
2实验部分2.1实验仪器名称厂商22型中量有机制备仪器一套天津友丰技术玻璃有限公司JJ-1电动调速搅拌器一台常州澳森电器有限公司KQ-100型超声波清洗器昆山市超声仪器有限公司HD902C型防紫外线透过及南通宏大实验仪器有限公司防晒保护测试仪UV-VI58500紫外-可见上海仪器仪表分光光度仪JF055 轧车泰兴市兴港毛纺机械有限公司傅立叶红外光谱仪美国PE公司马弗炉长沙开元仪器有限公司电热套巩义市予华仪器有限责任公司100℃和300℃温度计2.2实验药品药品名称纯度生产厂家二氧化硅(silicon dioxide)分析纯天津市光复精细化工研究所纳米二氧化硅四川宏杰国际贸易有限公司硬脂酸[C18H36O2=284.4] 分析纯天津市光复精细化工研究所甲基丙烯酸甲酯(MMA) 化学纯广东汕头市西陇化工厂甲基丙烯酸丁酯化学纯广东汕头市西陇化工厂丙三醇(Glycerol)分析纯广东汕头市西陇化工厂乙二胺(Ethylenediamine分析纯湖南汇虹试剂有限公司anhydrous)过硫酸钾分析纯湖南师大化学试剂厂司班-60 分析纯天津市登峰化学试剂厂羧甲基纤维素分析纯文安县富尔纤维素厂2.3实验原理与方法[7]~[8]2.3.1纳米二氧化硅的制备方法的制备方法分为物理法和化学法两种。
目前纳米SiO22.3.1.1物理法,的聚集体粉碎物理法一般指机械粉碎法。
利用超级气流粉碎机或高能球磨机将SiO2可获得粒径1~5微米的超细产品。
该法工艺简单但易带入杂质.粉料特性难以控制,制备效率低且粒径分布较宽。
2.3.1.2化学法颗粒。
化学法包括与物理法相比较。
化学法可制得纯净且粒径分布均匀的超细SiO2化学气相沉积(CVD)法、液相法、离子交换法、沉淀法和溶胶凝胶(Sol-Gel)法等但主要的生产方法还是以四氯化硅为原料的气相法.Ti酸钠和无机酸为原料的沉淀法和以硅酸醋等为原料的溶胶凝胶法。
2.3.2 二氧化硅表面改性机理及方法[9]~[14]2.3.2.1二氧化硅表面改性机理由于在二氧化硅表面存在有羟基,相邻羟基彼此以氢键结合(如图所示),孤立羟基的氢原子正电性强,易与负电性原子吸附,与含羟基化合物发生脱水缩合反应,与亚硫酸氯或碳酞氯反应,与环氧化合物发生酯化反应。
表面羟基的存在使表面具有化学吸附活性,遇水分子时形成氢键吸附。
二氧化硅表面是亲水性的,无论气相法或沉淀法都是如此差异仅是程度不同。
这导致了在与聚合物基体配合时相容性差,在配合胶料内对硫化促进剂吸附而迟延硫化。
此外,二氧化硅比表面积大、粒径小,在与聚合物配合时难混入、难分散。
在空气中易飞扬,储存与运输皆不便。
改性的目的就是改变二氧化硅表面的物化性质,提高粒子与聚合物分子间相容性,增强填料与聚合物之间交互作用,改善加工工艺性能,提高填料的补强性能。
对二氧化硅改性的原理是基于其表面羟基易与含羟基化合物反应、易吸附阴离子的特点,因此,常使用脂肪醇、月女、脂肪酸、硅氧烷等对其改性。
2.3.2.2 表面改性方法表面改性分为热处理和化学改性处理。
(1)热处理热处理后二氧化硅表面吸湿量低,且填充制品吸湿量也显著下降,其原因可能是由于高温加热条件下原来以氢键缔合的相邻羟基发生脱水而形成稳定键合,从而导致吸水量降低,此种方法简便经济。
(2)化学改性处理使用脂肪酸或聚合物改性二氧化硅表面,由于上述改性剂的改性效果不同,即使用同一种改性剂,其改性效果也可能因硫化体系不同或由于二氧化硅制备工艺不同而有差异。
有机硅烷改性二氧化硅表面是一种最常用、最传统的改性方法。
硅烷偶联剂是一种具备双反应功能的化学物质,能使聚合物/填料的结合界面成为化学键结合,显著提高了填料补强性能硅烷偶联剂为单体硅化合物,分子式中含易水解基团(如烷氧基、过氧基)能够与填料粒子表面的羟基键合。
分子式中的亲油基(如苯基、氯基、多硫基、硫醇基、氨基、烷基、乙烯基)能与被填充聚合物分子链发生反应。
使用硅烷偶联剂改性二氧化硅表面.由于不同工艺条件制备的二氧化硅表面结构特性及物化特性不同,偶联剂的分子结构各异,胶料品种多样,使改性二氧化硅填充胶的综合性能改善程度不同。
但须指出,硅烷偶联剂改性二氧化硅目前只在小部分橡胶产品中使用主要原因是成本高。
2.4实验步骤2.4.1纳米二氧化硅的制备(1)称取80g二氧化硅(天津市光复精细化工研究所提供)放入马弗炉中,加热到800℃焙烧3小时,冷却后,取出研磨3小时,将其磨成细小颗粒。