信号与系统特解举例
安徽大学信号系统例题分析
现在的响应=现在的激励+以前的激励 所以该系统为因果系统。
微分方程r (t ) = e (t ) + e (t + 2)代表的系统是否是因果 系统。
t=0
r (0 ) = e (0 ) + e (+ 2 )
未来的激励 所以该系统为非因果系统。
X
第
例2-2-5
t < 0开关S处于1的位置而且已经 给定如图所示电路, 达到稳态。当t = 0时S由1转向2。建立电流i ( t )的微分 方程并求解i ( t )在t ≥ 0时的变化。
3 页
当e1 ( t ) + e2 ( t ) 同时作用于系统时,若该系统为线性系统, 应有
d [r1 (t ) + r2 (t )] + 10[r1 (t ) + r2 (t )] + 5 = e1 (t ) + e2 (t ) dt t>0 ( 5)
(3)+(4)得
d [r1 (t ) + r2 (t )] + 10[r1 (t ) + r2 (t )] + 10 = e1 (t ) + e2 (t ) dt t>0 ( 6)
f ( − t ) → f ( t ) 倒置
f ( t ) = 4δ ( t + 1)
(4) t O 1 2 3 6
X
第
例1-5-1 求f(t)的奇分量和偶分量
f (t ) f (− t )
1 页
O
t
O
t
fe (t ) O t O
fo (t ) t
X
第
例1-6-1
d e( t ) d r (t ) d 2 r (t ) +3 + 2r ( t ) = + e( t ) 2 dt dt dt
信号与系统 典型公式
( t )e
j t
dt 1
F [1] 2 ( )
若f (t ) F ( )则F (t ) 2f ( )即F F (t ) 2 f ( )
(四)尺度变换特性
1 F [ f (at )] F( ) a a
若
t2
t1
f1 ( t ) f 2 ( t )dt 0 (p326式(6-53))
则称f1(t)与f2(t)在区间(t1,t2)上(相互)正交。 对复值函数f1(t),f2(t)(p329)
f1 ( t ), f 2 ( t )正交 f1 ( t ) f *2 ( t )dt 0
更一般的三角函数形式傅里叶级数(FS)
f (t ) a 0 [a n cos( n 1 t ) b n sin( n 1 t )]
n 1
f (t) c0 cn cos( n1t n ) d 0 d n sin( n1t n )
n 1 n 1
f(t)的直流分量=其任意周期的直流分量
f(t)=fD(t)+fA(t),
f(t)的功率=fD(t)的功率+fA(t)功率 三、偶分量与奇分量分解
f(t)=fe(t)+fo(t)
f(t)的功率=fe(t)功率+fo(t)功率 且
f (t ) f ( t ) f(t) e 2
f (t ) f ( t ) f(t) o 2
时域卷积定理 若
F[ f1 (t )] F1 ( )
F[ f2 (t )] F2 ()
则
F[ f1 (t )* f2 (t )] F1 () F2 ()
信号与系统_2.3-2.4
vR1 (t ) R1i(t )
d vL (t ) L iL (t ) dt
列节点方程:
iC (t ) iL (t ) i(t ) 0
R1i(t ) vC (t ) e(t ) 0
d L iL (t ) iL (t ) R2 vC (t ) 0 dt d C vC (t ) iL (t ) i (t ) 0 dt d iC (t ) C vC (t ) dt
a2 b 7a 12 c 7b 10a 8
r (0 ) r (0 ) a 2 d d r (0 ) r (0 ) b 2 dt dt d2 d2 r (0 ) 2 r (0 ) c 2 2 dt dt
4 14 r (0 ) 2 r (0 ) 2 5 5 d d r (0 ) 2 r (0 ) 2 dt dt
d y(t ) ak dtk 0 k 0
即系统方程为齐次方程,其解应该是齐次解。解中的待定 系数起始状态确定。 由于没有输入作用于系统,系统在t=0时刻状态不会发 生改变,此时t=0-与t=0+的状态应该是相同的。
N
k
例1、设系统方程与起始条件如下,试求系统的响应y(t)。
y(t ) 3 y(t ) 2 y(t ) 0
此微分方程的全解即系统的完全响应, 由齐次解 和特解组成
r (t ) rh (t ) rp (t )
常用激励信号对应的特解形式 激励信号 e(t )
E
p
特解 rp (t )
B
t
B1t B2t
p
p1
Bpt Bp1
e t
cos(t ) sin(t )
信号与系统第二章例题
r (0 ) 2 r (0 ) 3 r (0 ) r (0 ) 2
代入r (t ) Ae3t A2et 3e2t 1
A1 A2 3 2 得 3 A1 A2 6 3
r (t ) -4e3t 3et 3e2t
解:1)求自由响应的形式
r '' (t ) 4r ' (t ) 3r (t ) 0
特征方程为: 2 4 3 0 1 3, 2 1
rh (t ) Ae3t A2et 1
2)求强迫响应
利用筛选 特性
e(t ) e2t u(t ) e '(t ) 2e2t u(t ) e2t (t ) 2e2t u(t ) (t )
0 t 0
8
代入方程得
a 2 b 4a 1 c 4b 3a 0
a (t ) b 4a) (t ) (c 4b 3a)u (t ) ( 2 (t ) (t )
a 2 b 7 c 22
4 B 8B 3B 3
rp (t ) 4Be2t
B 3
rp (t ) 3e2t
3)求完全响应
r(t ) rh (t ) rp (t ) Ae3t A2et 3e2t 1
利用冲激函数匹配法求初始条件r (0 )和r(0 )
r '' (t ) 4r ' (t ) 3r (t ) 2 (t ) 3u(t ) r (t ) a (t ) bu (t )
1 3t 5 t (e e )u (t ) 2
注意:1、积分上下限问题; 2、积分结果的始终点问题。
信号与系统讲义-2
f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)
2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
,
d
02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2
R L
duc dt
1 LC
uc
1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2
信号与系统-第2章例题
d2y dy 5 6 y (t ) 4 f (t ) 2 dt dt
ቤተ መጻሕፍቲ ባይዱ
t0
系统的特征方程为 系统的特征根为
s 2 5s 6 0 s1 2,s2 3
yx (t ) K1e—2t K2e—3t
y(0)=yx(0)=K1+K2=1 y' (0)= y'x(0)= 2K13K2 =3
r2 (t ) rzi (t ) 2rzs (t ) [e3t 2sin(2t )]u(t )
解得
rzi (t ) 3e3t u(t )
rzs (t ) [e3t sin(2t )]u(t )
r3 (t ) rzi (t ) rzs (t t0 )
冲激平衡法 冲激平衡法是指为保持系统对应的动态方程式的 恒等,方程式两边所具有的冲激信号函数及其各阶导 数必须相等。根据此规则即可求得系统的冲激响应h(t)。
例:
已知某线性非时变系统的动态方程式为
dy (t ) 3 y (t ) 2 f (t ) dt
试求系统的冲激响应h(t)。
(t 0)
[解] 系统的特征方程为 系统的特征根为 y(0)=yx(0)=K1=1; y'(0)= y'x(0)= 2K1+K2 =3
s 2 4s 4 0
s1 s2 2
(两相等实根)
yx (t ) K1e—2t K2te—2t
解得 K1 =1, K2=5
yx (t ) e2t 5te2t , t 0
2) 求非齐次方程y‘’(t)+6y‘(t)+8y(t) = f(t)的特解yp(t) 由输入f (t)的形式,设方程的特解为
信号与系统_2.5-2.6
y (t ) = =
∞
−∞ ∞
∫ x ( τ ) h (t − τ ) d τ =
−(t − τ)
∞
−∞
u ( τ ) e − ( t − τ ) u (t − τ ) d τ ∫
u (τ)
1
0
−∞
∫e
u ( τ )u (t − τ ) d τ
以上积分式中,积分变量是 。 以上积分式中,积分变量是τ。 式中的u(τ)u(t-τ)决定了积分的上下 式中的 决定了积分的上下 也确定了积分结果的定义区间。 限,也确定了积分结果的定义区间。
= δ(t ) − e −2t u (t )
一般的, 一般的,对于如下形式的微分方程
ak y ( k ) (t ) =∑ bk x( k ) (t ) ∑
k =0 k =0 N M
当N>M,单位冲激响应中只有自由响应;当N≤M,则还 ,单位冲激响应中只有自由响应; , 有受迫响应分量:冲激和冲激的各阶导数。 有受迫响应分量:冲激和冲激的各阶导数。
α 2 = −2
h(t ) = A1e − t + A2 e −2t h(t ) = ( A1e −t + A2 e −2t )u (t )
确定特解,并确定t=0 时刻的初始条件。 ⑵ 确定特解,并确定 +时刻的初始条件。 比较以上方程两边可设: 比较以上方程两边可设:在t=0时刻 时刻
h′′(t ) = B1δ ′(t ) + B0δ (t ) + B∆u (t ) 于是在t=0时刻 于是在 时刻 h′(t ) = B1δ (t ) + B0 ∆u (t ) h(t ) = B1∆u (t )
rzs (t ) = ∫ e(τ )h(t −τ )dτ
[信号与系统作业解答]第二章
特征方程为 2 3 2 0 ,特征根为 1
1和 2
2。
所以rzi(t) C1e t C2e 2t, t 0
将 rzi(0 ) r (0 ) 2 和rzi(0 ) r(0 ) 1代入可求得
g(t) 1 e 12t cos 3 t 2
1 e 12t sin 3 t u(t)
3
2
由于系统的冲激响应h(t) h(t) e 12t cos 3 t
2
d g(t) ,所以系统的冲激响应为 dt
1 e 12t sin 3 t u(t)
3
2
3)系统的冲激响应满足方程
d dt
h(t)
2h(t)
(t) 3 (t)
电容两端电压不会发生跳变,vc(0 ) vc(0 ) 10V ,所以i(0 ) 0 ;
因此,电阻两端无电压,电感两端电压变成 10V,所以i (0 ) 10 。
(2)换路后系统的微分方程为
i (t) i (t) i(t) e (t) e(t) 20u(t)
t 0 时间内描述系统的微分方程为
i (t) i (t) i(t) 20 (t)
e(t) (1) 0 (2)
整理得:
2vo(t) 5vo(t) 5vo(t) 3vo(t) 2e (t)
2-4 已知系统相应的齐次方程及其对应的 0+状态条件,求系统的零输入响应。
1)
d2 dt 2
r(t)
2
d dt
r(t
)
2r(t)
0 ,给定r(0 )
1 ,r (0 )
2
信号与系统(郑君里)第二版 讲义 第二章
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
信号与系统 微分方程式的经典解法
t 0
1 1 C1 , C2 16 16
1 5t 1 t 1 t y (t ) e e te u (t ) 16 4 16
信号与系统
完全解中的齐次解称为系统的自由响应,特解称为系统的强迫响应.特 征方程根i(i=1,2,…,n)称为系统的“固有频率”(或“自由频率”) 上例中完全解的分解如下:
d2 d t y ( t ) 6 y ( t ) 5 y ( t ) e d t2 dt
y(0) y '(0) 0
解:
齐次方程为 特征方程: 特征根:
d2 d y ( t ) 6 y (t ) 5 y (t ) 0 2 dt dt
2 6 5 0
1 5,2 1
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 10 rp (t ) t 2 t 3 9 27
信号与系统
(2)
e(t ) et 将其代入方程的右端,可求得自由项为 可选 rp (t ) B这里, et。 B 是待定系数。
信号与系统
例:
给定微分方程式
d 2 r (t ) d r (t ) d e(t ) 2 3 r t e(t ) 2 dt dt dt
如果已知: (1) e(t ) t 2 ; (2) e(t ) et , 分别求两种情况下此方程的特解。 ( 1)
e(t ) t 2
当
t 2e很明显,
代入方程后有:
Bet 2Bet 3Bet et et
信号与系统
bm f
(m)
(t ) bm-1 f
n j 0
( m -1)
(t ) ... b0 f (t ) (2.1-1)
m (i )
或缩写为: a j y ( j ) (t ) ∑ i f b ∑
i 0
(t )
2
信号与系统第二章
该微分方程的全解由齐次解yh(t)和特解yp(t)组 成,即: y(t)= yh(t)+ yp(t) 下面分别给出齐次解yh(t)和特解yp(t)的求法。
′ y′ ( t ) + 2 y′( t ) + y( t ) ′ =[ aδ′ ( t ) + bδ′( t ) + cδ( t ) + r0 ( t )] +
r2(t)
′ 2( aδ′( t ) + bδ( t ) + r1( t )) + [ aδ( t ) + r2 ( t )] =δ′ ( t ) + 2δ( t )
信号与系统第二章
3
1、齐次解yh(t) 齐次解yh(t)是齐次微分方程:
y (t ) + an 1 y
的解,它是形式为
(n)
( n 1)
(t ) + ... + a0 y(t ) = 0
Ce
t 的一些函数的线性组合。
上式可简化为:
该式为微分方程的特征方程,其n个根 i 为微分方 程的特征根。不同特征根对应不同的齐次解。
所以称这种状态为初始状态,简称0+状态,也 称导出的起始状态。
信号与系统第二章
9
关于0-与0+初始值
同样,在系统分析中, t= 0-(或t=t0-)时刻,激励尚未接
信号与系统复习资料总结
– 4 –2 O 2 4 6
τ
卷积图形计算
f1(τ) 2
• 卷积积分图解(积分3)
O2 4
τ
▫ 积分区间:
2<t<4
f2(t–τ) 1.5
▫ 计算积分:
t
f (t) 1.5(t )d t2
– 4 –2 O 2 t 4 6
τ1.Leabharlann t0.75 2t t2
3.0 f (t)
1.5
3
– 4 –2 O 2 4 6
求得上图系统的微分方程为
y"(t) 5y'(t) 3y(t) 2 f '(t) 4 f (t)
写出系统的算子方程
( p2 5p 3) y(t) (4 2 p) f (t)
于是,得到系统的传输算子为
H( p)
42p p2 5p 3
利用P算子法,根据电路写出系统微分方程
P算子法
• 冲激信号的性质 • (a) f (t)δ(t) = f (0)δ(t) • (b) f (t)δ(t – τ) = f (τ)δ(t – τ)
• (c ) (t) f (t)dt f (0)
• (d)
(t ) f (t)dt f ( )
冲激函数导数性质
• (e)
(t)dt 0
步骤一:根据电路元件的算子模型写出各器件等效阻 值:电阻的等效阻值R,电容等效阻值1/cP,电感为 LP
根据电路写出微分方程 P算子法(二)
• 步骤二:利用2个定律 • (a)基尔霍夫电压定律(KVL),一个回路电压降之
和为0 • (b)基尔霍夫电流定律(KCL),流入一点的电流之
和等于流出该点电流之和
▫ 6<t<∞
信号与系统常用公式
常用公式 第一章判断周期信号方法两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
2/2/2/(2/),/N N M M N πβπβπβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性,1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。
2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。
信号的能量 def2()E f t dt +∞-∞=⎰信号的平均功率 def2/2/21lim ()T T T P f t dt T +-→∞=⎰ 冲激函数的特性'''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ=()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞-∞=⎰()()()f t t a dt f a δ∞-∞-=⎰()()11()()n n nat t a a δδ=001()()t at t t a aδδ-=- 000()()()()f k k k f k k k δδ-=-()()()()(1)(0)n n n t f t dt f δ∞∞=-⎰- ''()()(0)t f t dt f δ∞∞=-⎰-动态系统是线性系统的条件可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x •=•+•=•+⎡⎤⎡⎤⎣⎦⎣⎦ 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=•+•⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦判断系统时不变、因果、稳定的方法。
《信号与系统》知识点归纳
《信号与系统》知识点总结北京交通大学电子信息工程学院程轶平2009.60. 前言本文的目的是帮助《信号与系统》课程学习者整理知识。
它适合于对《信号与系统》已经建立起一定的框架,但可能对某些问题感到模糊或困惑的人阅读。
本文也试图对一些类型的计算题给出机械的标准化的解法。
过于容易,或不太可能被考试题考察的知识点在此省略。
知识点基本上按照章来组织和编号。
但是如果不同的章有相类似的知识点,我将把它们合并成一个,然后用字母M (mixed)开头编号。
另外大家要注意将本文和教材结合起来看。
它的目的是整理思路,因此不能对它期望过多。
符号*表示卷积,而不是乘法。
1. 第1章1.1 能量信号和功率信号请阅读教材第4页。
1.2 系统的线性和非线性,时不变和时变,因果和非因果请阅读教材相关内容。
这里,我对系统的线性和非线性给出我的一点个人看法。
严格地说来,系统是否线性指的是系统的输出对输入满足齐次性和叠加性。
按照这个标准,如果系统的输出和某个系统的“初始状态”有关,即其不能视为一个线性系统。
但是,很多教材都从实用的角度出发,将线性的定义放宽为允许将初始状态看做一种特殊的输入,因而很多按照原来定义不是线性的系统成为了线性系统。
在第3章我还要对此问题作进一步的阐述。
2. 第2章2.1 冲激信号的性质筛选特性、抽样特性、展缩特性,即教材中公式(2-21),(2-22),(2-23)必须在理解的基础上记忆。
冲激信号δ(t)不是一般意义上的信号,而是一种理想化的“信号”,在数学上它是一广义函数。
我们无法离开冲激信号因为它为我们的推导和思维提供了很多方便。
冲激信号虽然在物理上不存在,但如果一个物理信号取到非0值的时间集中在某个瞬时,就可用冲激信号近似。
不过要注意脉冲信号δ[k]却是完完全全的一般意义上的信号。
2.2 信号的尺度变换、翻转与时移图示解题方法对这种类型的题目。
针对信号是连续或离散应采用不同的解题步骤。
对于连续信号,大家应仔细阅读教材中的例子,特别是例2-6。
《信号与系统》第二章讲
第二章 连续时间系统的时域分析2.1 系统模型为便于对系统进行分析,需要建立系统的模型,在模型的基础上可以运用数学工具对系统进行研究。
一. 模型:模型是系统物理特性的数学抽象,以数学表达式或具有理想特性的符号组合图形来表征系统特性。
由电路图可列出方程:dt t de C t i dt t di RC dtt i d LC t e t Ri dt t di L dt t i Ct)()()()()()()()(122=++=++⎰∞-即:这就是系统的数学模型。
二. 系统模型的建立是有一定条件的:1. 对于同一物理系统在不同条件之下,可以得到不同形式的数学模型。
(参考书中P29)2. 对于不同的物理系统,经过抽象和近似有可能得到形式上完全相同的数学模型。
(参考书中P29)建立系统模型只是进行系统分析工作的第一步,为求得给定激励条件下系统的响应,还应当知道激励接入瞬间系统内部的能量储存情况。
如果系统数学模型、起始状态以及输入激励信号都已确定,即可运用数学方法求解其响应。
一般情况下我们对所求得结果可以作出物理解释赋予物理意义。
综上所述,系统分析的过程,是从实际物理问题抽象为数学模型,经过数学解释后再回到物理实际的过程。
也即:建立数学模型解数学模型对解加于物理解释三. 时域分析方法时域分析:在分析过程中,所涉及到的函数都是时间的函数。
(1)经典方法:求解微分方程(2)卷积积分法(重点内容)2.2 线性时不变系统微分方程的建立分析对象:线性的、时不变系统(非时变系统)教学目标:熟练掌握建立线性系统的微分方程的方法。
重点:电路系统建立微分方程的基本依据。
难点:用网孔电流法及节点电位法列状态方程。
一.一. 电路系统建立微分方程的基本依据1.元件特性约束(电路元件的伏安特性)(1)电阻器:-R由欧姆定律:)( )()(1)(tiRtutuRtiRRRR⋅==或若电阻特性参数与时间无关,即R与流过电阻器的电流或施加的电压大小无关,则此电阻称为时不变电阻或线性电阻。
信号与系统离散时间系统习题详解
信号与系统离散时间系统习题详解8-2 列出图题8-2所示系统的差分方程,指出其阶次。
图 题8-2解:1201[][1][2][][1]y n b y n b y n a x n a x n ----=+- 二阶8-3 列出图题8-3所示系统的差分方程,已知边界条件y [-1] = 0,分别求以下输入序列时的输出y [n ],并绘出其图形(用逐次迭代方法求)。
(1)[][]x n n δ= (2)[][]x n u n = 图 题8-3解:1[][1][]3y n y n x n --=(1) 1[][]3ny n u n ⎛⎫= ⎪⎝⎭(2)311[](())[]223n y n u n =-8-7 求解下列差分方程的完全解。
(1)[]2[1]2, [0]1y n y n n y +-=-= (2)[]5[1],y n y n n =--+ [1]0y -=解:(1)方程齐次解为:h [](2)ny n C =-,特解为:p 12[]y n D n D =+,代入原方程121212142(1)2 2 , 39D n D D n D n D D ++-+=-→==-完全响应为:()14[]239ny n C n =-+-,代入1]0[=y 得:913=C()1314[]2939ny n n ∴=-+-(2)方程齐次解为:h [](5)ny n C =-,特解为:p 12[]y n D n D =+,代入原方程0234121212155(1)5 , 636D n D D n D n D D +=---+→==完全响应为:()15[]5636ny n C n =-++,代入0]1[=-y 得:365-=C()11[][565]36n y n n +=-++8-12 用单边z 变换解下列差分方程。
(1)y [n ] + 0.1y [n -1] - 0.02y [n -2] = 10 u [n ],y [-1] = 4,y [-2] = 6 (2)y [n ] - 0.9y [n -1] = 0.05 u [n ],y [-1] = 1 (3)y [n ] + 2y [n -1] = (n -2) u [n ],y [0] = 1 解: (2)差分方程两边同时进行z 变换:11211()0.9[()[1]]0.051(){10.9}0.050.9[1]10.050.90.050.9()(1)(0.9)(0.9)(1)(10.9)(10.9)()0.50.4510.910.90.50.45[][]0.10.9zY z z Y z y z z z Y z z y z z z zY z z z z z z z Y z A B z z z z z z zy n z z -----+-=--=+--=+=+------=+=+----=+=---1Z 5[]0.45(0.9)[]n u n u n +(3)由差分方程得:2(0)3(0)2(1)2(1)22y y y y --+-=-∴-==-差分方程两边同时进行z 变换:1221112222()2[()(1)]21(1)22(1)()(1)(12)(1)(12)(12)()33(1)2(1)(2)(1)3949139(1)2(1)z zY z z Y z y z z z z z y Y z z z z z z Y z z z A B C z z z z z z z z z ----++-=----=---+-++-+==++-+-+--=++-+-3413[]((2))[]999n y n n u n =-+-8-13 若描述某线性时不变系统的差分方程为:y [n ] - y [n - 1] - 2y [n - 2] = x [n ] + 2x [n - 2],已知y [-1] = 2,y [-2] = -1/2,x [n ] = u [n ]。
信号与系统
信号与系统例 给定方程)(3)()(2)(3)(t e t e t r t r t r +'=+'+'' 当)()(t u t e =,2)0(,1)0(='=--r r 求()()t r t r zs zi ,=? 解: 1.先求r zi (t)因为零输入响应,故e(t)=0,原方程兑变为0)(2)(3)(=+'+''t r t r t r zi zi zi其特征方程为0232=++αα,α1=-1 ,α2=-2∴t t zi e A e A t r 221)(--+=,)(0 r )(0 r ),(0r )(0r -zi zi-zi zi '='=++ 代入起始状态得()()⎩⎨⎧-===⎪⎭⎪⎬⎫=--='=+=++3422010212121A A AA r A A r zizi)0t (034)(2+--≥>-=∴或t e e t r tt zi2.再求()?t r zs =将)()(t u t e =代入原方程得)(3)()(2)(3)(t u t t r t r t r zs zs zs+=+'+''δ 设)()()(t u b t a t r zs∆+=''δ )()(t u a t r zs∆='+<≤00t )()(t u at t r zs ∆=代入上方程得:)(3)()(2)(3)()(00t u t t u at t u a t u b t a t ∆+=∆+∆+∆+→δδ时,此项为当得:⎩⎨⎧==⇒⎩⎨⎧=+=0133a b 1b a a()()()()()1003000==='⇒='-'∴-++-+zs zs zszs zsr r r a r r当+≥0t 时,()t r zs 满足方程)(3)(2)(3)(t u t r t r t r zs zs zs=+'+''设特解 ()B t p r zs =代入上方程得 23=B()+--≥++=∴023)(221t e B e B t r t t ZS代入)0(),0(++'zszs r r 得 ⎪⎩⎪⎨⎧-==⇒⎪⎩⎪⎨⎧=--=++25232123212121B B B B B B()023252)(2>+⎪⎭⎫⎝⎛-+=∴--t e e t r t t zs【例】已知f 1(t )=(3e -2t -1)u (t )和f 2(t )=e t u (t ), 试求卷积f 1(t )*f 2(t )。