南昌大学 通信原理 实验报告 实验图片
通信原理实验 (2)
实验六PCM编译码及A/μ律转换实验一、实验目的1、掌握脉冲编码调制与解调的原理。
2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。
3、了解脉冲编码调制信号的频谱特性。
4、熟悉了解W681512。
二、实验器材1、主控&信号源模块、1号、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图2-1 1号模块W681512芯片的PCM编译码实验图2-2 3号模块的PCM 编译码实验图2-3 A/μ律编码转换实验2、实验框图说明图2-1中描述的是信号源经过芯片W681512经行PCM 编码和译码处理。
W681512的芯片工作主时钟为2048KHz ,根据芯片功能可选择不同编码时钟进行编译码。
在本实验的项目一中以编码时钟取64K 为基础进行芯片的幅频特性测试实验。
图2-2中描述的是采用软件方式实现PCM 编译码,并展示中间变换的过程。
PCM 编码过程是将音乐信号或正弦波信号,经过抗混叠滤波(其作用是滤波3.4kHz 以外的频率,防止A/D 转换时出现混叠的现象)。
抗混滤波后的信号经A/D 转换,然后做PCM 编码,之后由于G.711协议规定A 律的奇数位取反,μ律的所有位都取反。
因此,PCM 编码后的数据需要经G.711协议的变换输出。
PCM 译码过程是PCM 编码逆向的过程,不再赘述。
A/μ律编码转换实验中,如实验框图2-3所示,当菜单选择为A 律转μ律实验时,使用3号模块做A 律编码,A 律编码经A 转μ律转换之后,再送至1号模块进行μ律译码。
同理,当菜单选择为μ律转A 律实验时,则使用3号模块做μ律编码,经μ转A 律变换后,再送入1号模块进行A 律译码。
四、实验步骤实验项目一 测试W681512的幅频特性 概述:该项目是通过改变输入信号频率,观测信号经W681512编译码后的输出幅频特性,了解芯片W681512的相关性能。
1信号源:FS 模块1:TH9(编码帧同步)提供编码帧同步信号信号源:FS 模块1:TH10(译码帧同步)提供译码帧同步信号模块1:TH8(PCM编码输出)模块1:TH7(PCM译码输入)接入译码输入信号2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【PCM编码】→【1号模块】→【第一路PCM 编译码方式】→【A律PCM编译码】。
通信原理实验报告南航
一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统的基本组成和各部分的功能。
3. 熟悉通信信号的基本处理方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验内容1. 通信系统基本组成实验2. 通信信号调制与解调实验3. 通信信道传输特性实验4. 通信系统误码率实验三、实验仪器1. 通信原理实验箱2. 双踪示波器3. 数字信号发生器4. 信号分析仪四、实验原理1. 通信系统基本组成实验:了解通信系统的基本组成,包括信源、信道、信宿和变换器等。
2. 通信信号调制与解调实验:掌握模拟调制、数字调制的基本原理,以及相应的调制和解调方法。
3. 通信信道传输特性实验:了解通信信道的传输特性,包括频率响应、时延特性和噪声特性等。
4. 通信系统误码率实验:掌握通信系统误码率的计算方法,以及影响误码率的因素。
五、实验步骤1. 通信系统基本组成实验(1)观察实验箱各模块的功能和连接方式;(2)按照实验指导书的要求,连接实验电路;(3)进行实验操作,观察实验现象,记录实验数据。
2. 通信信号调制与解调实验(1)按照实验指导书的要求,设置调制参数和解调参数;(2)进行调制和解调实验,观察实验现象,记录实验数据;(3)分析实验结果,验证调制和解调的正确性。
3. 通信信道传输特性实验(1)设置不同的信道参数,观察信道对信号的影响;(2)分析信道传输特性,记录实验数据;(3)计算信道传输特性指标,如信噪比、误码率等。
4. 通信系统误码率实验(1)设置不同的误码率,观察误码率对通信系统的影响;(2)分析误码率与信道、调制、解调等因素的关系,记录实验数据;(3)计算通信系统误码率,验证实验结果。
六、实验结果与分析1. 通信系统基本组成实验实验结果显示,通信系统由信源、信道、信宿和变换器等部分组成,各部分之间通过信号传输实现信息交流。
2. 通信信号调制与解调实验实验结果显示,调制和解调过程可以有效地将信息信号转换为适合信道传输的形式,并恢复出原始信息。
通信原理实验报告
实验十九滤波法及数字锁相环法位同步提取实验一、实验目的1、掌握滤波法提取位同步信号的原理及其对信息码的要求。
2、掌握用数字锁相环提取位同步信号的原理及其对信息代码的要求。
3、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。
二、实验器材1、主控&信号源、13、8号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、滤波法位同步提取实验原理框图滤波法位同步提取实验框图2、滤波法位同步提取实验框图说明将单刀双掷开关S2上拨,选择滤波法位同步提取电路,输入HDB3单极性码信号经一个256K窄带滤波器,滤出同步信号分量,通过门限判决后提取位同步信号。
但由于有其他频率成分的干扰,导致时钟有些部分的占空比不为50%,因此需要通过模拟锁相环进行平滑处理;数字的256K时钟经过4分频之后,已经得到一定的平滑效果,送入CD4046鉴相输入A脚的是64KHz的时钟信号,当CD4046处于同步状态时,鉴相器A脚的时钟频率及相位应该与鉴相器B脚的相同。
由于鉴相器B脚的时钟是VCO经8分频得到的。
因此,VCO输出的频率为512K。
3、数字锁相环法位同步提取实验原理框图数字锁相环位同步提取实验原理框图4、数字锁相环法位同步提取实验框图说明锁相法位同步提取是在接收端利用锁相环电路比较接收码元和本地产生的位同步信号的相位,并调整位同步信号的相位,最终获得准确的位同步信号。
4位拨码开关S3设置BCD 码控制分频比,从而控制提取的位同步时钟频率,例如设置分频频率“0000”输出4096KHz 频率,“0011”输出512KHz频率,“0100”输出256KHz频率,“0111”输出32KHz频率。
数字锁相环(DPLL)是一种相位反馈控制系统。
它根据输入信号与本地估算时钟之间的相位误差对本地估算时钟的相位进行连续不断的反馈调节,从而达到使本地估算时钟相位跟踪输入信号相位的目的。
DPLL 通常有三个组成模块:数字鉴相器(DPD)、数字环路滤波器(DLF)、数控振荡器(DCO)。
通信原理实验图,全
实验内容:从时域、频域和误码率比较2fsk和msk,时域是看眼图;从时域、频域和误码率比较2psk和2dpsk;从时域、频域和误码率比较2psk和mpsk;从时域、频域和误码率比较msk 和gmsk。
Gmsk:
Msk;
Gmsk和qpsk:
结果分析:衡量一个数字通信系统的指标有很多,但是最主要的是有效性和可靠性的讨论。
基于前面的讨论我觉得全面的分析二进制数字系统在时域在频域以及误码率显得很重要。
所以我结合上面的图形与书中所介绍的内容做一个比较全面的分析:
(1) 误码率
1、误码率是衡量一个数字通信系统的重要的指标。
2、在信道高斯白噪声的干扰下,各种二进制数字调制系统的误
码率取决于解调器输入信噪比,而误码率表达式的形式则取决于解调方式。
3、由于在有两种不同的解调:相干解调与非相干解调,一般来说相干解调的误码率比非相干解调的要高。
在相同的解调方式下其排序是:ASK FSK DSK DPSK不断增加。
(2)时域和频域上的比较
1、在时域和频域上2ASK与2PSK系统的近似度为2/Ts,在频带宽度和频带利用率上其排序为:FSK ASK PSK DPSK在不断的增加。
通信原理实验报告.
《通信原理》实验报告地点通信实验室学院信息工程学院专业班级通信082姓名同组成员学号指导教师2010年 12月实验2 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.频率计1台3.20M双踪示波器1台4.小电话单机1部五、实验内容及步骤1.插入有关实验模块:在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。
注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。
2.加电:打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
3. 非同步函数信号源测试:频率计和示波器监测P03测试点,按上述设置测试非同步函数信号源输出信号波形,记录其波形参数。
4.同步正弦波信号源测试:频率计和示波器监测P04测试点,按上述设置测试同步正弦波信号源输出信号波形,记录其波形参数。
5.用户电话测试:1)电话模块接上电话单机,说话或按住某个数字键不放,用示波器测试其发端波形。
2)用信号连接线连接P03与P06/P08两铆孔,即将函数信号送入电话的接收端,调节信号的频率和幅度,听听筒中发出的声音。
6. 关机拆线:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
六、实验报告要求1.记录非同步、同步函数信号的幅度、频率、直流分量等参数,画出测试的波形图。
(1).非同步函数信号源测试:三角波: T=0.8s, Vp-p=1.3v 正弦波: T=0.52ms,Vp-p=1.2v方波:T=0.56ms,VP-P=2.2v同步正弦:T=0.5ms,Vp-p=0.52v2.记录电话数字键波形,了解电话拨号的双音多频的有关技术。
数字键波形记录:1: 2:3: 4:5: 6:7: 8:9: 0:实验2 集成乘法器幅度调制电路一、实验目的1.通过实验了解振幅调制的工作原理;2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系;3.掌握用示波器测量调幅系数的方法。
通信原理实验报告(终)
通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一 抽样定理实验一、实验目的1、 了解抽样定理在通信系统中的重要性。
2、 掌握自然抽样及平顶抽样的实现方法。
3、 理解低通采样定理的原理。
4、 理解实际的抽样系统。
5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。
6、 理解低通滤波器的相频特性对抽样信号恢复的影响。
7、 理解带通采样定理的原理。
二、实验器材1、 主控&信号源、3号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图保持电路S1信号源A-outmusic抽样电路被抽样信号抽样脉冲平顶抽样自然抽样抽样输出抗混叠滤波器LPFLPF-INLPF-OUTFPGA 数字滤波FIR/IIR译码输出编码输入3# 信源编译码模块图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz 的巴特沃斯低通滤波器)或FPGA 数字滤波器(有FIR 、IIR 两种)。
反sinc 滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验时与信源编译码的内容没有联系。
四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
1、关电,按表格所示进行连线。
源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
通信原理实验报告 (2)
通信原理实验报告(2)广西科技大学通信原理实验报告学院:班级:姓名:班别: 学号:指导老师:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。
2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI 译码输出波形。
三、基本原理本实验使用数字信源模块和HDB3 编译码模块。
1、数字信源此NRZ信号为集中扩入帧同步码时分复用信号,试验中数据码用红色发光二极管指示。
其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为17.5KB,帧结构如图1-2所示。
帧长为24位,其中首位为无定义位,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
本模块有以下测试点及输入输出点:+5V +5V电源输入点(2个)CLK 晶振信号测试点BS-OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图 1-1 数字信源方框图图 1-2 帧结构FS信号、NRZ-OUT信号之间的相位关系如图1-3所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111,FS信号的低电平,高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT码第一位起始时间超前一个码元。
图1-3 FS、NRZ-OUT波形2. HDB3 编译码原理框图如图1-4 所示。
本单元有以下信号测试点:●-12V -12V电源输入点●+5V +5V电源输入点●NRZ 译码器输出信号●BS-R 锁相环输出的位同步信号●(AMI)HDB3 编码器输出信号●BPF 带通滤波器输出信号●(AMI-D)HDB3-D (AMI)HDB3 整流输出信号图1-4 HDB3编译方框图本模块上的开关K4 用于选择码型,K4 位于左边(A 端)选择AMI 码,位于右边(H 端)选择HDB3码。
通原实验结果图-南邮-通信原理实验报告-实验图
方法二
PCM译码器输出模拟信号观测
JOO5观测TP506和TP501,以TP501做同步。定性的观测解码恢复出的模拟信号质量
将测试信号频率固定在1000Hz,改变测试信号电平,定性的观测解码恢复出的模拟信号质量。观测信噪比随输入信号电平变化的相关关系
将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码
不匹配
匹配
DBPSK调制信号0/π相位测量
0/1码调制包络与参考载波
DBPSK调制信号包络观察
0/1码
特殊码
m序列
接收端解调眼图信号观测
TPM01与TPJ05
TPM01与TPJ06
输出时钟和帧同步时隙信号观测
TP504时钟8K
TP503时钟256K
抽样时钟信号与PCM编码数据测量
TP504与TP502正常增益时的关系图
JOO6观测TP506和TP501,以TP501做同步。定性的观测解码恢复出的模拟信号质量
将测试信号频率固定在1000Hz,改变测试信号电平,定性的观测解码恢复出的模拟信号质量。观测信噪比随输入信号电平变化的相关关系
将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码
J006
J005频率1000幅度不变
7位m序列,时延自己观察
BPSK调制基带信号眼图观测
不匹配
匹配
I路和Q路调制信号的相平面
(矢量图)信号观察
不匹配
匹配
BPSK调制信号0/π相位测量
0/1码时TPK03与TPK06波形
BPSK调制信号包络观察
0/1码
特殊码序列
DBPSK调制信号眼图观测
不匹配
匹配
I路和Q路调制信号的相平面(矢量图)信号观察
通信原理实验报告
1)掌握2ASK信号的调制方法。
2)掌握2ASK信号的解调方法。
二、实验原理
1.2ASK信号ቤተ መጻሕፍቲ ባይዱ形
2.2ASK调制信号的产生
实验原理图,如图所示:方法一和方法二
方法一
方法二
3.2ASK信号解调
可以采用同步或非同步解调方式。
非同步解调
同步解调
三、实验设备
调制(采用方法一或方法二):音频振荡器(Audio Oscillator),主振荡器(Master Signals),序列码产生器(Sequence Generator),双模开关(Dual Analog Switch)和加法器(Adder),乘法器(Multiplier),可变直流电压(Variable DC)。
。
如图所示为AM调制的过程和频谱示意图。
2、AM信号的解调
AM信号由于具有离散大载波,故可以采用载波提取相干解调的方法。其实现类似于实验一中的DSB-SC AM信号加导频的载波提取和相干解调的方法。
AM的主要优点是可以利用包络检波器进行非相干解调,可以使得接收设备更加简单。
三、实验设备
用模块音频振荡器(Audio Oscillator),可变直流电压(Variable DC),主振荡器(Master Signals),加法器(Adder)和乘法器(Multiplier),移相器(Phase Shifer)实现AM信号调制;
六、实验分析
思考:在FSK信号调制中,双模开关起什么作用,可由哪个模块代替?
答:双模开关是通过输入的数字信号来控制载波的输出的选择, 可以使用双模开关来 产生相位不连续的 2FSK 信号,实验中用 VCO 代替双模开关来产生相位连续的 2FSK 信号。
通信原理软件实验图片
实验2实验3Type of window2Type of window4实验5实验7m(t)频率为5:m(T)频率为10Hz求和模块由加变减后:(2)编程:clear allexect2f.sci;execf2t.sci;//参数初始化f0=1;f1=0.5;fc=20;Ac=1;//时间单位为ms,频率单位为KHz,幅度单位为V fs=10*fc; //采样速率T=30; //截短时间N=T*fs;//采样点数dt=1/fs;//时域采样间隔t=-T/2+[0:N-1]*dt; //时域采样点限制在[-T/2,T/2]df=1/T;//频域采样间隔f=-fs/2+[0:N-1]*df; //频域采样点限制在[-fs/2,fs/2]m=sin(2*%pi*f0*t)+2*cos(2*%pi*f1*t); //基带信号c=Ac*cos(2*%pi*fc*t);//载频信号M=t2f(m,fs);//基带信号频谱//产生SSB上边带信号及频谱MH=-%i*sign(f).*M; //在频域进行希尔伯特变换mh=real(f2t(MH,fs));//希尔伯特变换后的信号s3=Ac*m.*cos(2*%pi*fc*t)-Ac*mh.*sin(2*%pi*fc*t);//SSB信号S3=t2f(s3,fs);//SSB上边带信号频谱//基带信号m(t)和SSB上边带信号s3(t)的波形xset("window",5)plot(t,m,"k",t,s3,"b",'LineWidth',2)title("基带信号m(t)和SSB 上边带信号s(t)的波形")xlabel("t(ms)")ylabel("m(t)&s(t)")mtlb_gridmtlb_axis([-3,3,-4,4])//基带信号频谱M(f)和SSB上边带信号频谱S3(f)xset("window",6)plot(f,abs(M),"k",f,abs(S3),"b",'LineWidth',2)title("基带信号频谱M(f)和SSB 上边带信号频谱S(f)") xlabel("f(KHz)")ylabel("M(f) &S(f)")mtlb_gridmtlb_axis([-25,25,0,12])实验十二调制解调(1)解调(2)调制解调模型:扩展实验2扩展—数字基带。
通信原理实验报告(8份)
通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。
掌握HDB3码的编译规则。
了解滤波法位同步在的码变换过程中的作用。
二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。
同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。
4、实验操作及波形观测。
南昌大学通信专业实验五 PCM编码、译码原理实训
实验五PCM 编码、译码原理实训—、实验目的1、加深对PCM 编码过程的理解;2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;3、了解PCM 系统的工作过程;4、了解帧同步信号的时序状态关系;5、掌握时分多路复用的工作过程;6、用同步正弦波信号观察PCM 八比特编码的实验。
二、实验电路工作原理脉冲调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,量化、编码的过程。
所谓抽样,就是在抽样脉冲来到的时刻提取对模拟信号在该时刻的瞬时值,抽样把时间上连续的信号变成时间上离散的信号。
抽样速率的下限是由抽样定理确定的。
在该实验中,抽样速率采用8Kbit/s。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
PCM 编译码电路主要由芯片U401 及外围电路构成。
每个TP3067 芯片U401含有一路PCM 编码器和一路PCM 译码器。
模拟信号经过编译码器时,在编码电路中,它要经过取样、量化、编码; PCM 码被接收到译码电路后经过译码、低通滤波、放大,最后输出模拟信号,把这两部分集成在一个芯片上就是一个单路编译码器,它只能为一个用户服务,即在同一时刻只能为一个用户进行A/D 及D/A 变换。
三、实验内容1、用同步正弦波信号观察PCM 八比特编码的实验;2、脉冲编码调制(PCM)及系统实验;3、PCM 八比特编码时分复用输出波形观察测量实验。
四、实验步骤及注意事项1、打开实验箱右侧电源开关,电源指示灯亮;2、编码部分:SP401 接入模拟信号,建议输入同步正弦波信号;SP405 接入2048KHz 主时钟信号;SP406 接入8KHz 脉冲信号;SP407 接入可选发码时钟,有64K、512K、2048K 三种频率。
通信原理实验(1-8)
通信原理实验报告学院:信息工程学院专业:通信工程学号:6姓名:李瑞鹏实验一 带通信道模拟及眼图实验一、实验目的1、 了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、 掌握眼图观测的方法并记录研究。
二、实验器材1、 主控&信号源、9号、13号、17号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK 信号和经过升余弦滤波后调制的PSK 信号送入带通信道,比较两种状况的眼图。
然后,改变带通信道的带宽重复观测。
四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。
2PSK 调制信号加升余弦滤波的带通信道模拟【250KHz~262KHz带通信道】。
3、此时系统初始状态为:PN15为8K。
4、实验操作及波形观测。
(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。
(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。
17号模块测试点TP4可以观察添加的白噪声。
(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。
五、实验报告1、完成实验并思考实验中提出来的问题。
2、分析实验电路工作原理,简述其工作过程。
3、整理信号在传输过程中的各点波形。
实验二 HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握HDB3码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
南昌大学通信原理综合设计实验FSK PSK调制与解调 实验报告
实验报告课程名称:通信原理综合设计实验指导老师:学生姓名:学号:专业班级:2016年06月16 日实验一 7位伪随机码1110010设计一、实验目的1、了解数字信号的波形特点2、掌握D触发器延时设计数字电路的原理及方;3、熟悉Multisim 13.0软件的使用二、设计要求设计7位伪随机码1110010,要求输出波形没有毛刺和抖动,波形稳定效果较好,可用于后续的综合设计实验。
三、实验原理与仿真电路及结果要求产生7位伪随机码,根据M=2n-1=7,所以n=3,需要3个D触发器,在32KHz正弦波或方波的时钟信号触发下,第三个D触发器输出端产生1110010的7位伪随机绝对码。
仿真电路及波形结果如下:图一、7位伪随机码1110010产生电路图二、7位伪随机码1110010波形观察结果波形发现,伪随机码波形频率较之信号源波形(32KHz)减小了,但幅值不变仍为5v.四、实验心得与体会本实验原理较为简单,在大二上学期的《数字电路与逻辑设计》课程中已经学习过,且实验前老师也给出了电路,故完成实验只需要简单的搭建仿真电路即可,产生正确的随机码波形也为后两个设计实验做好准备。
通过本次设计实验,我重新复习了数字电路逻辑设计中的D触发器产生特定数字序列的知识,同时也熟练了Multisim软件的使用,为后续综合设计实验打下基础。
实验二 2FSK调制、解调电路综合设计一、实验目的1、掌握2FSK调制和解调的工作原理及电路组成2、学会低通滤波器和放大器的设计3、掌握LM311设计抽样判决器的方法、判决门限的合理设定4、进一步熟悉Multisim13.0的使用二、设计要求设计2FSK调制解调电路,载波f1=128KHz,f2=256KHz,基带信号位7位伪随机绝对码(1110010)要求调制的信号波形失真小,不会被解调电路影响,并且解调出来的基带信号尽量延时小、判决准确。
三、实验电路与结果➢实验总电路图图一、FSK调制、解调总电路➢调制电路1)实验所用的128KHz和256KHz载波正弦信号由对应频率的方波通过高低通滤波得到,子电路如下:图二、128KHz正弦载波信号生成电路图三、256KHz正弦载波信号生成电路2)实验基带信号7位伪随机码子电路(同实验一)如下:图四、基带信号1110010生成子电路3)128KHz、256KHz载波信号、基带信号、已调信号波形:图五、载波、基带及已调信号波形➢解调电路1)解调部分电路如下:图六、FSK解调电路以上电路中,解调运用的仍是4066芯片的开关特性来实现:将已调信号接入4066中并分别用128 KHz 、256KHz的信号源方波“识别”出已调信号中的128 KHz 和256KHz 频率的正弦信号,然后经过两个相同的32KHz(生成伪随机码的信号源频率)的低通滤波器,滤出含有基带信号的“混合”波形,最后将这两路信号接入LM311比较器,根据课本知识,这一步实现的是两路信号的比较,谁大输出谁,最终输出解调信号。
通信原理实验报告
通信原理实验报告 Revised as of 23 November 2020学院实验报告课程名称:姓名:学号:班级:指导教师:2017年6月1日目录实验网络和实验板简介现代通信包括传输、复用、交换、网络等技术。
通信原理课程主要介绍传输及复用技术。
本实验系统涵盖了数字信号传输的主要内容及时分复用技术,其设计思路是如图所示的两路时分复用 PCM/2DPSK 数字电话系统。
两路PCM/2DPSK数字电话通信系统图中 STA、STB分别为发端的两路模拟话音信号,BS 为时钟信号,SLA、SLB 为抽样信号,F为帧同步码,AK 为绝对码,BK 为相对码。
在收端,CP 为位同步信号,FS为帧同步信号,F1、F2为两个路同步信号,SRA、SRB 为两个PCM 译码器输出的模拟话音信号。
下图为我们实验板子布局显示图实验1 数字基带信号与 AMI/HDB3编译码实验目的1、掌握单极性码、双极性码、归零码、非归零码等基带信号波形特点。
2、掌握 AMI、HDB3码的编码规则。
3、掌握从 HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码同步时分复用信号的帧结构特点。
5、了解 AMI/HDB3编译码集成电路 CD22103。
基本原理1、数字信源模块本模块有以下信号测试点及输出点:CLK 晶振信号测试点BS-OUT 信源位定时信号测试点/输出点FS 信源帧定时信号测试点NRZ-OUT(AK) NRZ 信号(绝对码 AK) 测试点/输出点2. AMI/HDB3编译码模块NRZ 译码器输出信号测试点BS-R 锁相环输出的位同步信号测试点AMI-HDB3 编码器输出信号测试点BPF 带通滤波器输出信号测试点DET 整流器输出信号测试点3. AMI/HDB3编码原理AMI(Alternative Mark Inversion)码的全称是传号交替反转码,其编码规则是将消息码的“1”交替的变换为“+1”和“-1”,而“0”保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带通滤波器
包络检波器
最后实验输出结果:
序列为1110010的伪随机码
由上至下依次为FSK信号图、带通输出图、包络检波器输出图、判决输出
PSK调制解调电路
7位伪随机码加码变换子电路
低通滤波器
最后实验输出结果:
由上至下依次为伪随机码调制信号伪随机相对码DPSK信号
低通滤波器输出判决输出(伪随机码)
TP902:压控振荡器输出2.048MHz的载波信号
TP903:频率为1.024MHz的0相载波输出信号
TP904:频率为1.024MHz的π/2相载波输出信号
TP903与TP904对比
TP905:PSK解调输出波形
TP903与TP905(方波)
TP903与TP905(伪随机)
TP303:4khzPCM信号
TP304:模拟信号还原输出
TP305
TP301:8khz模拟信号
TP302:64KHZ抽样时钟
TP303:PCM信号
TP304:模拟信号还原输出
TP305:信号频率不受影响
TP601:128KHz方波信号
TP602:64KHz方波信号
TP603:128KHz载波信号
TP604:64KHz载波信号
TP605:数字基带信码信号输入
TP606:FSK调制信号输出
TP702:FSK解调电路中压控振荡器输出时钟的中心频率
TP703:FSK解调信号输出,即数字基带信码信号输出,波形同TP605。
TP704
相位产生了延迟,当相位延迟π时会出现序列反向的现象。
FSK调制解调电路
32KHz载波16KHz载波
TP119:8KHZ窄带脉冲
实验二:
信号源TP110: 4 KHz
TP202:与TP201工作时钟同步输出的4KHz的正弦波信号。
TP203:0.3-3.4KHz的非同步信号,通过VR202来改变频率,通过VR204来改变其幅度。
实验三:
实验四
实验连线图
TP301:4khz模拟信号
TP302:4KHZ抽样时钟
元件清单:
实验五;
TP401输入模拟信号
TP402 PCM编码输出/一码输入
TP403同步窄脉冲时隙
TP405主时钟2048KHz方波
TP409译码还原
实验8
TP801:1.024MHz方波信号
1.024MHz方波信号
TP802:1.024MHZ载波正弦波信号
1.024MHZ载波正弦波信号
TP803:1.024MHZ载波正弦波信号
实验一
实验连线图
TP101:2048KHZ
TP102:1024KHz
TP103:512Hz
TP104:256KHz
TP105:128KHz
TP106:64KHz
TP107:3பைடு நூலகம்KHz
TP109: 8 KHz
TP110: 4 KHz
TP112: 1 KHz
TP113:32KHz伪随机码
TP114:2KHz伪随机码
1.024MHZ载波正弦波信号(反向)
TP804:作为数字基带信码信号输入波形,伪随机码32KB/s码型为111100010011010 BPSK或其相对码DPSK或2KHz的方波
128KHz方波
32KHz伪随机码
TP807:PSK调制信号输出波形
方波信号与对应PSK调制信号
伪随机信号与对应PSK调制信号