实验二 信道与眼图实验

合集下载

眼图观察测量实验

眼图观察测量实验

一、實驗目的及要求:1)實驗目的: 學會觀察眼圖及其分析方法2)實驗要求: 1 分析電路的工作原理,敘述其工作過程;2 敘述眼圖的產生原理以及它的作用;3 繪出實驗觀察到的眼圖形狀。

二、實驗原理:我們知道衡量整個通信系統的傳輸品質,最直觀的方法就是用眼圖來觀察傳輸畸變和雜訊干擾。

我們知道,在實際的通信系統中,數位信號經過非理想的傳輸系統必定要產生畸變,信號通過通道後,也會引入雜訊和干擾,也就是說,總是在不同程度上存在碼間串擾。

在碼間串擾和雜訊同時存在情況下,系統性能很難進行定量的分析,常常甚至得不到近似結果。

為了便於評價實際系統的性能,常用觀察眼圖進行分析。

眼圖可以直觀地估價系統的碼間干擾和雜訊的影響,是一種常用的測試手段。

什麼是眼圖?所謂“眼圖”,就是由解調後經過低通濾波器輸出的基帶信號,以碼元定時作為同步信號在示波器螢幕上顯示的波形。

干擾和失真所產生的傳輸畸變,可以在眼圖上清楚地顯示出來。

因為對於二進位信號波形,它很像人的眼睛的過程眼圖。

在圖15-1中畫出兩個無雜訊的波形和相應的“眼圖”,一個無失真,另一個有失真(碼間串擾)。

(無失真及有失真時的波形及眼圖):(a)無碼間串擾時波形; 無碼間串擾眼圖(b)有碼間串擾時波形; 有碼間串擾眼圖圖15-1中可以看出,眼圖是由虛線分段的接收碼元波形疊加組成的。

眼圖中央的垂直線表示取樣時刻。

當波形沒有失真時,眼圖是一隻“完全張開”的眼睛。

在取樣時刻,所有可能的取樣值僅有兩個:+1或-1。

當波形有失真時,在取樣時刻信號取值分佈在小於+1或大於-1附近,“眼睛”部分閉合。

這樣,保證正確判決所容許的雜訊電平就減小了。

換言之,在隨機雜訊的功率給定時,將使誤碼率增加。

“眼睛”張開的大小就表明失真的嚴重程度。

為便於說明眼圖和系統性能的關係,我們將它簡化成圖15-2的形狀。

(眼圖的重要性質,其中U=U++U)(a) 二进制系统(b) 随机数据输入后的二进制系统三、實驗步驟:、眼圖觀察及分析實驗;、模擬眼圖觀察測量實驗;观察眼图SP109 SP614 SP615CPLD 32PN 码'()H ω观察眼图SP708PSK 译码SP614SP615'()H ω1、打開實驗箱右側電源開關,電源指示燈亮,按動帶鎖開關使L2(紅燈)點亮表示系統正常工作;2、連接SP614和SP109或SP809,送入基帶信號;3、用模擬示波器CH1觀察SP105,CH2觀察SP615,調節示波器特性調節電位器,可以觀察到有碼間串擾和無碼間串擾時的眼圖;4、當連接SP809是將PSK 解調模組解調還原的數位基帶信號送入眼圖電路。

通信原理实验(1-8)

通信原理实验(1-8)

通信原理实验报告学院:信息工程学院专业:通信工程学号:201416416姓名:李瑞鹏实验一 带通信道模拟及眼图实验一、实验目的1、 了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、 掌握眼图观测的方法并记录研究。

二、实验器材1、 主控&信号源、9号、13号、17号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK 信号和经过升余弦滤波后调制的PSK 信号送入带通信道,比较两种状况的眼图。

然后,改变带通信道的带宽重复观测。

四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。

2PSK 调制信号加升余弦滤波的带通信道模拟【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。

17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

五、实验报告1、完成实验并思考实验中提出来的问题。

2、分析实验电路工作原理,简述其工作过程。

3、整理信号在传输过程中的各点波形。

实验二HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

(完整版)眼图观测实验

(完整版)眼图观测实验

武夷学院实验报告
课程名称:通信原理实验项目名称:眼图观测实验姓名:专业:通信工程班级:一班学号:同组成员:无
实验结果:
实验线路图如图1所示:
图1
打开示波器,进过调节可以得到图2所示的波形图,再调节可以得到最大“眼睛”的眼图如图3所示。

图2 图3 由图2、图3可以看出,示波器显示的眼图的线迹不完全重合,“眼睛”也没有张开到最大,可以判断这次的眼图是在有一定噪声和码间干扰下得到的。

可以由上图可以知道,此时并不是最佳抽样时刻,还可以看出斜率小于0.5,可见对位定时误差也不是很敏感;图中的阴影部分较大抽样时刻上信号受噪声干扰的畸变程度较大;图中央的横轴位置没有与眼睛的横对角线重合,表明判决门限略低于零电平;上下两阴影区的间隔距离之半为噪声容限,可见其值也不大。

实验操作成绩(百分制)__________ 实验指导教师签字:__________
实验报告成绩(百分制)__________。

通信原理实验数字解调与眼图

通信原理实验数字解调与眼图

实验名称数字解调与眼图学院信息科学与工程学院专业班级姓名学号数字解调与眼图一、实验目的1. 掌握2DPSK相干解调原理。

2. 掌握2FSK过零检测解调原理。

二、实验内容1. 用示波器观察2DPSK相干解调器各点波形。

2. 用示波器观察2FSK过零检测解调器各点波形。

3.用示波器观察眼图。

三、基本原理可用相干解调或差分相干解调法(相位比较法)解调2DPSK信号。

在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。

本实验系统中,2DPSK载波频率等码速率的13倍,两种解调方法都可用。

实际工程中相干解调法用得最多。

2FSK信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

图4-1 数字解调方框图(a)2DPSK相干解调(b)2FSK过零检测解调本实验采用相干解调法解调2DPSK信号、采用过零检测法解调2FSK信号。

2DPSK模块内部使用+5V、+12V和-12V电压,2FSK模块内部仅使用+5V电压。

图4-1为两个解调器的原理方框图,其电原理图如图4-2所示(见附录)。

2DPSK解调模块上有以下测试点及输入输出点:• MU 相乘器输出信号测试点• LPF 低通、运放输出信号测试点• Vc 比较器比较电压测试点• CM 比较器输出信号的输出点/测试点• BK 解调输出相对码测试点• AK-OUT 解调输出绝对码的输出点/测试点(3个)• BS-IN 位同步信号输入点2FSK解调模块上有以下测试点及输入输出点:• FD 2FSK过零检测输出信号测试点• LPF 低通滤波器输出点/测试点• CM 整形输出输出点/测试点• BS-IN 位同步信号输入点• AK-OUT 解调输出信号的输出点/测试点(3个)2DPSK解调器方框图中各单元与电路板上元器件的对应关系如下:•相乘器U29:模拟乘法器MC1496•低通滤波器R31;C2•运放U30:运算放大器UA741•比较器U31:比较器LM710•抽样器U32:A:双D触发器7474•码反变换器U32:B:双D触发器7474;U33:A:异或门74862FSK解调器方框图中各单元与电路板上元器件对应关系如下:•整形1 U34:A:反相器74HC04•单稳1、单稳2 U35:单稳态触发器74123•相加器U36:或门7432•低通滤波器U37:运算放大器LM318;若干电阻、电容•整形2 U34:B:反相器74HC04•抽样器U38:A:双D触发器7474在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。

眼图实验报告

眼图实验报告

眼图实验报告眼图实验报告引言:眼图是一种常用的电信测量工具,用于分析数字信号的质量和稳定性。

通过观察信号在示波器屏幕上的显示,我们可以获得信号的波形、噪声和时钟抖动等信息。

本实验旨在通过眼图分析方法,对数字信号进行测量和评估。

一、实验目的本实验的主要目的是通过眼图实验,了解数字信号的质量和稳定性,并掌握使用眼图进行信号分析的方法。

二、实验原理眼图是一种通过示波器观察信号波形的方法。

在示波器屏幕上,我们可以看到一系列的“眼睛”,每个“眼睛”代表了一个数据位。

通过观察这些“眼睛”的开闭程度和位置,我们可以判断信号的质量和稳定性。

在眼图中,水平轴代表时间,垂直轴代表信号的电压。

每个“眼睛”由上下两条边界线和中间的开放区域组成。

边界线的位置和开放区域的大小反映了信号的噪声和时钟抖动情况。

边界线越平整,开放区域越大,表示信号质量越好;反之,表示信号质量较差。

三、实验步骤1. 连接示波器和信号源:将信号源的输出与示波器的输入相连。

2. 设置示波器参数:根据实际情况,设置示波器的触发模式、时间基准和垂直尺度等参数。

3. 调整示波器触发:通过调整示波器的触发模式和触发电平,使信号能够稳定地显示在示波器屏幕上。

4. 观察眼图:调整示波器的水平和垂直尺度,观察眼图的显示情况。

注意观察边界线的平整程度和开放区域的大小。

5. 分析眼图:根据眼图的显示结果,分析信号的质量和稳定性。

可以通过观察边界线的位置和开放区域的大小,判断信号是否存在噪声和时钟抖动。

6. 记录实验数据:将实验中观察到的眼图结果记录下来,以备后续分析和比较。

四、实验结果与分析通过眼图实验,我们观察到了不同信号的眼图,并进行了分析。

在实验中,我们发现开放区域较大、边界线平整的眼图代表了较好的信号质量和稳定性,而开放区域较小、边界线波动较大的眼图则表示信号质量较差。

实验中,我们还观察到了一些常见的眼图特征。

例如,当信号存在噪声时,眼图的开放区域会变小,边界线会变得不规则;当信号存在时钟抖动时,眼图的边界线会出现波动。

眼图观测实验报告

眼图观测实验报告

眼图观测实验报告一、实验目的1、了解和掌握眼图的形成过程和意义。

2、掌握光纤通信系统中的眼图观测方法。

二、实验器材主控&信号源模块25号光收发模块示波器三、实验原理1、实验原理框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。

如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。

3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。

眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。

利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。

被测系统的眼图观测方法:通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。

眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。

八种状态如下所示:眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光收端机码间干扰的大小。

其中,垂直张开度水平张开度从眼图中我们可以得到以下信息:(1)最佳抽样时刻是“眼睛”张开最大的时刻。

(2)眼图斜边的斜率表示了定时误差灵敏度。

斜率越大,对位定时误差越敏感。

实验2 眼图观察测量实验

实验2 眼图观察测量实验
%drawnow; %动态显示
plot(ss);
hold on; %保持图形(眼图的形成原理)
end
title('2进制双极性NRZ眼图');
3.通过 MATLAB 语言仿真观察基带信号(单极性归零、单极性不归零、双极性归零、双极性不归零波形)的功率谱密度图。
仿真结果:
代码:
Ts=1;
N_sample=8;
N=1000; %码元个数
dt=Ts/N_sample; %抽样频率
t=0:dt:(N*N_sample-1)*dt;
gt1=ones(1,N_sample); %单个码元,NRZ
gt2=ones(1,N_sample/2);
gt2=[gt2 zeros(1,N_sample/2)]; %单个码元,RZ
2.BPSK 信号线连接:
用专用导线将 4P01、37P01;37P02、3P01;3P02、38P01;38P02、P16 连接(底板右边“眼图观察电路”)。
注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。
3.加电:
打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
subplot(4,2,7);
plot(t,st44); %画双极性RZ波形
title('双极性RZ');
xlabel('时间/s');
ylabel('电压/v');
axis([0 32 -1.2 1.2]);
subplot(4,2,8);
plot(f4,10*log10(pxx4)); %画双极性RZ功率谱密度图
st22=st2(1:length(t));

实验2 眼图观察测量实验

实验2 眼图观察测量实验

班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期实验2 眼图观察测量实验一、实验目的学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1. 眼图观察电路2.时钟与基带数据发生模块,位号:G3.PSK调制模块,位号A4.噪声模块,位号B5.PSK解调模块,位号C6.复接/解复接、同步技术模块,位号:I7.20M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1 或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

眼图图2-1 无失真及有失真时的波形及眼图(a)无码间串扰时波形;无码间串扰眼图(b)有码间串扰时波形;有码间串扰眼图通信工程实验教学中心通信系统原理实验报告在图2-2中给出从示波器上观察到的比较理想状态下的眼图照片。

本实验主要是完成PSK 解调输出基带信号的眼图观测实验。

(a) 二进制系统 (b) 随机数据输入后的二进制系统图2-2实验室理想状态下的眼图四、各测量点和可调元件作用底板右边“眼图观察电路”W06:接收滤波器特性调整电位器。

眼图观察实验

眼图观察实验

实验九 眼图观察实验实 验 内 容1、PN 码/CMI 码的眼图。

2、噪声、码间干扰对眼图的影响。

3、眼图的垂直张开度与水平张开度。

一、实验目的1、熟悉基带信号的眼图观察方法。

2、学会用眼图判断数字信道的传输质量。

3、分析眼图的垂直张开度与水平张开度。

二、眼图观察电路眼图是在同步状态下,各个周期的随机信码波形,重叠在一起所构成的组合波形。

其形状类似一只眼睛故名眼图。

其形成是由于人眼的视觉暂留作用把随机信号在荧屏上反复扫描的波形复合起来。

眼图是用来观察数字传输系统是否存在码间干扰的最简单、直观的方法。

将示波器置于外同步状态,平台的输出时钟接往示波器的通道1,伪随机码接往示波器的通道2,缓慢调整示波器的“同步”旋钮,当时钟与信码的相位同步时即可在示波器屏幕上观察到眼图。

眼图的垂直张开度反映信码幅度的变化量,可用来表示系统的抗噪声能力,垂直张开度越大,抗噪声能力越强。

水平张开度则反映信码的码间干扰。

水平张开度越大,表示信码的码间干拢越小。

垂直张开度与水平张开度越大,越有利于信码再生器的判决,还原出来信码的误码率就越小。

垂直张开度E 0=21V V 水平长开度E1=21t t图9-1 模型化眼图平台上专门设置有眼图观察电路,它是一级由运算放大器和RC 网络组成的低通滤波 器,把输入数字信号的高频分量滤除,得到一个模拟的升余弦波,以获得眼图观察效果。

输入的PN 码数字信号由U101 CDLD 可编程模块二内的数字信号产生电路产生,经过2U101FPGA/CPLD模块选择开关K01和PN码/CMI码选择开关K02的3~2送入眼图观察电路。

在进行眼图分析时还可用跳线选择其它数字信号,输入眼图观察电路。

图9-2是眼图观察电路(包括信号源在内)的方框图。

图9-3是眼图观察电路图。

图9-2中U301、U302 FPGA可编程模块是供学生编程使用的,学生可以在计算机上编程用软件下载方法在U302中产生各种数字信号,信号输出的引脚已连接FPGA/CPLD可编程模块选择开关K01的对应引脚。

通信原理实验报告眼图

通信原理实验报告眼图

部分响应系统一、实验目的1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。

二、实验原理 1.部分响应系统为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。

理想低通传输特性可以有最高的频带利用率2=s η,但拖尾的波动比较大,衰减也比较慢。

若能改善这种情况,并保留系统的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。

这是有实际意义的,特别是在高速大容量传输系统中。

部分响应传输系统就具有这样的特点。

部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。

当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。

由于这种组合并不影响系统的传输带宽,因此频带利用率高。

第一类部分响应系统是在相邻的两个码元间引入码间干扰。

由于理想低通系统的传递函数为其冲激响应为ssT t T t t h //sin )(ππ=,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的冲激响应,那么它的系统带宽肯定限制在⎪⎪⎭⎫ ⎝⎛-s s TT 21,21,也就是说,系统的频带利用率为2bit/Hz 。

接着来看系统的冲激响应函数)(t g :s ss s s s s T t T t T tT T t c T tc T t h t h t g /11sin)(sin sin )()()(-=⎥⎦⎤⎢⎣⎡-+=-+=ππππsT f 21||<其他⎩⎨⎧=0)(sTf H可以看到,这个系统的冲激响应的衰减是理想低通冲激响应函数衰减的sT t /11-,它比理想低通系统冲激响应函数衰减快,因此相对于对定时精度的要求降低,它的系统响应为可以看到,第一类部分响应系统并不满足抽样点无码间干扰的条件,其每个抽样点仅受前一个码元的影响,因此可以通过减去前一码元的干扰来确定当前抽样点值,从而正确判决。

SystemView数字信号基带传输系统实现及眼图的观察

SystemView数字信号基带传输系统实现及眼图的观察

实验二、数字信号基带传输系统实现及眼图的观察一、实验目的1、熟悉使用System View软件,了解各功能模块的操作和使用方法。

2、通过实验进一步掌握、了解数字基带传输系统的构成及其工作原理。

3、观察数字基带传输系统接受端的眼图,掌握眼图的主要性能指标。

二、实验内容用System View建立一个数字基带传输系统仿真电路,信道中加入高斯白噪声(均值为0,均方差可调),分析理解系统各个模块的功能,并通过观察眼图,判断系统信道中的噪声情况。

三、实验要求1、观察系统中各个模块的输出波形,并分析说明系统构成原理。

2、观察低通滤波器的输出波形的眼图,调节信道中噪声的大小,观察眼图变化。

3、比较抽样判决后的输出码元与原始码元有何不同,说明原因。

4、调节噪声大小,分析系统中是否产生误码,说明原因。

四、电路构成模块说明:Sink3:产生原始码元Sink14:发送端基带信号形成器Sink4:加入高斯白噪声后的波形Sink10:经过低通滤波器后的输出波形Sink12:经过抽样判决后的输出码元参数设置:Token0:Source――Noise/PN――Pn Seg(幅度1V,频率100HZ,电平数2,偏移0V,产生单极性不归零码,随机产生)Token13:在专业库中选择Comm——Processors——P shape(Select pulse Shape=Rectangular,Time offset=0,Width=0.01s,产生矩形脉冲基带信号)Token2:Source――Noise/PN――Gauss Noise(均值为0,均方差为0.01的高斯白噪声)Token9:Operator――Filters/systems――Liner Sys Filters(Analog,Butterworth,No. of Poles=3,Low Cutoff=100HZ,产生一个低通的Butterworth滤波器,用于对信道输出信号进行滤波)Token5:Operator――Sample/Hold――Sample(Sample rate=100HZ,用于对滤波后的波形进行抽样,抽样速率等于码元速率)Token7:Operator――Sample/Hold――Hold(Hold Value=Last Sample,Gain=1,对抽样后的值延时一段时间,得到恢复后的数字基带信号)Token11:Operator——Logic——Compare(Select comparison:a>=b True Output=1V,False Output=-1V,对抽样值进行判决比较,得到输出码元波形)Token15:产生正弦信号,作为比较器的另一个比较输入(振幅=0V,频率=0Hz)眼图参数设置:Sink Calculator――style――slice――start=0.01,Length=0.03,在窗口中选择需要观察眼图的波形,点击OK,观察其眼图系统定时设置:Start Time:0 ,Stop Time:0.5,Sample Rate:10000HZ。

数字通信实验

数字通信实验

实验一:数字基带传输系统眼图观察1.实验目的1.观察数字基带传输系统中的各模块的信号波形,深入理解奈奎斯特第一定理;2.观察发送端和接收端的眼图,理解眼图在数字基带传输系统中的作用2.实验原理数字基带传输系统模型数字基带信号的常用码型的形状常常画成矩形,而矩形脉冲的频谱在整个频域是无穷延伸的。

由于实际信道的频带是有限的而且有噪声,用矩形脉冲作传输码型会使接收到的信号波形发生畸变,所以这一节我们寻找能使差错率最小的传输系统的传输特性。

一个典型的数字基带信号传输系统模型如下图1:数字基带信号传输系统模型图 1 中,基带码型编码电路的输出是携带着基带传输的典型码型信息的δ脉冲或窄脉冲序列{an},我们仅仅关注取值:0、1 或± 1 ;发送滤波器又叫信道信号形成网络,它限制发送信号频带,同时将{an}转换为适合信道传输的基带波形;信道可以是电缆等狭义信道也可以是带调制器的广义信道,信道中的窄带高斯噪声会给传输波形造成随机畸变;接收滤波器的作用是滤除混在接收信号中的带外噪声和由信道引入的噪声,对失真波形进行尽可能的补偿(均衡);抽样判决器是一个识别电路,它把接收滤波器输出的信号波形 y(t)放大、限幅、整形后再加以识别,进一步提高信噪比;码型译码将抽样判决器送出的信号还原成原始信码。

3.实验步骤1.编程实现数字基带传输系统,通过调节升余弦滚降系数来观察系统中各个部分的信号波形。

2.观察发送端和接收端的眼图,并进行比较。

4.实验内容实验程序clear allglobal dt t f df N T %全局变量close allN=2^13; %采样点数L=64; %每码元的采样点数M=N/L; %码元数Rb=2; %码速率是 2Mb/sTs=1/Rb; %码元间隔dt=Ts/L; %时域采样间隔df=1/(N*dt); %频域采样间隔T=N*dt; %截短时间Bs=N*df/2; %系统带宽%alpha=0.5; %滚降系数=0.5Na=4; %示波器扫描宽度为 4 个码元t=linspace(-T/2,T/2,N); %时域横坐标f=linspace(-Bs,Bs,N); %频域横坐标db=input('请选择信噪比[0-15]:');b=input('采样偏差 b*Ts, b=[-0.5,+0.5]');alpha=input('滚降系数');Rt=input('占空比');if Rt==[],Rt=0.5;end;hr1=sin(pi*t/Ts)./(pi*t/Ts);hr2=cos(alpha*pi*t/Ts)./(1-(2*alpha*t/Ts).^2);hr=hr1.*hr2;HR=abs(t2f(hr));GT=sqrt(HR);GR=GT;EP=zeros(size(f))+eps;EPr=zeros(size(f))+eps;['信噪比为',num2str(db),'dB, 采样偏差为',num2str(b),'*Ts'] for loop1=1:16Eb_N0(loop1)=(loop1-1); %分贝值变为真值eb_n0(loop1)=10^(Eb_N0(loop1)/10);Eb=1;n0=Eb/eb_n0(loop1); % 信道噪声谱密度sita=n0*Bs; % 噪声功率n_err=0; % 误码计数for ii=1:20code=sign(randn(1,M));imp=zeros(1,N); % 产生冲击序列imp(L/2:L:N)=code/dt;IMP=t2f(imp);Sa=IMP.*GT; % 升余弦信号的傅氏变换sa=f2t(Sa); %升余弦信号的时域变换sa=real(sa);P=Sa.*conj(Sa)/T; % 升余弦信号的功率谱EP=(EP*(ii-1)+P)/ii;n_ch=sqrt(sita)*randn(size(t));% 信道噪声nr=real(f2t(t2f(n_ch).*GR)); %输出噪声Sr=Sa.*GR; %接收信号频谱sr=real(f2t(Sr))+nr;% 接收信号y=sign(sr(L*(.5):L:N)); %抽样判别n_err=n_err+length(find(y~=code));% 误码数Pr=Sr.*conj(Sr)/T; % 平均功率EPr=(EPr*(ii-1)+Pr)/ii;tt=[0:dt:Na*L*dt];if loop1==db+1[' 画眼图 '];for jj=1:Na*L:N-Na*Lfigure(2);hold on;subplot(2,1,1);grid on;plot(tt,sa(jj:jj+Na*L));% 画发送眼图title(' 发送眼图 ');xlabel('t (us)')ylabel('s(t) (V)')axis([0,2,-2.3,2.3]);hold on;subplot(2,1,2);grid on;plot(tt,sr(jj:jj+Na*L));% 画接受眼图title(' 接收眼图 ');xlabel('t (us)')ylabel('s(t) (V)')axis([0,2,-2.3,2.3]);endendendif loop1==db+1[' 画波形图 '];s=zeros(1,N);s=reshape(code(ones(1,L),:),1,L*M);yo=zeros(1,N);yo=reshape(y(ones(1,L),:),1,L*M);figure(1)subplot(2,3,1);plot(t,s,'LineWidth',2);% 画发送码型grid on;axis([-10,+10,1.5*min(s),1.5*max(s)])xlabel('t (us)')ylabel('s(t) (V)')title(' 发送码型 ');subplot(2,3,2);plot(t,sa);% 画生成波形grid on;axis([-10,10,1.5*min(sa),1.5*max(sa)]);xlabel('t (us)')ylabel('s(t) (V)')title(' 发送生成波形 ');subplot(2,3,3)plot(f,30+10*log10(EP));% 画功率谱grid on;axis([-.05*Bs,.05*Bs,min(30+10*log10(EP))/3,1.5*max(30+10*log10(EP))]);xlabel('f (MHz)')ylabel('Ps(f) (dBm/MHz)')title(' 发送生成波形 ');subplot(2,3,4);plot(t,yo,'LineWidth',2); % 画接受码grid on;axis([-10,+10,1.5*min(yo),1.5*max(yo)])xlabel('t (us)')ylabel('s(t) (V)')title(' 发送功率谱 ');subplot(2,3,5);plot(t,sr);% 画接受波形grid on;axis([-10,10,1.5*min(sr),1.5*max(sr)]);xlabel('t (us)')ylabel('sr(t) (V)')title(' 接收码型 ');subplot(2,3,6)plot(f,30+10*log10(EPr+eps),'*');% 画接受功率谱grid on;axis([-.05*Bs,.05*Bs,min(30+10*log10(EPr+eps))/2,1.5*max(30+10*log10(EPr+ep s))]);xlabel('f (MHz)')ylabel('Ps(f) (dBm/MHz)')title(' 接收功率谱 ');end;Pe(loop1)=n_err/(M*ii)+eps; % 平均误码率endfigure(3)semilogy(Eb_N0,Pe,'b');eb_n0=10.^(Eb_N0/10); % 还原为真值hold onsemilogy(Eb_N0,0.5*erfc(sqrt(eb_n0)),'r');% 理论误码率曲线axis([0,9,1e-5,1])title(' 误码率曲线 ');xlabel('Eb/N0')ylabel('Pe')legend(' 实验值 ',' 理论值 ');pause(0.001);%endfunction X=t2f(x)global dt df N t f TH=fft(x);X=[H(N/2+1:N),H(1:N/2)].*dt;endfunction x=f2t(X)global dt df t f T NX=[X(N/2+1:N),X(1:N/2)];x=ifft(X)/dt;end实验结果图2:频谱图图3:发送和接收眼图实验总结图3眼图是在信噪比为8dB, 采样偏差为0.2*Ts的条件下测得,由于信号在信道中传输时引入了噪声,接收眼图的质量相比发送眼图出现了大幅的下降。

信道模拟实验报告

信道模拟实验报告

信道模拟实验报告
6.用示波器观察JI、JQ,与原始信号I-OUT 和Q-OUT 比较。

信道输入(上)和信道输出1处(下)
信道输出1处
二位误码时的波形
BS(上)眼图(下)
实验思考
1. 观察眼图时,NRZ信号速率设置为7.8K,经过什么样的电路在信道输出点2
进行观察?也即NRZ信号和信道输出点2的信号差异是什么?
答:经过了低通滤波电路在信道输出点2处进行观察。

NRZ信号与信道输出点2的信号差异在于NRZ中含有高频分量(在信号发生突变时的跳变部分含有高频成分),而在信号输出点2处因为低通滤波的作用,使得其输出波形变得更为圆滑(高频无法经过低通滤波)不再含有高频。

3. 信道编码的作用是什么?你听过的有哪些?实际中常用的呢?
答:信道编码是调制之前的重要一步,目的在与提高传输的质量问题,是信号在传输过程中误码率降到最小,同时在信道编码这一环要加入一定量的冗余码以保证系统可以拥有差错和纠错的能力以及达到秘密传输的要求。

我听说过的信道编码分两大类,一类是分组码,一类是卷积码。

分组码是指在原信息后面加冗余进行检错或纠错的编码,卷积吗是指信息之间互相交错互相提供冗余的编码。

分组码的性能要逊于卷积码,但是复杂度也要远低于卷积码。

实际生活中常用的是LDPC码、TURBO码。

信道编码大致分为两类:①信道编码定理,从理论上解决理想编码器、译码器的存在性问题,也就是解决信道能传送的最大信息率的可能性和超过这个最大值时的传输问题。

②构造性的编码方法以及这些方法能达到的性能界限。

实验小结
通过本次实验了解了理想信道随机信道的区别,对信道的区别有了更深的了解。

《通信原理实验》DBPSK、QPSK、眼图等实验

《通信原理实验》DBPSK、QPSK、眼图等实验

《通信原理实验》DBPSK、QPSK、眼图等实验一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义。

2、掌握眼图观测的方法并记录研究,3、掌握DBPSK调制和解调的基本原理。

4、掌握DBPSK数据传输过程,熟悉典型电路。

5、熟悉DBPSK调制载波包络的变化6、掌握QPSK调制原理。

7、了解OQPSK调制原理。

8、了解眼图与信噪比、码间干扰之间的关系及其实际意义。

9、掌握眼图观测的方法并记录研究。

二、实验器材1、主控&信号源模块,9号、10号、13号、17号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、低通信道模拟框图2、DBPSK实验原理框图3、DBPSK非相干解调框图4、QPSK/OQPSK调制框图5、QPSK/OQPSK解调框图5、低通信道模拟框图四、实验步骤实验项目一低通信道模拟和眼图实验1、在主控菜单中分别设置不同截止频率的低通信道,观察17号模块信道输出波形的“眼睛”大小,并分析原因。

截止频率为6KHz:截止频率为5.5KHz:截止频率为5KHz:截止频率为4.5KHz:注:第一个图中CH1(上面的波形)为CLK,CH2(下面的波形)为信道输出。

由图可知,随着截止频率的减小,“眼睛”张开的越来越小。

“眼睛”张开的大小反映着码间串扰的强弱,说明截止频率越小,码间串扰越大。

2、再在主控菜单中分别设置有成形滤波的低通信道,对比观测不带成形滤波的低通信道的输出眼图波形,并分析原因。

截止频率为6KHz:截止频率为5.5KHz:截止频率为5KHz:截止频率为4.5KHz:注:第一个图中CH1(上面的波形)为CLK,CH2(下面的波形)为信道输出。

通过与不带成形滤波的低通信道的输出眼图波形对比观察,发现带成形滤波的输出效果比不带成形滤波的效果要好。

实验项目二ASK调制1、分别观测DIN1和相对码,TH7(I-out)和P1(调制输出)。

观测DIN1和相对码:I-out和调制输出:注:第一个图中CH1(上面的波形)为DIN1,CH2(下面的波形)为相对码;第二个图中CH1(上面的波形)为I-out,CH2(下面的波形)为调制输出。

眼图实验报告的数据.

眼图实验报告的数据.

实验五眼图一、实验目的:1、理解受限信道上的数据传输率;2、观察眼图,分析不同参数设置对眼图的影响。

二、实验原理当一个信号通过一个受限的信道时, 它的波形将发生变化。

如图 5-1所示, 当数据传输率提高时,波形的失真也增大,甚至使得数据不能传输。

图 5-1 受限信道中的波形的前后变化眼图通常用于实时观察一个数字数据序列, 它能够表达出很多有关传输质量的信息,而做这些仅一个常用的示波器和一位时钟序列就可以了。

通过观察眼图,可以测量出传输的质量及接收到的数据中发生错误的可能性。

其原理图如图 5-2所示:图 5-2 眼图产生的原理一个典型的眼图通常是用来显示传输在一个受限信道上的二进制序列, 而这个受限的信道是忽略了噪音的。

如图 5-3所示:图 5-3眼图三、实验设备1、主机 TIMS-301F2、 TIMS 基本插入模块(1 TIMS-153序列产生器(Sequence generator(2 TIMS-148音频振荡器(Audio Oscillator(3 TIMS-153 可调低通滤波器(Tuneable LPF3、计算机4、 PICO 虚拟设备四、实验步骤:1、将 TIMS 系统中的音频振荡器 (Audio Oscillator 、序列产生器 (Sequence generator 、可调低通滤波器 (Tuneable LPF 三个模块按图 5-4连接。

2、 PICO 软件的设置:打开 PICO 软件,设置眼图参数。

在“ Settings ” 菜单中选择“ Options ”选项,如下图所示:在弹出的窗口菜单中,在“ Sco pe options”里的“ Data to display”项选择“ Accumulate ” 。

如下图所示:在 Trigger 项中应作如下图的设置:2、顺时针设置可调低通滤波器(Tuneable LPF 上的 TUNE 和 GAIN 按钮, 使其调至最大选择 WIDE 带宽模式。

《通信原理》课程实验报告

《通信原理》课程实验报告

《通信原理》课程实验报告班级:14通信技术x班 学号:尾数后两位 姓名: 座号:实验箱编号实验时间:实验地点:科A704实验课题:眼图观察测量实验实验目的:1.学会观察眼图及其分析方法,调整传输滤波器特性.实验过程:1、简述实验原理:2、什么是眼图?3、 所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

①最佳抽样判决时刻对应于眼睛张开最大的时刻;②判决门限电平对应于眼图的横轴;③最大信号失真量即信号畸变范围用眼皮厚度;④噪声容限是用信号电平减去眼皮厚度;⑤过零点畸变为压在横轴上的阴影长度;⑥对定时误差的灵敏度由斜边的斜率反映。

1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。

无畸变眼图的开启度应为100%。

其中U=U++U-2.“眼皮”厚度2ΔU/U指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应等于0。

3.交叉点发散度ΔT/T指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发散度应为0。

4.正负极性不对称度指在最佳抽样点处眼图正、负幅度的不对称程度。

无畸变眼图的极性不对称度应为0。

最后,还需要指出的是:由于噪声瞬时电平的影响无法在眼图中得到完整的反映,因此,即使在示波器上显示的眼图是张开的,也不能完全保证判决全部正确。

不过,原则上总是眼睛张开得越大,误判越小4、实验的操作步骤与实验波形1、PSK调制与解调调制与解调波形:两个方波2、PSK调制与解调调制与解调,无噪声情况下的眼图波形:对眼图整体图:分析范例3、PSK调制与解调调制与解调,有噪声情况下的眼图波形:对眼图整体图:分析范例:对眼图整体图:分析案例:自己写。

完整版眼图观测实验

完整版眼图观测实验

武夷学院实验报告课程名称:通信原理实验项目名称:眼图观测实验姓名:专业:通信工程班级:一班学号:同组成员:匚-、实验准备[1L:实验目的1、掌握眼图观测的方法。

2、掌握相关眼图的测量方法。

实验内容1、观测眼图。

2、测量沿途的判决电平、噪声容限。

实验模块1、通信原理11号模块2、双踪示波器模块实验原理在实际系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,在示波器上显示的图形很象人的眼睛,因此被称为眼图。

二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。

眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。

最佳抽样时刻最大信号失真量噪声容限■ ————————— 1^——_可以抽样的时间过零点失真图23-1 眼图的一般描述在无码间串扰和噪声的理想情况下,波形无失真,“眼”开启得最大。

当有码间串扰时,波形失真,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用图7.6所示的图形来描述。

由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2 )眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜边越陡,系统对定时抖动越敏感。

实验二 信道与眼图实验

实验二      信道与眼图实验

实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二信道与眼图实验
一、实验目的
1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容
1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器
1、信号源模块一块
2、信道与眼图模块一块
3、20M双踪示波器一台
4、虚拟仪器(选配)一块
5、频谱分析仪一台
四、实验原理
1、高斯白噪
本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图
一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

这时就可以从示波器显示的图形上观察出码间干扰和噪声的影响,从而估计出系统性能的优劣程度。

所谓眼图就是指示波器显示的图形,因为在传输二进制信号波形时,它很像人的眼睛。

为了说明眼图和系统性能之间的关系,我们把眼图简化为一个模型,如图2-1所示。

该图表述了下列意思:
(1)眼图张开部分的宽度决定了接收波形可以不受串扰影响而抽样、再生的时间间隔。

显然,最佳抽样时刻应是“眼睛”张开最大的时刻;
(2)对定时误差的灵敏度可由眼图的斜边之斜率决定,斜率越陡,对定时误差就越灵敏;
(3)图中的阴影区的垂直高度表示信号畸变范围;
(4)图中央的横轴位置对应判决门限电平;
(5)在抽样时刻上,上下两阴影区的间隔距离之半为噪声的容限,即若噪声瞬时值超过这个容限,就有可能发生错误判决。

图2-1 眼图模型
五、实验步骤
1、将信号源模块、信道与眼图模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对
应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
3、高斯白噪信道
(1)将信号源模块任一测试点信号(建议“24.576M”时钟信号除外),送入高斯白噪信道“输入”点。

(2)示波器观测“噪声”测试点,为位数较长的伪随机序列,示波器无法稳定观测。

(3)观测“噪声”的频谱,应为伪随机序列的频谱,逼近高斯白噪的频谱特性。

这里可采用频谱分析仪或选配的虚拟仪器进行信号频谱分析。

(4)示波器观测“输出”测试点,调节“噪声功率调节”旋转电位器P01。

逆时针旋转到底时无失真,顺时针增大噪声功率,且输出信号波形上叠加的噪声越明显。

(5)观测“输出”测试点信号的频谱随噪声功率大小的变化情况。

4、观测眼图
(1)信号源模块“码速率选择”拨码开关设置为3分频,即拨为00000000 00000011。

(2)此时,将256K码速率的NRZ码或任一伪随机序列,例如PN15,送入“256K”数字基带传输信道“输入”测试点。

(3)示波器设定为外触发方式,即选择为“Ext”触发。

1通道接“256K”数字基带传输信道“输出”,“EXT TRIG”外触发通道接信号源模块“BS”,调节“256K码速率
带限信道”“眼图调节”旋转电位器,观测眼图“眼睛”张开/闭合过程。

注:数字基带传输系统实验中,时分复用信号的码速率为256K,送入256K数字基带传输信道观测眼图;时分复用信号经单极性码型变换后,BPH/CMI编码的码速率
为512K,送入512K数字基带传输信道观测眼图。

“512K码速率带限信道”观测
眼图的操作步骤与之相同。

信道与眼图模块作为工具模块之一,本实验中仅要求
掌握其使用方法,在今后的实验中再具体使用到。

六、课后扩展题
回顾《模拟电子技术基础》等教材中关于滤波器设计的相关内容。

推荐《电子线路设计、实验、测试》(华中科技大学出版社谢自美主编)“RC有源滤波器的快速设计”一节内容。

有兴趣的同学可自行设计一个无源或者有源的滤波器,模拟有限带宽信道。

在面包板上搭建硬件电路,通过观测滤波器的输出,检验滤波器设计的质量好坏。

熟悉Pspice软件使用的同学,在搭建硬件电路之前,还可先软件仿真来验证。

相关文档
最新文档