空间插值方法对比整理版

合集下载

空间插值介绍简洁明了

空间插值介绍简洁明了

f (d
i 1
n
ej
)
其中 n 是已知点数, f d ej

表示对于插值点(xe, ye) 的权重函数。
d 与已知点 (xj,, yj ) 之间距离ej
f d ej 最常用的一种形式是:
1 f d Leabharlann j b d ejb 是合适的常数。当 b 取值为 1 或 2 时,对应的是距离倒数插值和 距离倒数平方插值。b 也可以对不同的已知点选择不同的值,即 bj 。
一般插值过程
① 内插方法(模型)的选择; ② 空间数据的探索性分析,包括对数据的均值、方 差、协方差、独立性和变异函数的估计等;
③ 进行内插;
④ 内插结果评价; ⑤ 重新选择内插方法,直到合理;
⑥ 内插生成最后结果。
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。 耗时:一般情况下,计算时间不是很重要,除非特别费时。 存储要求:同耗时一样,存储要求不是决定性的。特别是在 计算机的主频日益提高,内存和硬盘越来越大的情况下,二 者都不需特别看重。
距离反比插值评价
• 优点——简便易行;可为变量值变化很大的数据集提 供一个合理的插值结果;不会出现无意义的插值结果 而无法解释。
• 不足——对权重函数的选择十分敏感;易受数据点集 群的影响,结果常出现一种孤立点数据明显高于周围 数据点的“鸭蛋”分布模式; • 全局最大和最小变量值都散布于数据之中。 • 距离反比很少有预测的特点,内插得到的插值点数据 在样点数据取值范围内。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法 (Inverse Distanee to a Power ) 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法 (Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法 (Minimum Curvature )最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准4、多元回归法(Polynomial Regression )多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值方法汇总

空间插值方法汇总

空间插值方法汇总Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。

空间插值算法汇总

空间插值算法汇总

空间插值算法:1、距离倒数乘方法(Inverse Distance to a Power)距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法(Kriging)克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法(Minimum Curvature)最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法(Polynomial Regression)多元回归被用来确定你的数据的大规模的趋势和图案。

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

空间插值介绍简洁明了

空间插值介绍简洁明了

• 反距离权重插值综合了泰森多边形的自然邻近法和多元回归渐变 方法的长处,在插值时为待估点Z值为邻近区域内所有数据点都 的距离加权平均值,当有各向异性时,还要考虑方向权重。 • 权重函数与待估点到样点间的距离的U次幂成反比,即随着距离 增大,权重呈幂函数递减。且对某待估点而言,其所有邻域的样 点数的权重和为1。 • 决定反距离权重插值法结果的参数包括距离的U次幂值的确定, 同时还取决于确定邻近区域的所使用的方法。此外,为消除样点 数据的不均匀分布的影响,还可设置引入一个平滑参数,以保证 没有哪个样点被赋予全部的权重,即使得插值运算时尽可能不只 有一个样点参与运算。 • IDW是一种全局插值法,即全部样点都参与某一待估点的Z值的 估算; • IDW的适用于呈均匀分布且密集程度足以反映局部差异的样点数 据集; • IDW与之前介绍的插值法的不同之处在于,它是一种精确的插值 法,即插值生成的表面中预测的样点值与实测样点值完全相等。
• 多种 kriging 方法
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
• 当数据存在不确定性时,应该使用近似插值,由 于估计值替代了已知变量值,近似插值可以平滑 采样误差。
四、高次曲面插值 (Multiquadric)
高次曲面插值由 Hardy 于1971年首先提出,随后应用于不同的 学科。每个样点对插值点的影响都用样点坐标函数构成的圆锥表 示,插值点的变量值是所有圆锥贡献值的总和(Caruso,1998)。 插值数学表达式为:
ve ci d ei
i 1
其中ci 是样本点(xi,yi)的系数,dei是待估点(xe, ye)与样 本点(xi, yi)的距离。

(完整word版)空间内插方法比较

(完整word版)空间内插方法比较

一、空间数据的插值用各种方法采集的空间数据往往是按用户自己的要求获取的采样观测值,亦既数据集合是由感兴趣的区 域内的随机点或规则网点上的观测值组成的。

但有时用户却需要获取未观测点上的数据,而已观测点上的数 据的空间分布使我们有可能从已知点的数据推算岀未知点的数据值。

在已观测点的区域内估算未观测点的数据的过程称为内插;在已观测点的区域外估算未观测点的数据的 过程称为外推。

空间数据的内插和外推在 GIS 中使用十分普遍。

一般情况下,空间位置越靠近的点越有可能获得与 实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。

下面介绍一些常用的内 插方法。

1、边界内插使用边界内插法时,首先要假定任何重要的变化都发生在区域的边界上,边界内的变化则是均匀的、同质的。

边界内插的方法之一是泰森多边形法。

泰森多边形法的基本原理是,未知点的最佳值由最邻近的观测值产生。

如图4-6-1所示。

泰森多边形的生成算法见§ 5.7。

2、趋势面分析趋势面分析是一种多项式回归分析技术。

多项式回归的基本思想是用多项式表示线或面,按最小二乘法原理对数据点进行拟合, 拟合时假定数据点的空间坐标 X 、Y 为独立变量,而表示特征值的Z 坐标为因变 量。

当数据为一维时,可用回归线近似表示为:-其中,Sb 、a i 为多项式的系数。

当n 个采样点方差和为最小时,则认为线性回归方程与被拟合曲线达工(N -乳〕之-min到了最佳配准,如图4-6-2左图所示,即: 一当数据以更为复杂的方式变化时,如图 4-6-2右图所示。

在这种情况下,需要用到二次或高次多项式:在GIS 中,数据往往是二维的,在这种情况下,需要用到二元二次或高次多项式:£ 二 % + a x X + a^X(二次曲线)7 1= +O,JV 2 +a 4J¥y4多项式的次数并非越高越好,超过 3次的多元多项式往往会导致奇异解,因此,通常使用二次多项 式。

空间插值方法对比整理版

空间插值方法对比整理版

优点
能够处理非线性数据,对局部变化敏 感且具有较好的平滑效果。
缺点
计算复杂度较高,需要选择合适的核 函数和参数。
03
全局插值方法对比
线性插值
01
02
03
定义
线性插值是利用两点之间 的直线关系来估计未知点 的值。
公式
$z(x) = z(x_0) + frac{(x x_0) times (z(x_1) z(x_0))}{x_1 - x_0}$
06
各种方法的优缺点比较
计算复杂度
全局插值方法
计算复杂度较低,适用于大规模数据集,但牺牲了局部拟合 精度。
局部插值方法
计算复杂度较高,适用于小规模数据集,能更好地拟合局部 变化。
预测精度
全局插值方法
预测精度相对较低,适用于对全局趋 势的预测。
局部插值方法
预测精度较高,适用于对局部细节的 预测。
存在问题
尽管现有的空间插值方法取得了一定的成果,但在实际应用中仍存在一些问题。例如,对于复杂地形 和地貌的插值效果不够理想,插值结果的稳定性和可靠性有待提高。此外,现有方法在处理大规模数 据时效率较低,不能满足实时性要求。
未来研究方向与展望
研究方向
为了解决现有问题,未来的研究可以从以下几个方面展开:一是开发更为智能、自适应的插值算法,以提高 插值结果的稳定性和可靠性;二是研究如何将机器学习、深度学习等先进技术应用于空间插值中,以提高插 值的精度和效率;三是探索如何利用高性能计算技术,如并行计算、云计算等,实现大规模数据的快速处理。
适用于各种类型的空间数据,尤其适 用于具有空间结构性和随机性的数据。
特点
考虑了空间数据的结构性和随机性, 能够较好地反映空间数据的变异特征, 插值结果较为准确。

空间插值方法

空间插值方法

空间插值方法1.反距离权重插值:通过与样本点距离大小赋予权重,距离近的样本点被赋予较大的权重,受该样本点的影响越大,同时可以限制插值点的个数、范围,通过幂值来决定样本点对插值点的影响程度,灵活性大,准确性高,但不太适用规则排列的插值点2.克里金插值:克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。

它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。

使用克里金插值需确定半变异函数的类型、步长、步数。

对于这种方法,原始的输入点可能会发生变化。

在数据点多时,结果更加可靠。

该插值方法对规则排列、较密集的点插值较适用,而离散的插值点则需进行多次调试才可达到较为理想的效果3.自然邻域插值:原理是构建voronoi多边形,也就是泰森多边形。

首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。

该方法不是通过数据模型来进行插值,不需要设置多于的参数,简便但不灵活,不适合离散点进行插值,因为会形成不规则插值边界,但插值结果相对符合实际数值、准确,适合规则排列、较密集的点插值。

4.样条函数插值:这种方法使用样条函数来对空间点进行插值,它有两个基本条件:1.表面必须完全通过样本点2.表面的二阶曲率是最小的。

插值主要受插值类型(Regularized 或Tension)和weight值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;适合那些空间连续变化且光滑的表面的生成。

该方法虽可生成平滑的插值结果,但其结果会在原有样点值进行数值延伸,产生于实际不符的结果,不建议一般插值使用。

空间插值方法汇总

空间插值方法汇总

空间插值方法汇总在GIS的地理空间信息采集过程中,我们对某种地理空间现象或特征进行地理空间测量,都是基于一种离散的样本测量,利用这些有限的采样点数据,而对研究区域内其他未知区域的特征数据进行地理空间信息的推理和估计,从而构建一个连续的地理特征表面分布,我们把这种地理空间推理计算和估计的方法称为地理空间插值。

空间插值主要有如下类别:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modifi ed Shepard’s Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点:1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

各种插值方法比较

各种插值方法比较

各种插值方法比较空间插值可以有很多种分类方法,插值种类也难以举尽。

在网上看到这篇文章,觉得虽然作者没能进行分类,但算法本身介绍地还是不错的。

在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。

1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

空间内插方法比较

空间内插方法比较

空间内插方法比较一、本文概述空间内插方法是一种在地理信息系统(GIS)和遥感技术中广泛使用的技术,用于根据已知的数据点推测未知区域的值。

这种方法在环境科学、气象学、城市规划、资源管理等众多领域都有着重要的应用。

本文旨在探讨和比较几种常见的空间内插方法,包括反距离权重法(IDW)、克里金插值法(Kriging)、自然邻点插值法(Natural Neighbors)以及多项式插值法等。

我们将首先简要介绍这些空间内插方法的基本原理和实施步骤,然后通过一个具体的案例或数据集来比较它们的性能。

我们将评估插值结果的精度、平滑度以及在不同应用场景下的适用性。

我们还将讨论这些方法的优缺点,以便读者能够根据自己的需求选择合适的空间内插方法。

通过本文的阅读,读者将对空间内插方法有更加深入的理解,能够掌握其基本原理和实施步骤,了解不同方法之间的差异和优缺点,并能够在实践中选择合适的空间内插方法。

二、空间内插方法概述空间内插是一种重要的地理信息系统(GIS)技术,用于估算在已知数据点之间或之外的未知地理位置的值。

它是通过分析和理解空间数据的分布模式,使用数学算法来预测和模拟这些模式在空间上的变化。

这种技术广泛应用于各种领域,包括环境科学、气象学、地质学、城市规划等。

空间内插方法大致可以分为两类:确定性方法和统计性方法。

确定性方法,如反距离权重法(IDW)、样条函数法(Spline)等,主要基于空间数据的物理特性和已知点之间的空间关系进行插值。

这类方法通常假设空间数据具有某种连续性和平滑性,通过最小化插值误差或最大化平滑度来得到预测值。

统计性方法,如克里金插值(Kriging)、协方差法等,则更多地依赖于对空间数据分布模式的统计分析和理解。

这类方法认为空间数据不仅具有空间相关性,而且可能存在某种潜在的随机性。

因此,它们通过构建和拟合空间统计模型,如变异函数或协方差函数,来估算未知位置的值。

每种空间内插方法都有其独特的优缺点和适用范围。

两种空间插值方法的比较研究

两种空间插值方法的比较研究

两种空间插值方法的比较研究摘要:距离倒数加权法算法简单,容易实现,适合分布较均匀的采样点集,但容易出现“牛眼”现象;克里金法是一种无偏最优估计法,精度较高,适合空间自相关程度高的数据,但其算法复杂,实现较难。

这两种方法各有其适用情形,本文比较了这两种方法的优劣并提出算法优化的思路。

关键字:距离倒数加权,克里金,优化1引言空间插值是根据一组已知的离散数据或分区数据,按照某种假设推求出其他未知点或未知区域的数据的过程,简单的说就是由已知空间特性推求未知空间特性。

它是地学研究中的基本问题,也是GIS 数据处理的重要内容。

在利用GIS 处理空间数据的过程中,需要进行空间插值的场合很多,如采样密度不够、采样分布不合理、采样存在空白区、等值线的自动绘制、数字高程模型的建立、区域边界分析、曲线光滑处理、空间趋势预测、采样结果的2.5维可视化等[1]。

通过归纳,空间插值可以简化为以下三种情形:(1)现有离散曲面的分辨率、像元大小或方向与所要求的不符,需要重新插值。

例如将一个扫描影像(航空像片、遥感影像)从一种分辨率或方向转换为另一种分辨率或方向的影像。

(2)现有连续曲面的数据模型与所需的数据模型不符,需要重新插值。

如将一个连续曲面从一种空间切分方式变为另一种空间切分方式,从TIN 到栅格、栅格到TIN 或矢量多边形到栅格。

(3)现有数据不能完全覆盖所要求的区域范围,需要插值。

如将离散的采样点数据内插为连续的数据表面[2]。

现有的空间插值方法多种多样,但每一种方法都有其适用情形和无法避免的缺陷,本文分析了距离倒数加权法和克里金法的插值结果,并提出改进的思路。

2方法距离倒数加权法和克里金法都是建立在地理学第一定律之上的,即:空间距离越近,地理事物的相似性越大[3]。

它们都是通过确定待插点周围采样点的权重来求取待插点的估计值,可统一表示。

设n x x ,,1 为区域上的一系列观测点,)(,),(1n x Z x Z 为相应的观测值。

空间插值方法汇总INVERSEDISTANCETOAPOWER(反距离加权插值法...

空间插值方法汇总INVERSEDISTANCETOAPOWER(反距离加权插值法...

空间插值方法汇总Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法) 1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)
a
8
地统计学插值
• 基于自相关性 (测量点的统计关系),根据 测量数据的统计特征产生曲面;
• 克里格方法依赖于数学模型和统计模型,正是 由于引入了包括概率模型在内的统计模型,使 克里格方法与确定性插值方法区分开来。在克 里格方法中预测的结果将与概率联系在一起, 即用克里格方法进行插值,一方面能生成预测 表面,一方面能给出预测值的误差。
④ 存储要求:同耗时一样,存储要求不是决定性的。特别是在 计算机的主频日益提高,内存和硬盘越来越大的情况下,二 者都不需特别看重。
⑤ 可视化、可操作性(插值软件选择):三维的透视图等。
a
12
插值验证
(1) 交叉验证
交叉验证法(cross-validation),首先假定每一测点 的要素值未知,而采用周围样点的值来估算,然后计算所有 样点实际观测值与内插值的误差,以此来评判估值方法的优 劣。 各种插值方法得到的插值结果与样本点数据比较。
a
14
一、最近邻法(Nearest Neighbor)
• 最近邻点法又叫泰森多边形方法。它采用一种极端的边界内 插方法—只用最近的单个点进行区域插值(区域赋值)。
• 泰森多边形按数据点位置将区域分割成子区域,每个子区域 包含一个数据点,各子区域到其内数据点的距离小于任何到 其它数据点的距离,并用其内数据点进行赋值。
a
15
公式
其数学表达式为:
ve vi
其中ve 表示待估点变量值,vi 表示 i 点的变量值。
分析方面,但它们需要的数据a 量大。
7
2、确定性方法和地统计方法
确定性方法
• 确定性插值法是使用数学函数进行插值,以研究区 域内部的相似性(如反距离加权插值法),或者以 平滑度为基础(如径向基函数插值法)由已知样点 来创建预测表面的插值方法。
• 全局多项式插值、反距离权插值、径向基插值、局 部多项式插值
(2)“实际”验证
将部分已知变量值的样本点作为“训练数据集”,用于插值 计算;另一部分样点 “验证数据集”,该部分站点不参加 插值计算。然后利用“训练数据集” 样点进行内插,插值 结果与“训练数据集”验证样点的观测值对比,比较插值的 效果。
a
13
插值方法
1. 最近邻法(Nearest Neighbor) 2. 算术平均值(Arithmetic Mean) 3. 距离反比法(Inverse Distance) 4. 高次曲面插值(Multiquadric) 5. 趋势面插值(Polynomial) 6. 最优插值(Optimal) 7. 样条插值(Spline Surface) 8. 径向基函数插值(Radial Basis Functions) 9. 克里金插值(Kriging) 10. 最小曲率 (Minimum Curvature)
a
2
空间插值分类
1. 整体插值、局部插值和边界内插法; 2. 确定性插值和地统计插值; 3. 精确插值和近似插值。
a
3
1、整体插值、局部插值和边界内插法
整体插值
• 整体插值:用研究区所有采样点数据进行全区特征 拟合。
• 整个区域的数据都会影响单个插值点,单个数据点 变量值的增加、减少或者删除,都对整个区域有影 响。
• 整体插值方法通常不直接用于空间插值,而是用来检测 总趋势和不同于总趋势的最大偏离部分,即剩余部分, 在去除了宏观趋势后,可用剩余残差来进行局部插值。
• 整体插值方法通常使用方差分析和回归方程等标准的统
计方法,计算比较简单。其他的许多方法也可用于整体
空间插值,如傅里叶级数和小波变换,特别是遥感影像
• 当数据存在不确定性时,应该使用近似插值,由 于估计值替代了已知变量值,近似插值可以平滑 采样误差。
a
10
一般插值过程
① 内插方法(模型)的选择; ② 空间数据的探索性分析,包括对数据的均值、方
差、协方差、独立性和变异函数的估计等; ③ 进行内插; ④ 内插结果评价; ⑤ 重新选择内插方法,直到合理; ⑥ 内插生成最后结果。
• ……
• 单个数据点的改变只影响其周围有限的数据点。
பைடு நூலகம்
a
5
边界内插法
• 使用边界内插法时,首先要假定任何重要的变化 都发生在区域的边界上,边界内的变化则是均匀 的、同质的。
• 景观单元法、Thiessen多边形法、网格像元法
a
6
整体插值注意的问题
• 整体插值方法将小尺度的、局部的变化看作随机和非结 构性噪声,从而丢失了这一部分信息。局部插值方法恰 好能弥补整体插值方法的缺陷。
相关文档
最新文档