中考数学第二编中档题突破专项训练篇中档题型训练一数与式的运算与求值试题(最新整理)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 第二编 中档题突破专项训练篇
中档题型训练(一) 数与式的运算与求值
本专题主要考查实数的运算、整式与分式的化简与求值,纵观河北 8 年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.
实数的运算
1
-1 【例 1】(2015 巴中中考)计算:|- 3|+ 2sin 45°+tan 60°-(-
3
)
【解析】先理清和熟悉每项小单元的运算方法,把握运算的符号技巧.
2
- 12+(π-3)0
.
【学生解答】原式= 3+ 2× + 3-(-3)-2 3+1= 3+1+ 3+3-2 3+1=5.
2
1.(2016 黄石中考)(-1)2 016
+2sin 60°-| 3|+π0. 解:原式=1+ 3- 3+1=2.
1 -1
2.(2016 深圳中考)|2- 3|+2sin 60°+
(2
)
解:原式=2- 3+ 3+2-1=3.
-( 2 016)0
.
3.(2015 永州中考)3 8-(3-π)0
-|-3+2|. 解:原式=2-1-1=0.
1 4.(2016 白银中考)( )-2-|-1+ 3|+2sin 60°+(1- 3)0
.
2
3 解:原式=22
-( 3-1)+2× +1
2
=4- 3+1+ 3+1 =6.
整式的运算与求法
3
【例 2】(2016 娄底中考)先化简,再求值:(x +y)(x -y)-(4x 3
y -8xy 3
)÷ 2xy,其中 x =-1,y = .
3
【解析】认真观察式子特点,灵活运用乘法公式化简,再考虑代入求值.
【学生解答】原式=x 2-y 2-2 x 2+4y 2=-x 2+3y 2
,当 x =-1,y = 时,原式=-1+1=0.
3
5 .(201
6 菏泽中考) 已知 4x =3y ,求代数式(x -2y)2
-(x -y)(x +y)-2y 2
的值. 解:原式=-y(4x -3y). ∵4x=3y , ∴原式=0.
6.(2016 漳州中考)先化简(a +1)(a -1)+a(1-a)-a ,再根据化简结果,你发现该代数式的值与 a 的取值有什么关系?(不必说明理由)
解:原式=a 2-1+a -a 2
-a =-1,∴该代数式的值与 a 的取值范围无关.
7.(2016 邯郸二十三中模拟)已知多项式 A =(x +2)2
+(1-x)(2+x)-3. (1)化简多项式 A ;
(2)若(x +1)2
=6,求 A 的值.
解:(1)A = x 2+4x +4+2-2x +x -x 2-3=3x +3;(2)(x +1)2
=6,则 x +1=± 6,∴A=3x +3=3(x +1)=
±3 6.
{ )
x +x x +2x +1
分式的化简求值
2(x -1)
x +6 【例 3】(2016 菏泽中考)已知 x 2
-4x +1=0, 求 - 的值.
x -4 x
【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.
2x (x -1)-(x -4)(x +6) x 2-4x +24 【学生解答】原式= = ,∵x 2-4x +1=0,∴x 2
-4x =-1.原式= -1+24
= -23. x (x -4) x 2-4x -1
2 x 2-4x +4 x +4 8.(2016 齐齐哈尔中考)(1- )
÷ - ,其中 x 2
+2x -15=0. x -2 x (x -2)2 x 2-4 x +4
x +2 解:原式= ÷ -
x (x +2)(x -2) x +2
x -2 (x +2)(x -2) x +4 = · -
x (x -2)2 x +2 x +4 x +2
= -
x x +2 4 = , x 2+2x
4 ∵x 2+2x -15=0,∴x 2
+2x =15,∴原式= .
15 3a a 9.(2016 六盘水中考)先化简代数式( - a
)
÷ ,再从 0,1,2 三个数中选择合适的数作为 a 的值
代入求值.
a -2 a +2 a 2-4
3a (a +2)-a (a -2) (a +2)(a -2) 2a 2+8a (a +2)(a -2)
解 : 原 式 = · = · = 2a (a +4)
(a +2)(a -2) a (a +2)(a -2) a =2a +8.当 a =1 时,2a +8=10. a
1 10.(2016 龙东中考)(1+ x 2-2x +1
)
÷ ,其中 x =4-tan 45°. x -1
解:原式= · x -2 x -2
x -2
1 = .
x -1
x -2 (x -1)2
1 1
当 x =4-tan 45°=3 时,原式= = .
3-1 2 5x +3y 2x 1
11.(2016 沧州八中模拟)( + )÷ ,其中 x = 3+ 2,y = 3- 2.
x 2-y 2 y 2-x 2 x 2y -xy 2
5x +3y -2x
解:原式= ×(x 2y -xy 2
)
x 2-y 2
3(x +y )
= ×xy(x-y) (x +y )·(x -y ) =3xy.
把 x = 3+ 2,y = 3- 2代入,原式=3( 3+ 2)( 3- 2)=3.
1 a +
2 (a +1)(a +2) 12.(2015 遵义中考)已知实数 a 满足 a 2
+2a -15=0,求 - ÷ 的值.
1 a +
2 (a -1)2 a +1 1 a 2-1 a -1 a 2-2a +1
2 2 解:原式= - · = - = = .∵a 2

a +1 (a +1)(a -1) (a +1)(a +2) a +1 (a +1)2 (a +1)2 a 2+2a +1
2 1 2a -15=0,∴a 2
+2a =15.∴原式= = .
15+1 8
x 13.(2016 河南中考)( 2
-1)÷
x 2-1 2 ,其中 x 的值从不等式组 -x ≤ 1, 的整数解中选取.
2x -1 < 4
2 -x 2 (x +1)(x -1)
解:原式=
÷ x (x +1)
(x +1)2 -x x +1 = · x +1 x -1 -x = , x -1 -x ≤ 1,
5 解{ 2x -1 < 4 )
得-1≤x< ,∴不等式组的整数解为-1,0,1,2,若使分式有意义,只能取 x =2,∴原式 2
=- =-2.
2-1
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档