第三章模拟量输入通道

合集下载

第三章微机远动系统3

第三章微机远动系统3

②对事故和事件信息进行优先传送。该功能加强了 调度自动化系统在电网监视过程中对突发事件的快 速反应能力。也就是说,不管RTU当前正在处理什 么工作,只要一旦发现系统有事故或事件发生,就 应立即停止现行工作,把事故或事件信息迅速发送 到调度端。 ③接收调度端下发的命令并执行命令。该功能是调 度自动化系统提供给电网管理的又一技术措施。它 主要是能够接收遥控操作命令,并执行命;另外, 还能接收调度端下发的各种召唤命令、对时命令、 复归命令等,对有些命令的执行还要将执行结果汇 报给调度端。例如,断路器的分、合闸;无功补偿 设备的投入和切除,进行有功、无功的调节,有载 调压等操作。
当然,不论是单CPU的还是多CPU的远动终端, 其所要完成的功能遥控、遥调)功能以外,还应完 成电能(脉冲量)采集、远程通信、当地功能(键 盘输入、显示输出)等。远动终端的硬件结构通常 是按RTU所需完成的功能进行设计,框图如图3-2 所示。图中,RTU的硬件结构主要由七大部分组成: 遥信、遥测、遥控、遥调、电能、键盘显示和通信。 各部分均可带有CPU,组成特定功能的智能模板。 每一种功能模板所处理的信息量是一定的,当信息 量较大时可用多块功能模板。各模板之间的数据交 换是通过外部总线完成,外部总线可以是并行总线, 也可以是串行总线。
近些年,随着网络技术的发展,变电站自动化 技术从集中式向分布式发展,变电站二次设备不再 出现常规功能装置重复的 I/O现场接口,能够通过 网络真正实现数据共享、资源共享,常规的功能装 置变成了逻辑的功能模块。以太网技术正被广泛引 入变电站自动化系统过程层的采集、测量单元和间 隔层保护、控制单元中,构成基于网络控制的分布 式变电站自动化系统,系统的通信具有实时性、优 先级、通信效率高等特点。所以厂站端的远动装置 功能逐渐利用网络技术,通过逻辑的功能模块来实 现,是远动装置的发展方向。

第3章 过程输入输出通道

第3章  过程输入输出通道

;读转换值低4位地址
;读A/D转换低4位 ; 送R2 ;读转换值高8位地址 ;读A/D转换高8 位 ;送R3 ;结束
返回本章首页
3.3 模拟量输出通道
一、模拟量输出通道的结构
1. 共用D/A 转换器形式结构图
保持器
放大变换
通道1
微型 计算 机
D/A 接口 电路 转 换 器
多 路 开 关
保持器
放大变换
线编址,从而有过程通道与存储器独立编址、过程
通道与存储器统一编址等常用方法。
2. 间接编址方式
通过接口对过程通道进行编址,此时的通道地址 不与地址总线相连。
3.2 模拟量输入通道
模入通道的功能是对过程量(即模拟量)进行 变换、放大、采样和模/数转换,使其变为二进制数 字信号并送入计算机 。
一、模拟量输入通道的结构
(2) 器件主要结构特性和应用特性
数字量输入特性
包括码制、数据格式以及逻辑电平。
模拟输出特性
目前D/A芯片多为电流输出型
锁存特性及转换控制
有些 D/A芯片内部不带锁存器,必须外加。
参考电源
参考电压源是唯一影响输出结果的模拟参量。
返回本章首页
三、D/A转换器与单片机的接口 1. DAC0832与8051的接口 (1) 直通方式
INC DPTR MOVX @DPTR , A DJNZ R7,LOOP CLR EX0
; 修改RAM区地址
; 修改通道号 ;启动A/D转换 ;8路未采集完,返回 ;采集完,关中断
LOOP: RETI
;中断返回
AD574(12位)与8051单片机的硬件接口电路。
8051
八、A/D转换器软件编程
CPU获取A/D转换的结果有两种办法:一是用查询、一 是用中断。

模拟量输入、输出通道

模拟量输入、输出通道
在能源管理系统中,模拟量输入/输出通道用于监测 和控制各种能源设备的运行状态,如电力、燃气等 ,实现能源的优化利用和节能减排。
医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度

第三章模拟量输入通道介绍

第三章模拟量输入通道介绍
当采样通道多至16路时,可直接选用16路模拟开关的芯片,
也可以将2个8路4051并联起来,组成1个单端的16路开关。
例题3-1 试用两个CD4051扩展成一个1×16路的模拟开关。 例题分析:图3-4给出了两个CD4051扩展为1×16路模拟开关的 电路。数据总线D3~D0作为通道选择信号,D3用来控制两个 多路开关的禁止端。当D3=0时,选中上面的多路开关,此时当 经反相器变成低电平,选中下面的多路开关,此时当D2、D1、 D0从000变为111,则依次选通S8~S15通道。如此,组成一个16 路的模拟开关。
在控制系统Байду номын сангаас,对被控量的检测往往采用各种 类型的测量变送器,当它们的输出信号为0 - 10 mA或4 -20 mA的电流信号时,一般是采用电阻分压 法把现场传送来的电流信号转换为电压信号,以下 是两种变换电路。
1. 无源I/V变换
2. 有源I/V变换
1.无源I/V变换
无源I/V变换电路是利用无源器件—电阻 来实现,加上RC滤波和二极管限幅等保护,如 图3-2(a)所示,其中R2为精密电阻。对于0-
当系统各个物理量随时间变化的规律不能用连续函数描述 时,而只在离散的瞬间给出数值,这种系统称为离散系
统。
离散系统的采样形式--有周期采样、多阶采样和随 机采样。应用最多的是周期采样。 周期采样--就是以相同的时间间隔进行采样,即把 一个连续变化的模拟信号y(t),按一定 的时间间隔T 转变为在瞬时0,T, 2T,…的一连串脉冲序列信号 y*(t), 如图3-7所示。
R2 + R3 A R4 (b) 有源I/V变换电路 R5 V
(a) 无源I/V变换电路
图 2-2 电流/电压变换电路
图 3-2 电流/电压变换电路

模拟量输入通道

模拟量输入通道
• 常用的采样保持芯片
3.5 A/D转换器
• A/D转换器的工作原理与性能指标 • 8位A/D转换器ADC0809及其接口电路 • 12位A/D转换器AD574A及其接口电路
3.5.1 A/D转换器的工作原理与性能指标
• 常用的A/D转换方式

逐次逼近式:转换时间短,抗扰性差(电压比较)
ADC0809(8位),AD574A(12位)
3.3 前置放大器
• 可变增益放大器:
IN -
+
2 4 8 16 32 64 A1
16K
16K
80K 26.67K 11.43K 5.33K 2.58K 1.27K 630Ω 314Ω
(外接) V O UT
A3 负载
128
256 16K A2 16K
V IN
+
外接地
3.4 采样保持器
• 信号类型
流量、液位、重量等模拟量信号转换成计算机
可以接收的数字量信号。
• 组成:一般由信号调理电路、多路开关、采样
保持器、模/数转换器(简称A/D或ADC)和接口
电路等组成
3.1 模拟量输入通道的作用和组成
• 组成框图:
过 程 参 数
传 感 变 送 器
信 号 调 理
多 路 模 拟 开 关
前 置 放 大 器

模拟信号

离散模拟信号
数字信号


量化模拟信号
3.4 采样保持器
• 信号的采样

采样过程:用采样开关将模拟信号按一定时间间隔
抽样成离散模拟信号的过程。持器
• 信号的采样

采样的形式
► ► ►

第三章 IO接口技术与IO通道

第三章 IO接口技术与IO通道

第三章 输入输出接口与过程通道
4
计算机控制技术
高等院校自动化新编系列教材
(3)地址译码:在微处理机系统通常都配备有多个或多种外围 设备,这样就会有多个输入/输出接口,像为键盘、鼠标、打印 机、显示器、磁盘等诸输入/输出设备均配备有各自接口,且为 它们分配了各自的地址码。通过接口中的地址译码电路对外围 设备输入/输出地址寻址。 (4)控制和状态:由于微处理机的操作速度与输入/输出设备的运 行速度不在一个数量级上,所以随时需要知道输入/输出设备的 状态。常用的状态信号有正忙和准备就绪。 (5)校验和检查:在微处理机系统中,通常为输入/输出接口配备 有校验功能,并且可以将出错信息报告给微处理机。像外围设 备机构中的机械和电路故障,就要向微处理机报告故障的类型 和位置。若数据在传送中的错误就用奇偶校验码进行校验。如 若USB在传送过程中出现错误则要用到容错功能,发送设备会 重复发送数据直至正确为止。
第三章 输入输出接口与过程通道
16
计算机控制技术
高等院校自动化新编系列教材
3)常用的I/O接口部件的框图
系统总线接口
外围设备接口
数据寄存器 数据线 状态 / 控制寄存器
外围设备 接口逻辑
数据
状态
控制

地址线
I/O 逻辑
控制线
外围设备 接口逻辑
数据 状态 控制
第三章 输入输出接口与过程通道
17
计算机控制技术
第三章 输入输出接口与过程通道
11
计算机控制技术
高等院校自动化新编系列教材
第三章 输入输出接口与过程通道
12
计算机控制技术
高等院校自动化新编系列教材
b. 同步传送 许多字符组成一个数据块,块前设同步字符, 以一个CRC字符结束。字符间不允许空隙,空闲时 发同步字符。收发器时钟频率严格保持一致,发端 将时钟与数据一起发送到接收端,硬件电路较异步 复杂。 CRC字符 循环冗余校验字符。 同步字符 特殊8位二进制码,接收器收到 同步字符,一幀即开始。

计算机控制技术及工程应用复习资料

计算机控制技术及工程应用复习资料

一、第一章1)计算机控制系统的监控过程步骤a .实时数据采集--对来自测量变送器的被控量的瞬时值进行采集和输入 ;b .实时数据处理--对采集到的被控量进行分析、比较和处理,按一定的控制规律运算,进行控制决策; c.实时输出控制--根据控制决策,适时地对执行器发出控制信号,完成监控任务;2)按控制方案来分,计算机控系统划分成那几大类?数据采集系统(DAS ) 操作指导控制系统(OGC) 直接数字控制系统(DDC ) 监督计算机控制系统(SCC ) 分散控制系统分散控制系统 (DCS ) 现场总线控制系统(FCS )3)计算机控制装置种类 可编程控制器;可编程控制器; 可编程调节器;可编程调节器; 总线式工控机;总线式工控机; 单片微型计算机;单片微型计算机; 其他控制装置其他控制装置4)计算机控制系统与常规仪表控制系统的主要异同点是什么?同:1)计控系统是由常系统演变而来的; 2)两者的结构基本相同异:1)计控系统中处理的信号有两种:模拟信号和数字信号。

而常系统处理的只有模拟信号2)计控系统具有智能化3)计控系统有软件也有硬件,而常系统只有硬件二、第二章1)4 位 D/A 转换器为例说明其工作原理假设D3、D2、D1、D0全为1,则BS3、BS2、BS1、BS0全部与“1”端相连。

根据电流定律,有:由于开关 BS3 ~ BS0 的状态是受要转换的二进制数的状态是受要转换的二进制数 D3、D2、D1、D0 控制的,并不一定全是“1”。

因此,可以得到通式:考虑到放大器反相端为虚地,故:选取 R fb = R ,可以得到:对于 n 位 D/A 转换器,它的输出电压V OUT 与输入二进制数B( Dn-1~ D0) 的关系式可写成:的关系式可写成:结论:可见,输出电压除了与输入的二进制数有关,还与运算放大器的反馈电阻 Rfb 以及基准电压VREF 有关。

2)D/A 转换器性能指标是(1)分辨率 是指 D/A 转换器能分辨的最小输出模拟增量。

计算机控制技术课后答案

计算机控制技术课后答案
西门子工业计算机,自动化领域首选平台。拥有用于工业环
计算机 -02
一体化工


( WS-843

技有限公司
泓信嵌入式技 术有限公司
境的坚固结构,在表面处理上采用全面防腐蚀的技术保障用户 的使用。通过自行设计和制造的母板保障了用户工作的连续性 及兼容性在对要求连续运转及高可靠性的用户极为适用。 SIMATIC 机架式 PC 是坚固的工业 PC,设计安装于 19"机柜和 控制台内。它优越的系统性能和良好的扩展和延伸能力,使它 能用于所有的工业领域。SIMATIC 机架式 PC 包括基本型 IL 40 和高性能 PC 840 两种类型,可用于不同的工业要求的场合。
计算机控制系统中要考虑实时性? 答:实时性是指工业控制时计算机系统应该具有的能够在限定的时间内对外
来事件作出反应的特性。 在计算机控制系统中,生产过程和计算机直接连接,并受计算机控制的方
式称在线方式或联机方式。 在生产过程不和计算机相连,且不受计算机控制,而是靠人进行联系并作
相应操作的方式称离线方式或脱机方式。 由计算机控制系统的工作原理可知,计算机控制系统要进行实时数据采集,
实时控制决策,实时控制输出。在生产过程中系统要对生产过程进行跟踪与作出
实时的反应,所以计算机控制系统要考虑实时性。
3、计算机控制系统有哪几种典型形式?各有什么主要特点?
答:①操作指导控制系统(OIS):其主要优点是结构简单、控制灵活和安 全。缺点是要由人工操作,速度受到限制,不能控制多个对象。
②直接数字控制系统(DDC):由于计算机直接承担控制任务,所以要求其 实时性好、可靠性高和适应性强。但由于集中控制的固有缺陷,硬件可靠性低, 未能普及。
启动转换及读出控制信号的连接方法;电源和地线的处理;与计算机 信息传递的方式。

计算机控制技术王建华主编第二版第三章课后答案

计算机控制技术王建华主编第二版第三章课后答案

1、A/D 转换的主要性能指标有哪些? 答:转换时间、分辨率、线性误差、量程、对基准电源的要求等。

2、计算机与模拟量输入接口交换信息有哪几种控制方式?它们各有什么优缺点? 答:程序查询式:程序设计比较简单,可靠性高,但实时性差; 延时采样方式:硬件设计简单,但信息传递较前述方式慢; 中断方式:提高了系统的工作效率; DMA 方式:传输速率大大提高。

3、模拟量输入接口设计主要解决那几个方面的问题? 答:数据输出线的连接方式,选通信号、启动转换及读出控制信号的连接方法,电源和地 线的处理,与计算机信息传递的方式。

4、模拟量输入通道由那几部分组成? 答:模拟量输入通道一般由 I/U 变换,多路转换器、程控放大器、采样/保持器、A/D 转 换器、接口及控制逻辑等组成。

5、采样/保持器的作用是什么?是否所有的模拟量输入通道中都需要采样/保持器?为什 么? 答:为了提高模拟量输入信号的频率范围,以适应某些随时间变化较快的信号的要求,可 采用带有保持电路的采样器,即采样保持器(为了防止在 A/D 转换之前信号就发生了变化, 致使 A/D 转换的结果出错,因而采用采样保持器来使得信号维持一段时间)。

并不是所有 的模拟量输入通道都需要采样保持器的,因为采样保持器是为了防止在 A/D 转换之前信号 就发生了变化,致使 A/D 转换的结果出错,所以只要 A/D 转换的时间比信号变化的时间短 就不需要。

6、在模拟量输入通道中,为何通常要使用可编程放大器? 答:因为在模拟输入通道中,多路被测信号常常共用一个测量放大器,而各路的输入信号 大小往往不同, 但都要放大到模数转换器的同一量程范围内获取适合的分辨力, 所以常要使 用可编程放大器。

7、隔离放大器有几种形式?各有什么特点? 答: (1)变压器耦合隔离放大器:线性和稳定性好,隔离电压和共模抑制比高,应用电路 简单,频带较宽; (2)主要起到抗共模干扰和良好的安全保障作用。

模拟量输入输出通道dq

模拟量输入输出通道dq

DQ通道与AO通道的比较
信号类型
AO通道通常用于输出模拟信号,如控制阀门、电机等,而 DQ通道则主要用于数字信号的输入输出。
数据处理
AO通道输出的模拟信号需要经过数模转换器(DAC)从数字信 号转换为模拟信号后输出,而DQ通道则直接处理数字信号。
应用场景
AO通道广泛应用于过程控制、执行器驱动等领域,而DQ 通道则多用于数据通讯、逻辑控制等领域。
表示输出模拟信号的精度,通常以位数(bit) 表示。
表示输出模拟信号与输入数字信号之间的 线性关系,越接近1表示线性度越高。
输出范围
输出阻抗
表示输出模拟信号的最大值和最小值,根 据不同设备需求而定。
表示输出模拟信号的电阻值,影响驱动能 力和负载匹配。
05
DQ通道与其他通道的比 较
DQ通道与AI通道的比较
高精度化趋势
随着工业自动化水平的提高,对模拟量输入输出 通道的精度要求也越来越高。高精度通道能够提 供更准确的测量结果,更好地满足生产需求。
智能化趋势
随着物联网和人工智能技术的发展,模拟量输入 输出通道正逐渐向智能化方向发展。智能化的通 道能够自主完成数据采集、处理、分析和决策, 为工业自动化提供更强大的支持。
噪声抑制
通过滤波器或数字信号处理技 术减小噪声干扰。
模拟量输入通道的参数
分辨率
表示A/D转换器能够分辨的最小电压或电流 变化量。
采样速率
表示A/D转换器每秒能够完成的采样次数。
线性度
表示A/D转换器输出与输入之间的线性关系。
精度
表示A/D转换器的误差范围,通常以百分比 表示。
04
模拟量输出通道
模拟量输出通道的种类
模拟量输出通道的原理

第三章 IO接口技术及IO通道

第三章 IO接口技术及IO通道

查询设备状态标志值的方法有三种: 1.每个设备对应一个状态端口(实际 只有一位,是一个状态触发器),CPU查询 一个设备的状态标志,经判断作出相应的 I/O处理后,再查询、判断、处理下一个设 备。
2.把各个设备的状态标志位集中起来 ,用一个统一的专用状态端口来存放,CPU 一次读取后就可对所有设备的当前标志进行 测试、判断和进入相应处理。 上述两种方法的设备优先级都是由查询 的顺序决定的。
#include <dos.h>; #include <stdio.h>; main ( ) { int i; outportb(0x303,0x89); outportb(0x300,0x55); outportb(0x301,0xAA); i = inputb(0x302); return ; }
处理办法:堆栈指针永远指向堆栈。
3.2.3 DMA控制方式
DMA控制方式的概念: 即直接存储器存取方式,它采用一个 专用的硬件电路DMA控制器(在PC机的主 板上)来控制内存与外设之间的数据交换, 无需CPU介入,从而大大提高了CPU的工 作效率。
DMA控制方式的输入接口电路示意图
DMA控制方式的数据交换过程
开关的闭合与 断开,指示灯的亮 与灭,继电器或接 触器的吸合与释放, 马达的启动与停止, 阀门的打开与关闭 等
开关量输入、输出接口分别如图3-6、图3-7所示
图3-6开关量输入接口
图3-7开关量输出接口
思考:为什么要有输入缓冲器和输出锁存器?
由前可以看出,由缓冲器担当了输入接口,由锁存 器担当了输出接口,此外,常用数字量输入输出接口还 有可编程并行I/O扩展接口。
3.2.2 中断控制方式 中断控制方式的优点: 不仅省去了CPU查询外设状态和等待外 设准备就绪所花费的时间,提高了CPU的工 作效率,而且还满足了外设的实时性要求。

第三章 CAT系统接口-65页精选文档

第三章 CAT系统接口-65页精选文档
CPU能直接处理的是并行数据(8位、16位或32位等),而有的 外设(如串行通信设备、绘图仪、电传打字机等)只能处理串行数 据、在这种情况下,接口就应具有数据“并一串”和“串一并” 变换的能力。
7.可编程功能
现在的接口芯片基本上都是可编程的,这样在不改动硬件 的情况下,只修改相应助驱动程序就可以改变接口的工作方式, 大大地增加了接口的灵活性和可扩充性。
1.数据缓冲功能
为解决CPU高速与外设低速的矛盾、避免因速度不 一致而丢失数据.接口中一般都设置数据寄存器或锁存 器。称之为数据口。
为了实现CPU与外设之间的联络,接口电路还要提 供寄存器“空”、“满”、“准备好”、“忙”、“闲” 等状态信号。以便向CPU报告接口或外设的工作情况。 称之为状态口。
接口功能(续1)
驱动器可直接使用TTL器件或s型TTL器件。但不能使用LS 型器件,也不能使用NMOS大规模集成电路,因为它们不具备 直接驱动LED灯的能力。即使是TTL器件也只能驱动单个LED 灯,不可再接其他负载或器件,因为LED灯会把TTL的输小嵌 位在一个对其他电路无效的逻辑电平上.使电路不能正常下作。
继电器驱动
换句话说,只有接口了键盘、显示器、打印机计算机 处理的信息才能得以显现;接口了软磁盘和硬磁盘,我们 才可以极大地扩充计算机的存储空间;
计算机只有接口了各种各样的自然界模拟、数字信 号.才能应用到控制与测试等领域,实现机电仪一体化; 将计算机配上接口组成计算机网络、实现信息资源共享, 使社会信息化。
接口功能
计算机
以数字信 号形式传 递和处理
什么是接口
所谓接口(Interface)就是微处理器或微机与外界的连接 部件(电路),原始数据要通过接口从输入设备送人微机中, 而运算结果要通过接口向输出设备送出去;控制命令通过 接口发出去,现场状态通过接口取进来;这些来往信息都 要通过接口进行变换与传递。

微型计算机控制系统课件第3章 输入输出接口及输入输出通道

微型计算机控制系统课件第3章  输入输出接口及输入输出通道
这种I/O控制方式是优是劣,不能一概而论,要看具体应用场合。如果I/O处理的实时性要求不那么高, 或者微型计算机的操作任务比较单一,并不很忙。比如在一个系统专门用于控制一个或几个I/O设备的特殊 情况下,CPU除了为外设服务,本身就没有更多的其它工作要做,在这种情况下,程序查询式控制不失为一 种比较理想的控制策略。正因为这样,所以它在实际中还是一种最常用的I/O控制方式。反过来,如果I/O处 理的实时性要求很高,或者CPU的任务很繁忙,则不宜采用这种方式,而最好采用中断驱动式或其它方式来 控制。
除缓冲器和锁存器外,还有一类既有缓冲功能又有锁存功 能的器件,Intel公司8255A可编程并行I/O扩展接口芯片就是 这样的器件。8255A与工业控制计算机(ISA)总线的连接如 图3-5所示。8255A有三个可编程的8位输入输出端口A、B和 C,内部有一个控制寄存器。通过向控制寄存器写入控制字定 义A、B、C端口的数据传输方向(输入或输出)。图中 ATF16V8作译码器用。
数字量输入接ቤተ መጻሕፍቲ ባይዱ原理图
数字量输出接口原理图
输入输出接口设计
输入接口是输入通道与工业控制机总线之间的桥梁,输出接口是输出通道与工业控制机总线之间 的桥梁。下图是由缓冲器和译码器组成的数字量输入接口示例,以及锁存器和译码器组成的数字量输 出接口示例。
数字量输入接口示例
数字量输出接口示例
输入输出接口设计
S1=/A9+/A8+A7+A6+A5+A4+A3+A2 Y0=AEN+S2
输入输出接口与输入输出通道 数据信息的输入输出控制方式 数字量/模拟量输入输出通道的基本组成
基于板卡的输入输出接口与通道的设计
基于计算机通讯接口的输入输出接口与通道的 设计

第三章模拟量输入通道

第三章模拟量输入通道
NOP
NOP OR AL,01000000B OUT DX,AL AND AL,10111111B OUT DX,AL MOV DX,2C0H POLLING: IN AL,DX TEST AL,80H
JNZ POLLING
;置采样缓冲区首址 ;8255A的PC口址 ;送PC口控制信号与通道号
;CE=1 ;启动A/D ;CE=0 ;8255A的PA口址
1.无源I/V变换
构成--无源器件电阻+RC滤波+二极管限幅等实现, 取值: 输入0- 10 mA,输出为0 -5 V ,R1=100Ω,R2=500Ω;
输入4 -20 mA,输出为1 - 5 V,R1=100Ω,R2=250Ω; 电路图:
2. 有源I/V变换
构成-- 运算放大器+电阻电容组成;
(4)非线性误差
A/D转换器实际转换特性曲线与理想特性曲线之间的 最大偏差。在转换器设计中,一般要求非线性误差不大于 1/2LSB。通常用非线性误差来表示A/D转换器的线性度。
3.5.2 ADC0809及其接口电路
主要知识点 1. ADC0809芯片介绍 2.ADC0809接口电路
1. ADC0809芯片介绍
同样,在A/D转换器与PC总线之间的数据传送上也可以 使用程序查询、软件定时或中断控制等多种方法。由于 AD574A的转换速度很高,一般多采用查询或定时方式。其接 口电路及其程序参见下一节。
3.6 A/D转换模板
1、A/D转换模板也需要遵循I/O模板的通用性原则:符合 总线标准,接口地址可选以及输入方式可选。输入 方式可选主要是指模板既可以接受单端输入信号也 可以接受双端差动输入信号。
将输入信号放大到A/D 可接受的范围
核心,实现A到D 的转换

第三章开关量输入输出通道

第三章开关量输入输出通道
INT1
I/O 接口
状态
外设
精品课件
3.2 开关量输入
3.2.1 作用
开关量输入(DI)用于采集 “逻辑信号”。 比如现场来的开关信号,继电器闭合信号等。
精品课件
3.2.2 无条件传送式DI
89C51
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
隔离保 护、电 平变换 电路
DB
D0
单片机
R/W AB
译 码 器
数 据 端 口
状 态 端 口
I/O接口
外 部 设 备
精品课件
查询状态
准备就绪? N
Y
输入/输出数据
三、中断控制方式
当外设准备就绪,向CPU发出中断请求信号。CPU暂停当前程序,执行 I/O操作。当I/O操作结束,CPU仍继续被中断的工作。
数据
数据
MCU 中断申请
第三章 智能仪表的I/O接口
• 3.1 概述 • 3.2 开关量输入 • 3.3 开关量输出 • 3.4 模拟量输入 • 3.5 模拟量输出
精品课件
3.1 概述
3.1.1 I/O 接口的作用和分类
智能仪表的输入输出接口是微处理 器与外部世界联系的通道。包括:
•开关量输入输出接口 •模拟量输入输出接口 •频率量输入输出接口 •音频、视频信号输入输出接口等 本课程只介绍开关量输入输出接口 和模拟量输入输出接口。
如图,当两地之间的地电位相差ΔV时,信号源的12V电压对于仪表来 说就成为12V+ ΔV了。而ΔV可能很大。
换电路后送到MCU的
外设
某个I/O端口,外部
设备通过一条信号
线通知MCU外部信号

智能仪表与传感器ppt

智能仪表与传感器ppt

第二节 模拟量输入通道
三、A/D转换器
1. A/D转换器的分类
1. 积分式A/D转换器:精度高,抗干扰性强,速度慢(每秒十 几次到几十次采样),在PLC中经常使用,万用表。 2. 逐次逼近式:精度较高,抗干扰性较差,速度较快(转换一 次耗时1~25μS),是最常用的A/D转换芯片。 3. 并行式:精度低,抗干扰性差,速度快,结构复杂,造价昂 贵,经常用在虚拟仪器中,如示波器等。
第三章 智能仪表与传感器
智能仪表的一般结构与特点 模拟量输入通道 测温仪表与传感器 压力仪表与传感器 物位仪表与传感器 流量测量仪表与传感器
第三节 测温仪表与传感器
一、测温传感器种类
接触式: 被测对象与测温元件有部分的接触,使两者处于同一温度,即根据测温 元件的温度就可知道被测对象的温度; 接触式测温结构简单.稳定可靠,测量精确,成本低,可以测得物体的 真实温度,而且还可以测得物体内部各点的温度。但滞后现象一般较大, 且不适于测量小物体、腐蚀性强的物体以及运动着的物体的温度。由于 受耐高温材料限制,一般不用于测量很高的温度。 主要有热膨胀式温度计、热电阻、热电偶。 非接触式: 利用被测对象的辐射充分传到测温元件来测量温度的,由于测温元件与 被测对象不接触,因此两者不必是同一温度,只要看到被测对象就可进 行测量。 反应速度快,适于测量高温和测量有腐蚀性的物体.也可以测量导热性 差的、微小目标的、小热容量的、运动的物体以及各种固体、液体表面 温度。但由于受物体的发射率、被测对象与仪表之间距离、烟尘和水蒸 气等的影响,测温淮确度较差.使用也不甚方便。 这类传感器主要有辐射温度计、光学高温计、热释电传感器等。
第二节 模拟量输入通道
二、各环节的作用
5. 可编程序放大器,主要作用是对信号进行放大,而且每一路信号具 有独立的放大倍数,放大倍数由计算机程序设定。其意义在于如果 现场传送过来的信号参差不齐,有的是0~1V,有的是0~5V,没有 必要为每一路信号均设置单独的放大电路,只要在多路开关之后采 用可编程序放大器即可。 6. 采样保持器,其功能是在采样时,输出跟随输入信号的变化而变化, 在保持状态时,可以保持输出信号不变。常用的芯片有:LF398。参 见P85图。 7. A/D转换器,将模拟量信号转换为数字量信号。 8. 光电隔离,是一种电气隔离,防止外部高压电源、干扰等烧毁CPU, 如外部接线错误等。采用光电隔离后,A/D转换芯片的参考电源就不 能使用系统内部的电源,此时可以采用外部电源作为参考电源,为 了简化接线并提高参考电源的精度(参考电源的精度决定了A/D转 换的精度),通常采用DC-DC电源对系统内部电源进行转换和隔离。 9. A/D芯片与CPU之间的接口,包括地址线、数据线、控制线等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 无源I/V变换
2. 有源I/V变换
1.无源I/V变换
无源I/V变换电路是利用无源器件—电阻 来实现,加上RC滤波和二极管限幅等保护,如 图3-2(a)所示,其中R2为精密电阻。对于010 mA输入信号,可取R1=100Ω,R2=500Ω, 这样当输入电流在0 -10 mA量程变化时,输 出的电压就为0 -5 V范围;而对于4 -20 mA输 入信号,可取R1=100Ω,R2=250Ω,这样当 输入电流为4 -20 mA时,输出的电压为1 - 5 V。
第3章 模拟量输入通道
本章要点
1.模拟量输入通道的结构组成。 2.多路开关,前置放大、采样保持等各环节
的功能作用。 3.8位A/D转换器ADC0809芯片及其接口电
路 4.12位A/D转换器AD574A芯片及其接口电

本章主要内容

引言
❖ 3.1 信号调理电路
❖ 3.2 多路模拟开关
❖ 3.3 前置放大器













A/D

PC

















线








图 3-1 模拟量输入通道的结构组成
显然,该通道的核心是模/数转换器即A/D转换器,通常 把模拟量输入通道称为A/D通道或AI通道。
3.1 信号调理电路
在控制系统中,对被控量的检测往往采用各种类 型的测量变送器,当它们的输出信号为0 - 10 mA 或4 -20 mA的电流信号时,一般是采用电阻分压 法把现场传送来的电流信号转换为电压信号,以下 是两种变换电路。
2. 有源I/V变换
有源I/V变换是利用有源器件——运算放大器
和电阻电容组成,如图3-2(b)所示。利用同
相放大电路,把电阻R1上的输入电压变成标准
输出电压。该同相放大电路的放大倍数为
G V 1 R4
IR1
R3
(3-1)
若取R1=200Ω,R3=100kΩ,R4=150kΩ, 则输入电流 I 的0 ~ 10 mA就对应电压输出V的0 ~ 5 V;若取R1=200Ω,R3=100kΩ,R4=25kΩ, 则4 ~ 20 mA的输入电流对应于1 ~ 5 V的电压输 出。
❖ 3.4 采样保持器
❖ 3.5 A/D转换器
❖ 3.6 A/D转换模板
❖ 本章小结
❖ 思考题
引言
模拟量输入通道的任务(功能)是把被控对象的过程参 数如温度、压力、流量、液位、重量等模拟量信号转换成计 算机可以接收的数字量信号。
结构组成如图3-1所示,来自于工业现场传感器或变送器 的多个模拟量信号首先需要进行信号调理,然后经多路模拟 开关,分时切换到后级进行前置放大、采样保持和模/数转 换,通过接口电路以数字量信号进入主机系统,从而完成对 过程参数的巡回检测任务。
Sm
S0
A
S1


S2


B
S3


S4


C
S5
S6
S7
INH
图3-3图C2D-43 05C1D4结05构1结原构理原图理图 链接动画
3.2.2 扩展电路
当采样通道多至16路时,可直接选用16路模拟开关的芯片, 也可以将2个8路4051并联起来,组成1个单端的16路开关。 例题3-1 试用两个CD4051扩展成一个1×16路的模拟开关。 例题分析:图3-4给出了两个CD4051扩展为1×16路模拟开关的 电路。数据总线D3~D0作为通道选择信号,D3 用来控制两个多 路开关的禁止端。当D3=0时,选中上面的多路开关,此时当D2、 D1、D0从000变为111,则依次选通S0~S7通道;当D3=1时,经 反相器变成低电平,选中下面的多路开关,此时当D2、D1、D0 从000变为111,则依次选通S8~S15通道。如此,组成一个16路的 模拟开关。
引言
前置放大器的任务是将模拟输入小信号放大到A/D转 换的量程范围之内,如0-5VDC;
D
+5V
R1
+
I
C R2 V
-
R2
I
+ R1
C
R3
+ A
-
R5 V
R4
(a) 无源I/V变换电路
(b) 有源I/V变换电路
图 图2-23电-2流电/电流压/变电换压电变路换电路
运算放大器特性回顾
当集成运放工作在线性放大区时的条件是:
(1)同相输入端与反相输入端的电位相等, 但不是短路。我们把满足这个条件称为" 虚短" (2)即:理想运放的输入电阻为∞,因此集 成运放输入端不取电流。 我们在计算电路时,只要是线性应用, 均可以应用以上的两个结论,因此我们要 掌握好!
3.2.1结构原理
现以常用的CD4051为例,8路模拟开关的结构原 理如图3-3所示。CD4051由电平转换、译码驱动及 开关电路三部分组成。当禁止端为“1”时,前后级 通道断开,即S0~S7端与Sm端不可能接通;当为 “0”时,则通道可以被接通,通过改变控制输入端 C、B、A的数值,就可选通8个通道S0~S7中的一路。 比如:当C、B、A=000时,通道S0选通;当C、B、 A=001时,通道S1通;……当C、B、A = 111时, 通道S7选通。其真值表如表3-1所示。
3.2 多路模拟开关
主要知识点
引言 3.2.1 结构原理 3.2.2 扩展电路
引言
由于计算机的工作速度远远快于被测参数的变化,因此 一台计算机系统可供几十个检测回路使用,但计算机在某一 时刻只能接收一个回路的信号。所以,必须通过多路模拟开 关实现多选1的操作,将多路输入信号依次地切换到后级。
目前,计算机控制系统使用的多路开关种类很多,并具有 不同的功能和用途。如集成电路芯片CD4051(双向、单端、 8路)、CD4052(单向、双端、4路)、AD7506(单向、单端、 16路)等。所谓双向,就是该芯片既可以实现多到一的切换, 也可以完成一到多的切换;而单向则只能完成多到一的切换。 双端是指芯片内的一对开关同时动作,从而完成差动输入信 号的切换,以满足抑制共模干扰的需要。
Sm
S0 S1 S2

A 电


B
S3 S4


C


IA
S9 S10 S11


B
码 驱
平 转
C
S12


INH
S13
S14
S15
D3 D2 D1 D0
图3-4 多路模拟开关的扩展电路 图2-4 多路模拟开关的扩展电路链接动画
3.3 前置放大器
主要知识点
引言 3.3.1 测量放大器 3.3.2 可变增益放大器
相关文档
最新文档