苏科版七上3.4合并同类项练习(含答案).doc
初中数学苏科版七年级上册3.4 合并同类项
合并同你类能项把法你则合:并同同类类项项的的系方数法相用加一,句所话得 的概结括果出作来为吗系? 数把,你字的母想和法字和母同的学指们数交不流变..
强调
一变二不变
一变 ------系数要变 二不变-----字母和字母的指数不变
当a=0.35,b=-0.28时,求多项式的值: a3b+2a3-2a2b+3a3b+2a2b-2a3 -4a3b
有一位同学指出:题目中给出的条件 a=0.35,b=-0.28是多余的.
他的说法有没有道理?
谢谢同学们的参与合作!
祝愿:快乐学习! 健康成长!
算一算
这是某学校的总体规划图(单位: 米),试计算这个学校的占地面积.
100
200
教
学
操场
a
区
学生活动中心 240
图书馆 b
60
议一议
我们这节课学到了什么?
1、什么是同类项? 2、怎样合并同类项? 3、“两相同、两无关、一特例” 与“一变二不变”指的是什么?
想挑战吗?
1.如果 2axb3与 3bya4 是同类项,那
一找、二移、 三合并
恍然大悟
你能说说刚才比赛时老师是如
何快速计算 4x2 5x 3x2 7x x2
的值的吗?
练一练 合并同类项:
1 3x 2 y 5x 7 y
2 x2 5xy yx 2x2
填一填:
1. 2xy ( 5xy ) 7xy
2 . a2b ( 2a2b) a2b 3. m2 m ( 2m2) ( 3m) 3m2 2m
3.4合并同类项(八大题型)(原卷版)
◆1、合并同类项定义:把同类项合并成一项叫作合并同类项.
◆2、合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
◆3、“合并同类项”的步骤:
一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;
二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;
A.yx与﹣xyB.3ac与2abcC.﹣2xy与﹣2abD.3x2y与3y2x
【变式13】(2023•诸暨市模拟)下列每组中的两个代数式,属于同类项的是( )
A.7a2b和3ab2B. 和﹣2x2y
C.x2yz和x2yD.3x2和3y2是同类项的是( )
(2)2a2﹣5a+6+4a﹣3a2﹣a﹣7.
【变式54】把(a+b)和(x+y)各看成一个整体,对下列各式进行化简:
(1)26(a+b)+4(a+b)﹣25(a+b);
(2)6(x+y)2+3(x+y)﹣9(x+y)2+2(x+y).
【变式55】化简下列各式:
(1)5m+2n﹣m﹣3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2;
求ba的值.
解题技巧提炼
整式中与“与字母取值无关”类问题的求解方法:在整式的加减运算的过程中,若涉及“与字母取值无关”,其实质是指合并同类项后“那个无关的字母项”的系数为0.
【变式81】(2022秋•镇平县期末)若代数式k2y+x﹣y+kx﹣3的值与x、y的取值无关,那么k的值
为( )
A.﹣1B.1C.±1D.0
A.7a2b﹣7ba2=0B.5x+2y=7xy
2022-2023学年苏科版数学七年级上册《合并同类项》课后巩固题
3.4 合并同类项(课后巩固题)-苏科版七年级上册一.选择题1.若单项式2x3y4与x m y n是同类项,则m,n分别是()A.3,4B.4,3C.﹣3,﹣4D.﹣4,﹣3 2.若4xy2与xy m是同类项,则m的值为()A.1B.2C.3D.43.下列合并同类项结果正确的()A.3a2+4a2=12a2B.4x3+3x3=7x6C.5xy﹣4xy=1D.2a2+3a2=5a24.若单项式2a2b与某个单项式合并同类项后结果为7a2b,则这个单项式是()A.5a2b B.5C.9ab2D.5.当代数式x2+4kxy﹣3y2﹣6xy+7中不含xy项,则k的值为()A.0B.C.﹣D.26.如果﹣xy b﹣1与x a+2y4的和是单项式,那么a b=()A.﹣1B.1C.0D.﹣27.下列单项式中,与a2b3是同类项的是()A.﹣a3b2B.a2b C.ab3D.32a2b3 8.若3a m+3b n+2与﹣2a5b是同类项,则mn=()A.﹣1B.﹣2C.2D.19.如果﹣2x2﹣a y与x3y b﹣1是同类项,那么﹣a﹣b的值是()A.﹣3B.﹣2C.﹣1D.110.下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6C.3(x+2)+x2D.x2+5x二.填空题11.已知2a1﹣m b4与﹣5a2b n+1的和仍是单项式,则m n的值为.12.若代数式x a﹣1y3与﹣3x﹣b y2a+b是同类项,则a﹣b=.13.如果﹣3a m+2b5﹣n与7a4b8是同类项,则n m=.14.已知m,n为正整数,若a2b+3a﹣4a m﹣1b n合并同类项后只有两项,则m=,n =.15.如果单项式﹣xy b+1与是同类项,那么(a﹣b)2021=.三.解答题16.已知﹣和是同类项,a是c的相反数的倒数,求代数式(3a2﹣ab+7)﹣(5ab﹣4a2+7)﹣4c的值.17.化简:(1)5m+2n﹣m﹣3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2;(3)ab2﹣5a2b﹣a2b+0.75ab2;(4)4(m+n)﹣5(m+n)+2(m+n).18.化简:(1)﹣3x2y+3xy2﹣2xy2+2x2y;(2)2a2﹣5a+a2+6+4a﹣3a2.19.(1)关于x,y的多项式4x2y m+2+xy2+(n﹣2)x2y3+xy﹣4是七次四项式,求m和n的值;(2)关于x,y的多项式(5a﹣2)x3+(10a+b)x2y﹣x+2y+7不含三次项,求5a+b的值.20.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的值为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.参考答案与试题解析一.选择题1.【解答】解:∵单项式2x3y4与x m y n是同类项,∴m=3,n=4,故选:A.2.【解答】解:由题意可知:m=2,故选:B.3.【解答】解:A选项,原式=7a2,故该项不符合题意;B选项,原式=7x3,故该项不符合题意;C选项,原式=xy,故该项不符合题意;D选项,原式=5a2,故该项符合题意;故选:D.4.【解答】解:∵单项式2a2b与某个单项式合并同类项后结果为7a2b,∴某个单项式为:7a2b﹣2a2b=5a2b.故选:A.5.【解答】解:x2+4kxy﹣3y2﹣6xy+7=x2+4kxy﹣6xy﹣3y2+7=x2+(4k﹣6)xy﹣3y2+7,由题意得:4k﹣6=0,解得:k=,故选:B.6.【解答】解:由题意可知:﹣xy b﹣1与x a+2y4是同类项,∴a+2=1,b﹣1=4,∴a=﹣1,b=5,∴原式=(﹣1)5=﹣1,故选:A.7.【解答】解:A、字母a的次数不相同,不是同类项,故本选项不符合题意;B、字母b的次数不相同,不是同类项,故本选项不符合题意;C、字母a的次数不相同,不是同类项,故本选项不符合题意;D、有相同的字母,相同字母的指数也相同,是同类项,故本选项符合题意;故选:D.8.【解答】解:根据题意得m+3=5,n+2=1,解得m=2,n=﹣1,则mn=2×(﹣1)=﹣2.故选:B.9.【解答】解:∵﹣2x2﹣a y与x3y b﹣1是同类项,∴2﹣a=3,b﹣1=1,解得:a=﹣1,b=2,∴﹣a﹣b=﹣(﹣1)﹣2=1﹣2=﹣1.故选:C.10.【解答】解:A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)﹣2x,故正确;B、阴影部分可分为应该长为x+3,宽为x和一个长为x+2,宽为3的长方形,他们的面积分别为x(x+3)和3×2=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可分为一个长为x+2,宽为3的长方形和边长为x的正方形,则他们的面积为:3(x+2)+x2,故正确;D、x2+5x,故错误;故选:D.二.填空题11.【解答】解:∵2a1﹣m b4与﹣5a2b n+1的和仍是单项式,∴1﹣m=2,n+1=4,∴m=﹣1,n=3,∴m n=(﹣1)3=﹣1,故答案为:﹣1.12.【解答】解:∵代数式x a﹣1y3与﹣3x﹣b y2a+b是同类项,∴a﹣1=﹣b,2a+b=3,∴,由①得:a=1﹣b③,把③代入②得:2(1﹣b)+b=3,解得:b=﹣1,把b=﹣1代入③得:a=2,∴原方程组的解为:,∴a﹣b=2﹣(﹣1)=2+1=3,故答案为:3.13.【解答】解:∵﹣3a m+2b5﹣n与7a4b8是同类项,∴m+2=4,5﹣n=8,∴m=2,n=﹣3,∴n m=(﹣3)2=9.故答案为:9.14.【解答】解:由题意可知:a2b与4a m﹣1b n是同类项,∴m﹣1=2,n=1,∴m=3,n=1,故答案为:3,1.15.【解答】解:∵单项式﹣xy b+1与是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2021=(3﹣2)2021=12021=1.故答案为:1.三.解答题16.【解答】解:原式=3a2﹣ab+7﹣5ab+4a2﹣7﹣4c=7a2﹣6ab﹣4c,∵和是同类项,∴b﹣1=2,a+2=3,∴b=3,a=1,∵a是c的相反数的倒数,∴﹣ac=1,∴c=﹣1,∴原式=7﹣18+4=﹣7.17.【解答】解:(1)5m+2n﹣m﹣3n=4m﹣n;(2)3a2﹣1﹣2a﹣5+3a﹣a2=2a2+a﹣6;(3)ab2﹣5a2b﹣a2b+0.75ab2=ab2﹣5a2b﹣a2b+ab2=ab2﹣a2b;(4)4(m+n)﹣5(m+n)+2(m+n)=(4﹣5+2)(m+n)=m+n.18.【解答】解:(1)﹣3x2y+3xy2﹣2xy2+2x2y =(﹣3x2y+2x2y)+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a﹣3a2=(2a2+a2﹣3a2)+(4a﹣5a)+6=﹣a+6.19.【解答】解:(1)根据题意得2+m+2=7,n﹣2=0,解得m=3,n=2;(2)根据题意得5a﹣2=0且10a+b=0,所以5a=2,b=﹣4,所以5a+b=2﹣4=﹣2.20.【解答】解:(1)﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)原式=3(x+2y)﹣8=3×3﹣8=1;(3)∵y﹣xy=﹣2,xy+x=﹣6,∴xy﹣y=2,x+y=xy+x+y﹣xy=﹣8,则原式=2x+2(xy﹣y)2﹣3(xy﹣y)2+3y﹣xy=2x+3y﹣xy﹣(xy﹣y)2=2(x+y)+(y﹣xy)﹣(xy﹣y)2=﹣16+(﹣2)﹣4=﹣22.。
苏科版七上3.4合并同类项
苏科版七年级数学上册3.4“合并同类项”的教学设计扬中市教育局教研室 叶纪元【学情分析】七年级的学生具有强烈的好奇心与求知欲,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、喜欢游戏等特点,形象直观思维已比较成熟,但理性思维的发展还有很有限,抽象思维能力还比较薄弱。
所授班级的学生学习数学的积极性较高,已初步形成合作交流、勇于探索的学习风气。
【教材分析】本节课选自苏科版《数学》七年级上册§3.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。
合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。
另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。
可以说合并同类项是有理数加减运算的延伸与拓广。
因此,这节课是一节承上启下的课。
【教学目标】知识与技能目标:使学生了解同类项的概念,能识别同类项,学会合并同类项并知道合并同类项所依据的运算律.过程与方法目标:让学生经历观察、分析、归纳和动手解决问,初步使学生了解数学的分类思想.情感、态度、价值观目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动.培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神.【教学重、难点】根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:教学重点:同类项的概念和合并同类项的法则.教学难点:正确判断同类项;准确合并同类项。
【教学流程图】 —→—→概括提升 ——→【教学过程】一、创设情境,引入课题情境一:我班GBR课程选项统计表;情境二:英语单词分类;情境三:请大家谈谈生活中你所经历过的分类现象。
情境四:单项式分类;学生练习:以小组为单位任取x的一个整数值,求代数式—4x2+7 x+3 x2—5 x+ x2的值,求好后给出x的值,看教师需要多长时间得到答案.你知道老师怎么算的吗?(用师生竞赛的方式,充分调动了学生积极参与,激发了学生求知欲望)设计意图:创设问题情境,选择新旧知识的切入点,通过启发提问,构造问题悬念,激发学生兴趣,并自然引出课题.二、实践思考探索交流1.数学源于生活:计算学校占地面积出示某校的总体规划图(单位:米),由学生思考怎样计算这个学校的占地面积.2.观察、比较、归纳想一想: 100a和200a, 240b和60b,有何共同点?下列整式中具有上式的特点吗?一些具有共同特征的整式,进行分类.并说说你的理由.(1)5ab2,ab2(2)-9x2y3,5y3x2, -0.5y3x2(3) 27, -12(学生分组讨论.)设计意图:培养学生的观察的能力和思考的能力.让学生在观察与思考中探索发现.三、概括提升(一)同类项1.所含字母相同,并且相同字母的指数也相同的项叫做同类项(like terms).几个常数项也是同类项.你能自己举出一些同类项的例子吗?列举同类项2.练一练:(1)下列各组中的两项是不是同类项?为什么?⑴ x 与y ⑵ a 2b 与ab 2 ⑶ -3pq 与3qp⑷ abc 与ac ⑸ 125与12 ⑹ a 2与a 3(3)请你在下面的横线上填上适当的内容,使两个代数式构成同类项.⑴ -3a 与 6ab ;⑵ -3x 2y 3 与2x 2 ;⑶ 2m 与 -5n 2 .(二)合并同类项1.想一想:下列各式计算结果是什么?说说你的理由:(1)7a -5a =______;(2)4x 2+x 2=____;(3)5ab 2-13ab 2=_____;(4) -9x 2y 3+5x 2y 3=____.你能把你合并同类项的方法用一句话概括出来吗? 把你的想法和同学们交流.(学生合作交流)2.合并同类项:定义:根据乘法对加法的分配律把同类项合并成一项叫做合并同类项.(unite like terms) .法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.3.合并同类项(口答)4.下列各题的结果是否正确?如不正确请指出错误的地方.①3x +3y =6xy②7x +5x =12x 2③16y 2-7y 2=9④19a 2b -9a 2b =10a 2b5.例题示范:合并同类项:设计意图:教师板书解题过程,让学生体会每步的计算依据,渗透推理的思想.四、挑战自我1.(分组演练)合并同类项:();75231y x y x --+-。
初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)
2018-2019 学年度苏科版数学合并同类项1.下列各组的两项中,不是同类项的是()A.2x2y3,﹣3y3x2B.23,32C.a2,b2D.﹣3ab,3ab2.下列各组整式中,是同类项的是()A.3a2b 与5ab2 B.5ay2 与2y2 C.4x2y 与5y2x D.nm2 与m2n3.若﹣2a m b4与5a2b2+n是同类项,则m n的值是()A.2 B.0 C.4 D.14.下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn 与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2 A.1组B.2 组C.3 组D.4 组5.计算x2y﹣3x2y 的结果是()A.﹣2 B.﹣2x2y C.﹣x2y D.﹣2xy26.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x7.下面是小林做的4 道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2 分,则他共得到()A.2分B.4 分C.6 分D.8 分8.若2b2n a m与﹣5ab6的和仍是一个单项式,则m、n 值分别为()A.6, B.1,2 C.1,3 D.2,39.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6 B.6 C.5 D.1410.合并同类项m﹣3m+5m﹣7m+…+2013m 的结果为()A.0 B.1007mC.m D.以上答案都不对11.若3x n y m 与x4﹣n y n﹣1 是同类项,则m+n= .12.若单项式2a x+1b 与﹣3a3b y+4是同类项,则x y= .13.任写一个与﹣a2b 是同类项的单项式.14.当k= 时,﹣3x2y3k与4x2y6是同类项.15.若单项式与﹣2x b y3的和仍为单项式,则其和为.16.计算:3a2b﹣a2b= .17.若单项式2x m y3与单项式﹣5xy n+1的和为﹣3xy3,则m+n= .18.把(x﹣y)看作一个整体,合并同类项:5(x﹣y)+2(x﹣y)﹣4(x﹣y)= .三.解答题(共4 小题)19.下列各题中的两项哪些是同类项?(1)﹣2m2n 与﹣m2n;(2)x2y3与﹣x3y2;(3)5a2b 与5a2bc;(4)23a2与32a2;(5)3p2q 与﹣qp2;(6)53与﹣33.20.合并同类项:(1)7a+3a2+2a﹣a2+3;(2)3a+2b﹣5a﹣b;(3)﹣4ab+8﹣2b2﹣9ab﹣8.21.已知﹣a2m b n+6与是同类项,求m、n 的值.22.如果﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,求(m﹣n)(2a﹣b)的值.参考答案一.选择题(共10 小题)1.C.2.D.3.C.4.C.5.B.6.C.7.C.8.C.9.B.10.B.二.填空题(共8 小题)11.3.12..13.a2b 14.2.15.﹣x2y3.16.2a2b.17.3.18.3(x﹣y).三.解答题(共4 小题)19.解:(1)是同类项;(2)相同的字母的指数不同;(3)所含的字母不同;(4)是同类项;(5)是同类项;(6)是同类项.答:(1)、(4)、(5)、(6)是同类项;(2)、(3)不是同类项.20.解:(1)原式=2a2+9a+3;(2)原式=﹣2a+b;(3)原式=﹣2b2﹣13ab.21.解:由﹣a2m b n+6与是同类项,得,解得.22.解:∵﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,∴a=5,a+1=b﹣1=n,﹣4+m=3,解得a=5,b=7,n=6,m=7,则(m﹣n)(2a﹣b)=3.§3.4 合并同类项第三份练习答案:参考答案1.B 2.C 3.C 4.A 5.B 6.D 7.-4xy2 -3m 9.24x 72 10.1 2 -3 11.0 12.n2xy 13.(1) 9a + x 1x2 y 8.1 3 6(2) -10a2 +14ab-2 (3)1721-b2 (4) 3x3 + 2x + 3 (5) 7(m + n)2+(m + n)a3 3 12+ ab2(6) 9a n-9a n+1 14.(1) -4a3-2a2 + 16a-3 7(2) x3-y3,-72 15.原式=(m-2)3 4 12x3+(3n—1) xy2+y,因为结果中不含有三次项,所以m=2,3n=1,因而2m+3n=2×2+1=5.16.由已知得m 1 =6,n2=4,即m-1=6 或m-1=-6,n=±2,∴m=7 或m=-5,n=±2.17.m=3,原式=-4.⎨⎨⎨⎨【基础巩固】1.计算:2x -3x =.7 上 3.4 合并同类项2. 当 m =时,-x 3b 2m与 1 x 3b 是同类项. 43. 写出-2x 3y 2的一个同类项 .4.若单项式 3x 2y n 与-2x m y 3是同类项,则 m +n = .1 a +ba -14 35. 单项式- x +y 3与 5x y 是同类项,则 a -b 的值为.6.下列各组中两个单项式为同类项的是 ( )A . 2 x 2-y 与-xy 2B .0.5a 2b 与 0.5a 2c3C .3b 与 3abcD .-0.1m 2n 与 1 nm 227.下列合并同类项正确的是 ( ) A .2x +4x=8x 2B .3x +2y =5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=01 a +2 33 2b -18. 如 果 x 3y 与-3x y 是同类项,那么 a 、b 的值分别是( )⎧a = 1 A . ⎩b = 2⎧a = 0 B . ⎩b = 2⎧a = 2 C . ⎩b = 1⎧a = 1 D . ⎩b = 19. 计算 a 2+3a 2的结果是()A .3a 2B .4a 2C .3a 4D .4a 410.合并下列各式中的同类项:(1)-4x 2y -8xy 2+2x 2-y -3xy 2;(2) 3x 2 -1 - 2x - 5 + 3x - x 2 ;(3)-0.8a 2b -6ab -1.2a 2b +5ab +a 2b ;(4)5yx -3x 2y -7xy 2+6xy -12xy +7xy 2+8x 2y .11. 求下列多项式的值:(1) 2 a 2 - 8a - 1 + 6a - 2 a 2 + 1 ,其中 a = 1 .3 2 34 2(2) 3x2 y2 + 2xy - 7x2 y2 -3xy + 2 + 4x2 y2 ,其中 x=2,y=1.212.在 2x2y、-2xy2、3x2y、-xy 四个代数式中,找出两个同类项,并合并这两个同类项.【拓展提优】13.已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=.14.若-4xay+x2yb=-3x2y,则 a+b=.15.下面运算正确的是( )A.3a+2b=5ab B.3a2b-3ba2=0C.3x2+2x3=5x5D.3y2-2y2=116.已知一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1C.-13x-1 D.13x+117.合并同类项: (1)2(x-y)+3(x+y)2-5(x-y)-8(x+y)2-(x-y);(2)3a m-4a n+1-5a m+4a m+1-3;(3)2(a-2b)2-7(a-2b)3+3(2b-a)2+(2b-a)3;(4) 0.5a n - 0.4a n-1 - 0.1 +1a n-1 +1.2 518.已知 8x2y m与- x n+4 y39是同类项,求多项式 m3-3m2n+3mn2-n3的值.19.先化简,再求值:(1)3x2y2+3xy-7x2y2-5xy+2+4x2y2,其中 x=-2,y=-1.2 4(2)3ab2+0.5a3b-3ab2-5ab3-9a3b+5b3a,其中 a=1,b=11.2 2 220.用a 表示一个两位数十位上的数字,b 表示个位上的数字,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得的数与原数的和,这个和能被 11 整除吗?21.设 m 和n 均不为零,3x2y3和-5x2+2m+n y33m3 -m2 n + 3mn2 + 9n3是同类项,求的值.5m3 + 3m2 n - 6mn2 + 9n3【基础巩固】1.-x 2.12参考答案3.答案不唯一4.5 5.4 6.D 7.D 8.A 9.B10.(1)-2x2y-11xy2(2)2x2+x-6 (3)-a2b-ab (4)5x2y-xy 11.(1)-54 (2)3 12.略【拓展提优】13.13 14.3 15.B 16.A 17.(1)-5(x+y)2-4(x-y) (2)-2a m-3(3)5(a-2b)2-8(a-2b)3(4)a n+0.1 18.125 19.(1)214 (2)-3420.原数为 10a+b.调换位置后的数为 10b+a,两数和为 11a+11b,所以能被 11 整除.c dc 21. 5597§3.4 合并同类项1. 当 n 等于 3 时,下列各组是同类项的是( )A. x n 与 x 3 y n -1B . 2x n y n -1 与 3x 6-n y 23C .5x 2 y n -2 与 5y 2x n -2D .-2x 3 y 与 2x n -6 y32. 下列计算正确的是 ( ) A .2a + b =2ab B .3x 2-x 2=2 C .7mn -7nm =0 D .a + a =a 23. 如果单项式-x a +1y 3 与 1y b x 2 是同类项,那么 a ,b 的值分别为2( )A .a =2,b =3B .a =1,b =2C .a =1,b =3D .a =2,b =24. 把 多 项 式 2x 2- 5x + 3- x 2- 5 + x 合 并 同 类 项 后 , 新 得 到 的 多 项 式 是 ( )A. 二次三项式 B .二次二项式 C .单项式 D .一次多项式5.若-3x 2m y 3 与 2x 4 y n 是同类项,则 m - n 的值是()A .0B .1C .7D .-1 6.若 n 为正整数,那么(-1) n a + (-1) n +1a 化简的结果是( )A .2a 与-2aB .2aC .-2aD .0 7.合并合类项:(1) 3xy 2-7xy 2=;(2) -m -m -m =;(3) x 2 y - 1 x 2 y - 1x 2y2 3= .8. 若两个单项式 2a 3 b 2m 与- 3a n b n - l 的和仍是一个单项式, 则 m = , n = .9. 三角形三边长分别为 6x ,8x ,10x ,则这个三角形的周长为 ;当 x =3 cm 时,周长为 cm ·10. 已知 3x a +1 y b - 2 与 mx 2 合并同类项的结果是 0, a = , b = , m = .11. 定义 a b 为二阶行列式,规定它的运算法则为 a b d =ad -bc ,那么当 x =1 时,二阶行列 式 x +1 1 的值为 . 0 x -1 12.通过阅读下列各式,你会发现一些规律:xy =12 xy ,xy + 3xy =22 xy ,xy + 3xy + 5xy =32xy ,xy+ 3xy + 5xy + 7xy =42 xy ,…,则运用你发现的规律,解答 xy + 3xy + 5xy + 7xy +…+(2n - 1)xy = 。
3.4 合并同类项(含答案)-
3.4 合并同类项(一)◆基础训练一、选择题1.下列各组中的两项,不是同类项的是().A.a2b与-3ab2B.-x2y与2yx2C.2πr与π2r D.35与53 2.已知34x2与3n x n是同类项,则n等于().A.4 B.3 C.2或4 D.23.代数式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值().A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关二、填空题4.若-3x m-1y4与13x2y n+2是同类项,则m=_______,n=______.5.若│a-2b│+(b-3c)2=0,那么a+b-9c的值是________.三、解答题6.合并下列各式中的同类项(1)15x+4x-10x;(2)-8ab+ba+9ab;(3)-p2-p2-p2;(4)3x2y-5xy2+2x3-7x2y+6-4x3-xy2+10;(5)-4a4-8a3+6a+1-7a+2+6a3+4a4.7.合并下列同类项,并求各式的值.(1)3c2-8c+2c3-13c2+2c-2c3+3,其中c=-4;(2)3y4-6x3y-4y4+2yx3,其中x=-2,y=3.◆能力提高一、填空题8.已知2a x b n-1与3a2b2m(m为正整数)是同类项,那么(2m-n)=_______.9.当k=________时,代数式x6-5kx4y3-4x6+15x4y3+10中不含x4y3项.二、解答题10.已知-2a2b y+1与3a x b3是同类项,试求代数式2x3-3xy+6y2的值.11.如果-4x a y a+1与mx5y b-1的和是3x5y n,求(m-n)(2a-b)的值.◆拓展训练12.已知xy+y2=3,x2+xy=-12,求2x2+3xy+y2的值.答案:1.A 2.D 3.D 4.3,2 5.06.(1)9x,(2)2ab,(3)-3p2,(4)-2x3-4x2y-6xy2+16,(5)-2a3-a+3 7.(1)-10c2-6c+3,-133,(2)-y4-4x3y,158.1 9.1 2510.28 11.a=5,b=7,m=7,n=6,值为3 12.23.4 合并同类项(二)◆基础训练一、选择题1.已知代数式ax+bx合并后的结果是零,则下列结论正确的是().A.a=b=0 B.a=b=x=0 C.a+b=0 D.a-b=0 2.下列计算正确的是().A.3a-2a=1 B.-m-m=-m2C.7x2y2-7x2y3=0 D.2x2+2x2=4x2 3.当a=-1时,代数式-5a n-a n+8a n-3a n-a n+1(n为正整数)的值为().A.a-2 B.-a或0 C.0 D.1或-1 二、填空题4.合并13a-14a-15a=________.5.一个三角形的第一边长是3a+2b(3a+2b>2),第二边长比第一边长大b-1(b>1),第三边长比第二边长大2,则该三角形的周长为_________.三、解答题6.若│x+2│+(y-12)2=0,求代数式13x3-2x2y+23x3+3x2y+5xy2+7-5xy2的值.7.观察下列代数式:-x,2x2,-3x3,4x4,-5x5,…,-19x19,20x20,…,你能写出第n个代数式吗?并写出第2007个代数式.8.当a=-34,b=12时,求2(2a+b)2-3(2a+b)-8(2a+b)2+6(2a+b)的值.◆能力提高一、填空题9.把a+b当作一个因式,合并代数式2(a+b)2+(a+b)+3(a-b)2-4(a+b)中的同类项得________.10.已知2x2+xy=10,3y2+2xy=6,则4x2+8xy+9y2的值为_________.二、解答题11.如果单项式2ax m y与单项式5bx2m-3y是关于x,y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m-3y=0,且xy≠0,求(2a+5b)1999+2m的值.12.初一(1)班与初一(2)班师生外出旅游,(1)班有教师6名,学生32名,(2)•班有教师4名,学生25名.教师的旅游费用为每人m元,学生的学生为每人n元,•因是团体给予优惠,教师按8折优惠,学生按6折优惠,•问此次旅游师生共花费多少钱?•计算当m=40元,n=30元时的总费用.◆拓展训练13.有这样一道题,“当x=1213,y=-0.78时,求代数式7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3的值”.有一位同学指出,题目中给出的条件x=1213,y=-0.78是多余的,•他的说法有道理吗?答案:1.C 2.D 3.C 4.-760a 5.9a+8b6.x=-2,y=12,原式=x3+x2y+7=17.(-1)n nx n或n为奇数时,-nx n,n为偶数时,nx n,第2007个代数式为-2007x2007.8.原式=-6(2a+b)2+3(2a+b)=-99.5(a+b)2-3(a+b)10.3811.(1)3,(2)0 12.8m+34.2n,1346元13.有道理,因为原式化简后为0.。
苏科版七年级上册数学同步练习:3.4合并同类项1(含答案)
初中数学试卷3.4合并同类项1同步练习姓名_____________班级____________学号____________分数_____________一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.752853x x x =+ C.y x xy y x 22254-=- D.5xy-5yx =0 2 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与 C 、xy 与2pxy D 、11113+--+-n n n n x y y x 与3 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩ C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n - B.5xy 和5xy C.-1和14D.2a 和3x 6 .下列合并同类项正确的是 ( )(A)628=-a a ; (B)532725x x x =+ ;(C) b a ab b a 22223=-; (D)y x y x y x 222835-=--7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A.yxB.x y +C.10x y +D.100x y +9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x 10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________. 12.单项式113a ba xy +--与345y x 是同类项,则a b -的值为_________。13.若2243abx y x y x y -+=-,则a b +=__________. 14.合并同类项:._______________223322=++-ab b a ab b a15.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元。 三、解答题 17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .18.化简:)32()54(722222ab b a ab b a b a --+-+.参考答案一、选择题 1 .D 2 .C 3 .D 4 .A 5 .D 6 .D 7 .C 8 .D 9 .A 10.C 二、填空题11.322x y (答案不唯一) 12.4; 13.314.ab b a -25; 15.1- 16.11.m 三、解答题 17.解:)4(3)125(23m m m -+--=m m m 31212523-++-( )=134+-m 当3-=m 时,2513)3(4134=+-⨯-=+-m18.)32()54(722222ab b a ab b a b a --+-+=2222232547ab b a ab b a b a +-+-=22)35()247(ab b a ++--( )=228ab b a +。
苏科版初中数学七年级上册《3.4 合并同类项》同步练习卷
苏科新版七年级上学期《3.4 合并同类项》同步练习卷一.填空题(共33小题)1.若﹣2a2b m与4a n b是同类项,则m+n=.2.已知7x m y3和﹣x2y n是同类项,则﹣n m=.3.单项式﹣3x a﹣1y4+与4x2y2b是同类项,则a=,b=.4.若2a3b n+3和4a m﹣1b4是同类项,则m+n=.5.已知14x5y2和2x m﹣1y n是同类项,则m+n=.6.计算:x2y﹣3yx2=.7.如果单项式5x a+1y3与2x3y b﹣1的差仍是单项式,那么a b=.8.若﹣3x4y m与2x n+1y2的和是单项式,则m=,n=.9.如果单项式y3与5x2y b的和仍是单项式,则|a﹣b|的值为.10.计算:﹣5m+7m=.11.如果x3n y m+4与﹣3x6y2n是同类项,那么mn的值为.12.写出﹣2m3n的一个同类项.13.已知代数式2x m y3与﹣3x n﹣1y m+1是同类项,则m﹣n=.14.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)若单项式﹣x m y n+4与5x2y是同类项,则n m的值为.(2)实施西部大开发战略是党中央的重大决策,我国国土面积约为960万平方千米,而我国西部地区的面积占我国国土面积的,用科学记数法表示我国西部地区的面积约为平方千米.15.若a2n+1b2与﹣2a3n﹣2b2是同类项,则n=.16.计算:(1)﹣7﹣2=;(2)﹣a+2a=;(3)2÷(﹣)=;(4)(﹣2)3=.17.﹣x2y m﹣2与3x4n y2之和是个单项式,求n m=.18.已知关于x、y的多项式mx3+3nxy2﹣2x3+xy2+2x﹣y不含三次项,那么n m =.19.计算下列各题:(1)﹣2+4=;(2)(﹣3)2×=;(3)﹣4÷×2=;(4)2a﹣5a=;20.若关于x、y的单项式3x4y3与(m﹣2)x4y|m|的和还是单项式,则这个和的结果为.21.若单项式3x m+2n y3与﹣xy m是同类项,则m+n的值是.22.若代数式﹣5x4y m与2x2n y3是同类项,则m n=.23.已知54x n与5n x3是同类项,则n=24.若代数式﹣3a2x﹣1和是同类项,则x=.25.已知2x6y2和﹣是同类项,则m﹣n的值是.26.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2018的值等于.27.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是.28.合并同类项:8m2﹣5m2﹣6m2=.29.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2016的值等于.30.已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么2m﹣n=.31.请将下面的同类项用连线连接起来:32.如果a表示任意一个数,那么利用乘法的分配律可得0.5a+0.7a=.33.若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是.苏科新版七年级上学期《3.4 合并同类项》同步练习卷参考答案与试题解析一.填空题(共33小题)1.若﹣2a2b m与4a n b是同类项,则m+n=3.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得m、n 的值,代入计算即可.【解答】解:∵﹣2a2b m与4a n b是同类项,∴n=2,m=1,∴m+n=3.故答案为:3【点评】本题考查了同类项的知识,解答本题的关键是牢记同类项中的两个相同.2.已知7x m y3和﹣x2y n是同类项,则﹣n m=﹣9.【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:由题意可知:m=2,3=n,∴﹣n m=﹣32=﹣9,故答案为:﹣9【点评】本题考查同类项的概念,涉及代入求值问题.3.单项式﹣3x a﹣1y4+与4x2y2b是同类项,则a=3,b=2.【分析】根据同类项的定义直接可得到a、b的值.【解答】解:因为单项式﹣3x a﹣1y4+与4x2y2b是同类项,所以a﹣1=2,2b=4,解得:a=3,b=2,故答案为:3;2.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.4.若2a3b n+3和4a m﹣1b4是同类项,则m+n=5.【分析】根据同类项的定义可得出关于m(n)的一元一次方程,解之即可得出m、n的值,将其相加即可得出结论.【解答】解:∵2a3b n+3和4a m﹣1b4是同类项,∴m﹣1=3,n+3=4,∴m=4,n=1,∴m+n=5.故答案为:5.【点评】本题考查了同类项,牢记“所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.”是解题的关键.5.已知14x5y2和2x m﹣1y n是同类项,则m+n=8.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求得m、n的值即可.【解答】解:因为14x5y2和2x m﹣1y n是同类项,所以m﹣1=5,n=2,解得:m=6,n=2,所以m+n=2+6=8,故答案为;8【点评】本题考查同类项的定义,熟练掌握定义是解题的关键.6.计算:x2y﹣3yx2=﹣2yx2.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.7.如果单项式5x a+1y3与2x3y b﹣1的差仍是单项式,那么a b=16.【分析】根据同类项的定义直接可得到a、b的值.【解答】解:因为单项式5x a+1y3与2x3y b﹣1的差仍是单项式,所以a+1=3,b﹣1=3,解得:a=2,b=4,所以a b=16,故答案为:16【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.8.若﹣3x4y m与2x n+1y2的和是单项式,则m=2,n=3.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得n+1=4,m=2,解得m=2,n=3,故答案为:2,3.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.9.如果单项式y3与5x2y b的和仍是单项式,则|a﹣b|的值为4.【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:y3与5x2y b是同类项,∴,解得:a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故答案为:4【点评】本题考查合并同类项,解题的关键正确理解同类项的定义,本题属于基础题型.10.计算:﹣5m+7m=2m.【分析】直接合并同类项即可.【解答】解:﹣5m+7m=2m,故答案为:2m.【点评】本题考查的是整式的加法,正确合并同类项法则是解题的关键.11.如果x3n y m+4与﹣3x6y2n是同类项,那么mn的值为0.【分析】根据同类项的概念即可求出答案.【解答】解:由题意可知:3n=6,m+4=2n,解得:n=2,m=0原式=0,故答案为:0【点评】本题考查同类项的概念,解题的关键是熟练运用同类项的概念,本题属于基础题型.12.写出﹣2m3n的一个同类项3m3n(答案不唯一).【分析】根据同类项的定义可知,写出的同类项只要符合只含有m,n两个未知数,并且m的指数是3,n的指数是1即可.【解答】解:3m3n(答案不唯一).【点评】本题考查了是同类项的定义,解题的关键是掌握所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.13.已知代数式2x m y3与﹣3x n﹣1y m+1是同类项,则m﹣n=﹣1.【分析】直接利用同类项的定义得出关于m,n的方程组进而得出答案.【解答】解:∵代数式2x m y3与﹣3x n﹣1y m+1是同类项,∴,解得:,则m﹣n=2﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)若单项式﹣x m y n+4与5x2y是同类项,则n m的值为9.(2)实施西部大开发战略是党中央的重大决策,我国国土面积约为960万平方千米,而我国西部地区的面积占我国国土面积的,用科学记数法表示我国西部地区的面积约为 6.4×106平方千米.【分析】(1)直接利用同类项的定义进而分析得出答案;(2)首先求出我国西部地区的面积占我国国土面积,进而利用科学记数法得出答案.【解答】解:(1)∵单项式﹣x m y n+4与5x2y是同类项,∴m=2,n+4=1,解得:m=2,n=﹣3,∴n m的值为:(﹣3)2=9;故答案为:9;(2)我国西部地区的面积约为:960万平方千米×=6.4×106平方千米.故答案为:6.4×106.【点评】此题主要考查了同类项以及科学记数法,正确掌握相关运算法则是解题关键.15.若a2n+1b2与﹣2a3n﹣2b2是同类项,则n=3.【分析】根据同类项的定义得到2n+1=3n﹣2,可求出n.【解答】解:∵a2n+1b2与﹣2a3n﹣2b2是同类项,∴2n+1=3n﹣2,解得n=3.故答案为:3.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.16.计算:(1)﹣7﹣2=﹣9;(2)﹣a+2a=a;(3)2÷(﹣)=﹣4;(4)(﹣2)3=﹣8.【分析】(1)根据减法法则计算可得;(2)根据合并同类项的法则计算可得;(3)除法转化为乘法,计算乘法即可得;(4)根据有理数的乘方的运算法则计算可得.【解答】解:(1)﹣7﹣2=﹣7+(﹣2)=﹣9,故答案为:﹣9.(2)﹣a+2a=(﹣1+2)a=a,故答案为:a.(3)2÷(﹣)=2×(﹣2)=﹣4,故答案为:﹣4.(4)(﹣2)3=﹣8,故答案为:﹣8.【点评】本题主要考查合并同类项与有理数的混合运算,解题的关键是掌握有理数的减法、除法和乘方的运算法则及合并同类项的法则.17.﹣x2y m﹣2与3x4n y2之和是个单项式,求n m=.【分析】直接利用合并同类项法则得出m,n的值进而得出答案.【解答】解:∵﹣x2y m﹣2与3x4n y2之和是个单项式,∴2=4n,m﹣2=2,解得:n=,m=4,∴n m=()4=.故答案为:.【点评】此题主要考查了合并同类项,正确得出m,n的值是解题关键.18.已知关于x、y的多项式mx3+3nxy2﹣2x3+xy2+2x﹣y不含三次项,那么n m=.【分析】将多项式合并后,令三次项系数为0,求出m与n的值,即可求出n m 的值.【解答】解:∵mx3+3nxy2﹣2x3+xy2+2x﹣y=(m﹣2)x3+(3n+1)xy2+2x﹣y,且多项式不含三次项,∴m﹣2=0且3n+1=0,解得:m=2,n=﹣,则n m=(﹣)2=,故答案为:.【点评】此题主要考查了多项式的定义与合并同类项,利用多项式不含三次项得出三次项系数和为0进而求出是解题关键.19.计算下列各题:(1)﹣2+4=2;(2)(﹣3)2×=5;(3)﹣4÷×2=﹣16;(4)2a﹣5a=﹣3a;【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的乘除运算法则计算得出答案;(4)直接利用合并同类项法则计算得出答案.【解答】解:(1)﹣2+4=2;(2)(﹣3)2×=9×=5;(3)﹣4÷×2=﹣8×2=﹣16;(4)2a﹣5a=﹣3a.故答案为:(1)2;(2)5;(3)﹣16;(4)﹣3a.【点评】此题主要考查了合并同类项以及有理数的混合运算,正确掌握运算法则是解题关键.20.若关于x、y的单项式3x4y3与(m﹣2)x4y|m|的和还是单项式,则这个和的结果为4x4y3或﹣2x4y3或3x4y3.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出m的所有可能值,再代入代数式计算即可.【解答】解:根据题意知|m|=3,或m﹣2=0,则m=3或m=﹣3或m=2若m=3,两个单项式的和为3x4y3+x4y3=4x4y3;若m=﹣3,两个单项式的和为3x4y3﹣5x4y3=﹣2x4y3;若m=2,两个单项式的和为3x4y3+0=3x4y3;故答案为:4x4y3或﹣2x4y3或3x4y3.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.21.若单项式3x m+2n y3与﹣xy m是同类项,则m+n的值是2.【分析】由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:由同类项的定义可知,解得m=3,n=﹣1,则m+n=2.故答案为:2.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.22.若代数式﹣5x4y m与2x2n y3是同类项,则m n=9.【分析】根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值,再代入代数式求值即可.【解答】解:由题意得,解得,m n=32=9.故答案为:9.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.23.已知54x n与5n x3是同类项,则n=3【分析】根据同类项的概念求解.【解答】解:因为54x n与5n x3是同类项,所以n=3,故答案为:3.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.24.若代数式﹣3a2x﹣1和是同类项,则x=3.【分析】根据同类项是字母相同且相同字母的指数也相同,可得方程,根据解方程,可得答案.【解答】解:由﹣3a2x﹣1和是同类项,得2x﹣1=x+2.解得x=3,故答案为:3.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.25.已知2x6y2和﹣是同类项,则m﹣n的值是0.【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.【点评】本题主要考查同类项,解题的关键是熟练掌握同类项得定义.26.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2018的值等于1.【分析】根据同类项定义可得m﹣1=1,n=3,然后可得m、n的值,进而可得答案.【解答】解:因为x m﹣1y3与2xy n的和仍是单项式,所以x m﹣1y3与2xy n是同类项,则m﹣1=1,即m=2、n=3,所以(m﹣n)2018=(2﹣3)2018=1,故答案为:1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.27.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是9.【分析】直接利用合并同类项法则得出n,m的值,进而求出答案.【解答】解:∵单项式x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,解得:m=2,n=3,故n m=32=9.故答案为:9.【点评】此题主要考查了合并同类项,正确得出m,n的值是解题关键.28.合并同类项:8m2﹣5m2﹣6m2=﹣3m2.【分析】根据合并同类项法则计算可得.【解答】解:8m2﹣5m2﹣6m2=(8﹣5﹣6)m2=﹣3m2,故答案为:﹣3m2.【点评】本题主要考查合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.29.若x m﹣1y3与2xy n的和仍是单项式,则(m﹣n)2016的值等于1.【分析】根据同类项定义可得m﹣1=1,n=3,然后可得m、n的值,进而可得答案.【解答】解:由题意得:m﹣1=1,n=3,解得:m=2,n=3,(m﹣n)2016=(2﹣3)2016=1,故答案为:1.【点评】此题主要考查了同类项,关键是掌握同类项定义:所含字母相同,相同字母的指数也相同.30.已知单项式3a m b2与﹣a4b n﹣1的和是单项式,那么2m﹣n=5.【分析】根据两单项式的和是单项式可得出式3a m b2与﹣a4b n﹣1是同类项,根据同类项所含字母相同,并且相同字母的指数也相同可得出m和n的值,代入即可得出答案.【解答】解:由题意得,3a m b2与﹣a4b n﹣1是同类项,∴m=4,n﹣1=2,解得:m=4,n=3,∴2m﹣n=5.故答案为:5.【点评】此题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握同类项的两个“相同”,难度一般.31.请将下面的同类项用连线连接起来:【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.同类项与字母的顺序无关,与系数无关.【解答】解:如图所示,【点评】本题考查了同类项定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.32.如果a表示任意一个数,那么利用乘法的分配律可得0.5a+0.7a=(0.5+0.7)a.【分析】根据乘法的分配律进行计算即可.【解答】解:原式=(0.5+0.7)a,故答案为(0.5+0.7)a.【点评】本题考查了合并同类项,掌握乘法的分配律是解题的关键.33.若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是1.【分析】由两个单项式2x m y n与﹣3xy3n的和还是单项式就得出它们是同类项,由同类项的定义可求得m和n的值.【解答】解:∵两个单项式2x m y n与﹣3xy3n的和也是单项式,∴2x m y n与﹣3xy3n是同类项,∴m=1,n=3n,∴m=1,n=0,∴(m+n)m=(1+0)1=1,故答案为:1.【点评】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.。
2021--2022学年苏科版七年级数学上册《合并同类项》课后练习
3.4 合并同类项(课后练习)-2021年苏科版数学七年级上册一.选择题(共12小题)1.下列各式中,与2a2b为同类项的是()A.﹣2a2b B.﹣2ab C.2ab2D.2a22.若3x2y m与2x m+n﹣1y的和仍为一个单项式,则m2﹣n的值为()A.1B.﹣1C.﹣3D.33.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x64.若单项式﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=3,n=0D.m=1,n=3 5.计算2a2﹣a2的结果是()A.1B.a C.a2D.2a6.如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣277.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg 8.一个三项式与一个二项式相乘,在合并同类项之前,积的项数是()A.三项B.四项C.五项D.六项9.化简整式(x﹣y)2﹣(x+y)2+(﹣x﹣y)2﹣(y﹣x)2的结果是()A.4x2+4y2B.0C.2x2﹣4xy+2y2D.8xy10.若x a y4和﹣2x3y4相减的结果是3x3y b,则a b的值是()A.81B.64C.3411.下列合并同类项错误的个数是()①5x6+8x6=13x12;②3a+2b=5ab;③8y2﹣3y2=5;④6a n b2n﹣6a2n b n=0.A.1个B.2个C.3个D.4个12.两个5次多项式相加,结果一定是()A.5次多项式B.10次多项式C.不超过5次的多项式或单项式D.无法确定二.填空题(共5小题)13.把a+b看作是一个整体,则5(a+b)﹣2(a+b)﹣4(a+b)=.14.合并同类项:(1)﹣4ab+5a2+ab=;(2)﹣3x=﹣2x;(3)﹣6x+7x=;(4)2a+3b﹣5a﹣2b+3a﹣b=.15.请写出一对同类项(至少含两个字母,系数互为相反数).16.单项式:5x2y,﹣6x2y,y的和是.17.填空(1)如果3x k y与﹣x2y是同类项,那么k=.(2)如果﹣3x2y3k与4x2y6是同类项,那么k=.(3)如果3x2y k与﹣x2是同类项,那么k=.(4)如果3a x+1b2与﹣7a3b2y是同类项,那么x=,y=.三.解答题(共3小题)18.合并同类项(1)3x2﹣1﹣2x﹣5+3x﹣x2(2)5m2﹣[+5m2﹣(2m2﹣mn)﹣7mn﹣5].19.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.20.合并同类项:(1)5a﹣3b﹣a+2b;(2)﹣3x2+7x﹣6+2x2﹣5a+1;(3)a2b﹣b2c+3a2b+2b2c;(4)﹣a2b﹣ab2+a2b+ab2.。
苏科版初中七年级数学合并同类项练习题分析解答
苏科版初中七年级数学合并同类项练习题分析解答1.合并下列多项式中的同类项.(1)5a 2+2ab ﹣3b 2﹣ab +3b 2﹣5a 2;(2)6y 2﹣9y +5﹣y 2+4y ﹣5y 2.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,求解即可.【解答】解:(1)原式=(5﹣5)a 2+(2﹣1)ab +(3﹣3)b 2=ab ;(2)原式=(6﹣1﹣5)y 2﹣(9﹣4)y +5=﹣5y +5.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.2.已知−23x 2y b 与12x a y 3的和仍是一个单项式,求12a 2﹣b 2的值. 【分析】根据同类项的定义求解即可.【解答】解:由题意,得a =2,b =3.12a 2﹣b 2=12×22﹣32=2﹣9=﹣7. 【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.3.(1)若3x 3y m 与﹣2x n y 2是同类项,求m n 的值;(2)若﹣x a y 4与4x 4y 4b 的和单项式,求(﹣1)a b 2012的值.【分析】(1)根据3x 3y m 与﹣2x n y 2是同类项,列出方程,求出m 、n 的值,然后代入求解;(2)根据题意可得﹣x a y 4与4x 4y 4b 是同类项,求出a 、b 的值,然后代入求解.【解答】解:(1)由题意得,m =2,n =3,则m n =23=8;(2)由题意得,﹣x a y 4与4x 4y 4b 是同类项,则有:a =4,b =1,则(﹣1)a b 2012=(﹣1)4×12012=1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的相同字母的指数相同的概念.4.已知 4x 2m y 3+n 与﹣3x 6y 2是同类项,求多项式0.3m 2n −15mn 2+0.4n 2m ﹣m 2n +12nm 2的值.【分析】根据同类项的概念即可求出m 与n 的值,然后将原式化简即可求出答案.【解答】解:(1)由题意可知:2m =6,3+n =2,∴m =3,n =﹣1,∴原式=(0.3﹣1+12)m 2n +(−15+0.4)mn 2=−15m 2n +15mn 2=−15×32×(﹣1)+15×3×(﹣1)2=125【点评】本题考查同类项的概念,涉及代入求值,合并同类项等知识.5.已知关于x 、y 的单项式2x m y 与单项式﹣3x 2m ﹣3y 的和是单项式,求(8m ﹣25)2010的值. 【分析】首先判断单项式2x m y 与单项式﹣3x 2m ﹣3y 是同类项,继而可得m 的值,代入运算即可.【解答】解:∵单项式2x m y 与单项式﹣3x 2m ﹣3y 的和是单项式, ∴单项式2x m y 与单项式﹣3x 2m ﹣3y 是同类项, ∴m =2m ﹣3,∴m =3,∴(8m ﹣25)2010=(﹣1)2010=1.【点评】本题考查了合并同类项的知识,解答本题的关键是判断出两单项式是同类项.6.若关于x ,y 的单项式2ax m y 与5bx 2m ﹣3y 是同类项,且a ,b 不为零. (1)求(4m ﹣13)2009的值.(2)若2ax m y +5bx 2m ﹣3y =0,且xy ≠0,求2a−3b a+5b 的值.【分析】根据同类项的定义列出方程,求出m 的值.(1)将m 的值代入代数式计算.(2)将m 的值代入2ax m y +5bx 2m ﹣3y =0,且xy ≠0,得出2a +5b =0,即a =﹣2.5b .代入求得2a−3b a+5b 的值.【解答】解:单项式2ax m y 与5bx 2m ﹣3y 是同类项,且a ,b 不为零.m =2m ﹣3,解得m =3(1)将m =3代入,(4m ﹣13)2009=﹣1.(2)∵2ax m y +5bx 2m ﹣3y =0,且xy ≠0, ∴(2a +5b )x 3y =0,∴2a +5b =0,a =﹣2.5b .∴2a−3b a+5b =−165【点评】同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.7.已知﹣2a 2b x +y 与13a x b 5的和仍为单项式,求多项式12x 3−16xy 2+13y 3的值.【分析】根据同类项是字母相同且相同字母的指数也相同,可得x 、y 的值,根据代数式求值,可得答案.【解答】解:由﹣2a 2b x +y 与13a x b 5的和仍为单项式,得 ﹣2a 2b x +y 与13a x b 5是同类项, 即x =2,x +y =5.解得x =2,y =3.当x =2,y =3时,原式=12×23−16×2×32+13×33=10.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.8.请回答下列问题:(1)若多项式mx 2+3xy ﹣2y 2﹣x 2+nxy ﹣2y +6的值与x 的取值无关,求(m +n )3的值.(2)若关于x 、y 的多项式6mx 2+4nxy +2x +2xy ﹣x 2+y +4不含二次项,m ﹣n 的值.(3)若2x |k |+1y 2+(k ﹣1)x 2y +1是关于x 、y 的四次三项式,求k 值.【分析】(1)先把多项式合并同类项,再令含x 项的系数等于0,求出m 、n 的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m 、n 的一次方程,求出m 、n 的值,再代入计算即可.(3)根据四次三项式的概念,得关于k 的方程,求解即可.【解答】解:(1)原式=(m ﹣1)x 2+(3+n )xy ﹣2y 2﹣2y +6.∵原式的值与x 的值无关,∴m ﹣1=0,3+n =0, ∴m =1,n =﹣3,∴(m +n )3=(1﹣3)3=﹣8,(2)原式=(6m ﹣1)x 2+(4n +2)xy +2x +y +4,∵多项式不含二次项,∴6m ﹣1=0,4n +2=0.∴m =16,n =−12.∴m −n =16−(−12)=23.(3)由题意得:|k |+1+2=4,∴k =±1.又∵k ﹣1≠0,∴k ≠1.∴k =﹣1.【点评】本题考查了多项式的概念、合并同类项等知识点,掌握合并同类项法则和多项式的几次几项式是解决本题的关键.9.已知无论a 取何值,(﹣3a )3与(2m ﹣5)a n 互为相反数,求m−2n 2的值.【分析】运用相反数的定义得(﹣3a )3+(2m ﹣5)a n =0,求出m ,a ,再代入求值.【解答】解:∵(﹣3a )3与(2m ﹣5)a n 互为相反数∴(﹣3a )3+(2m ﹣5)a n =0,∴2m ﹣5=27,n =3,解得m =16,n =3,∴m−2n 2=16−2×32=5.【点评】本题主要考查了合并同类项,解题的关键是确定(﹣3a )3+(2m ﹣5)a n =0,10.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是﹣(a﹣b)2;(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值﹣9.【分析】(1)把(a﹣b)2看成一个整体,运用合并同类项法则进行计算即可;(2)把3x2﹣6y﹣21变形,得到3(x2﹣2y)﹣21,再根据整体代入法进行计算即可.【解答】解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9.故答案为:﹣(a﹣b)2;﹣9.【点评】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.。
七上计算:合并同类项50题(含答案)
合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。
3.4 合并同类项(1)(苏科版)(解析版)
3.4 合并同类项(1)1.下列各选项中是同类项的是( )A .﹣a 2b 与ab 2 ;B .33与a 3C .x 3y 2与﹣y 3x 2 ;D .5x 2n+1y 2n﹣1与﹣x 2n+1y 2n ﹣1 【答案】D【解析】A 、﹣a 2b 与ab 2相同字母的指数不同,不是同类项,故本选项不符合题意. B 、33与a 3含有的字母不同,不是同类项,故本选项不符合题意.C 、x 3y 2与﹣y 3x 2相同字母的指数不同,不是同类项,故本选项不符合题意.D 、5x 2n+1y 2n ﹣1与﹣2n+1y 2n ﹣1,含有相同的字母,且相同字母的指数相同,是同类项,故本选项符合题意. 2.下列各式中,是5x 2y 的同类项的是( )A .x 2yB .﹣3x 2yzC .3a 2bD .5x 3【答案】A【解析】A..5x 2y 与x 2y ,所含的字母相同:x 、y ,它们的指数也相同,所以它们是同类项,故本选项符合题意;B.5x 2y 与﹣3x 2yz ,所含的字母不相同,所以它们不是同类项,故本选项不合题意;C.5x 2y 与3a 2b ,所含的字母不相同,所以它们不是同类项,故本选项不合题意;D.5x 2y 与5x 3,所含的字母不相同,所以它们不是同类项,故本选项不合题意.故选A .3. 已知2x n+1y 3与x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .5 【答案】B【解析】∵2x n+1y 3与x 4y 3是同类项,∴n+1=4,解得,n =3,故选B .4.下列运算中,正确的是( ).A .325a b ab +=B .325235a a a +=C .22330a b ba -=D .22541a a -=【答案】C【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C .5.下面是小林做的4道作业题:(1)2ab+3ab =5ab ;(2)2ab ﹣3ab =﹣ab ;(3)2ab ﹣3ab =6ab ;(4)2ab÷3ab =23.做对一题得2分,则他共得到( )A .2分B .4分C .6分D .8分 【答案】C【解析】(1)235ab ab ab +=,故正确;(2)23ab ab ab -=-,故正确;(3)23ab ab ab -=- ,∴236ab ab ab -=错误;(4)222333ab ab ab ab ÷== ,故正确; 故小林答对3道题得6分6.已知代数式3a 2b ,请写出一个它的同类项: .【答案】a 2b【解析】代数式3a 2b 的同类项a 2b ,故答案为a 2b .7.若单项式ax 2y n+1与-2ax m y 4的差仍是单项式,则m ﹣2n = .【答案】﹣4【解析】∵单项式ax 2y n+1与-2ax m y 4的差仍是单项式,∴单项式ax 2y n+1与-2ax m y 4是同类项,∴m =2,n+1=4,解得m =2,n =3,∴m ﹣2n =2﹣2×3=﹣4,故答案为﹣4.8.把()-a b 看作一个整体,合并同类项7()3()2()a b a b a b -----= _______。
3.4合并同类项(1)
版本:苏科版章节:3.4合并同类项(1)编制:鲁德健审稿:七年级数学备课组一、学习要求1.理解同类项的概念,能识别同类项。
2.知道合并同类项的依据,掌握合并同类项的法则,会合并同类项。
二、课堂活动活动一、尝试分类1.你能将以下物品进行分类吗?说说你分类的依据。
苹果,牙刷,书包,香皂,铅笔盒,香蕉2.你能将以下的单项式分类吗?说说你的依据。
23x ,b a 24-,b a 23-,xy 6,22x ,xy 3-活动二、同类项的概念1.按照上面分类的经验,下面几组能分为一类吗?①323b a 与322b a - ②32yz x -与3227z y x ③n m 24与23nm ④ 3-与5 你能不能写出一个与232y x 是一类的单项式。
2.如果把能分为一类的项称为同类项,那么满足什么条件的项是同类项?练习1.判断下列各组是否为同类项?为什么?①2xyz 与2xy ②2x 2y 与-51xy 2 ③31x 2y 与-9yx 2 ④x 2与322.已知51a 6b n 与-5a 2m b 3是同类项,则m=,n=活动三、探索合并同类项法则1.5个a加上3个a等于多少?为什么?2.你能把下列各式中的同类项合并成一项吗?① 7a-3a = ②4x2+2x2 =③ 5ab2+2ab2-3ab2 = ④-9x2y3+5x2y3 =3.通过以上问题的解决,你能说说如何合并同类项吗?依据是什么?活动四、合并同类项法则运用例1、下列各式的计算是否正确?请说明理由。
(1)2x+3y=5xy (2)2a2+a2=2a4 (3)a2b-ba2=0 (3)4a2-6a2=-2例2.合并同类项(1)-5x+3y-7x-2y (2)4a2-5ab+1-2a2-6ab-4(3)7m-3n2+9m+3n2(4)5m3-2m2n-5m3+3nm2-5+3m3练习 1.书P81 练一练2.已知多项式2x2+my-12与多项式nx2-3y+6的和中不含有x,y,试求mn的值。
2020-2021学年度苏科版七年级上学期数学第3章3.4合并同类项(1)同步培优训练卷(有答案)
11、下列各 组中,不是同类项的 是(C)
A、3和0 B、 C、xy与2pxy D、
12、如果 是同类项,那么a、b的值分别是(A)
A. B. C. D.
13、下列合并同类项正确的是 (D)
(A) ; (B) ;
(C) ; (D)
14、下列合并同类项正确的是(D)
① ;② ;③ ;④ ;⑤ ;⑥ ;⑦
(3)-0.8a2b-6ab-1.2a2b+5ab+a2b; (4)5yx-3x2y-7xy2+6xy-12xy+7xy2+8x2y.
(5)
(6)
答案:(1) (2) (3)-a2b-ab(4)-xy+5x2y
(5)(a+b) +7(a+b) +3(a+b)(6) (a-b) + (a+b)
23、如果 与多项式 的和中不含有 、 ,试求 的值.
⑤-3x2y与0.5yx2⑥-125与
A.①②③ B.①③④⑥ C.③⑤⑥ D.只有⑥
17、有一款服装原价 元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装().
A.赚了 元B.亏了 元
C.既不赚也不亏D.无法判断是赚钱还是亏损,这和 的值有关
18、多项式x2﹣3kxy﹣3y2+xy﹣8化简后不含xy项,则k为()
解:根据同类项的定义,可知 的指数相源自,即: .的指数也相同,即 .
所以: ,即:
所以: .
(2)已知 与 是同类项,求 的值.
21、合并下列多项式中的同类项.
(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+b2.
初中数学苏科版七年级上册第三章 代数式3.4 合并同类项-章节测试习题(7)
章节测试题1.【题文】合并同类项⑴ 3f+2f-6f⑵ x-y+5x-4y【答案】⑴-f ;⑵ 6x-5y【分析】本题考查的是合并同类项先根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,即可得到结果。
【解答】(1)3f+2f-6f=(3+2-6)f=-f ;(2)x-y+5x-4y= x +5x-4y-y=6x-5y.思路拓展:解答本题的关键是掌握好合并同类项时把系数相加减,字母与字母的指数不变.2.【题文】合并下列同类项:(1)4a2-3b2+2ab-4a2-3b2+5ba;(2)5xy+3y2-3x2-xy+4xy+2x2-x2+3y2.【答案】(1) -6b2+7ab.(2) 8xy+6y2-2x2.【分析】按照合并同类项的法则进行合并即可.【解答】原式原式3.【题文】化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.【答案】.【分析】先找出题目中的同类项,再根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(﹣2﹣3)x2+(﹣5+6)x+(3﹣1)=﹣5x2+x+2.点睛:本题主要考查合并同类项的法则.关键是掌握系数相加作为系数,字母和字母的指数不变.合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.4.【题文】化简:3a2+2a-4a2-7a【答案】【分析】根据合并同类项法则,将同类项的系数相加减,字母及其指数不变,即可求解.【解答】,=(3-4) +(2-7) ,=.5.【题文】合并同类项:.【答案】【分析】原式合并同类项即可得到结果.【解答】解:原式==6.【题文】合并同类项:(1)3(4x2-3x+2)-2(1-4x2+x);(2)15x2-(3y2+7xy)+3(2y2-5x2).【答案】(1)20x2-11x+4;(2)3y2-7xy.【分析】(1)(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案.【解答】解:(1)原式=12x2-9x+6-2+8x2-2x=20x2-11x+4;(2)原式=15x2-3y2-7xy+6y2-15x2=3y2-7xy.7.【题文】化简:3a2+2a-4a2-7a【答案】【分析】根据合并同类项法则,将同类项的系数相加减,字母及其指数不变,即可求解.【解答】,=(3-4) +(2-7) ,=.8.【答题】若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A. 三次多项式B. 四次多项式或单项式C. 七次多项式 D. 四次七项式【答案】B【分析】本题考查整式的加减以及合并同类项.【解答】多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.选B.9.【答题】若关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,则m+n=()A. ﹣4B. ﹣5C. ﹣6D. 6【答案】A【分析】本题考查了多项式,正确得出m,n的值是解题关键.首先利用关于x、y的多项式2x2+mx+5y-2nx2-y+5x+7的值与x的取值无关,得出x的二次项、一次项的系数和为0,进而得出答案.【解答】2x2+mx+5y-2nx2-y+5x+7=(2-2n)x2+(m+5)x+4y+7,∵关于x、y的多项式2x2+mx+5y-2nx2-y+5x+7的值与x的取值无关,∴2-2n=0,解得n=1,m+5=0,解得m=-5,则m+n=-5+1=-4.选A.10.【答题】若单项式﹣2x3y n与4x m y5合并后的结果还是单项式,则m﹣n=______.【答案】﹣2【分析】本题考查了同类项,关键是掌握同类项定义.根据同类项定义可得m=3,n=5,然后可得答案.【解答】由题意得m=3,n=5,则m-n=3-5=-2,故答案为-2.11.【答题】代数式4x3–3x3y+8x2y+3x3+3x3y–8x2y–7x3的值()A. 与x,y有关B. 与x有关C. 与y有关D. 与x,y无关【答案】D【分析】本题考查合并同类项.【解答】根据整式的加减—合并同类项,可知=,因此多项式与x、y均无关.选D. 12.【答题】当k=______时,代数式x2﹣3kxy﹣3y2+xy﹣8中不含xy项.【答案】【分析】本题考查了多项式以及合并同类项,正确表示出xy项的系数是解题关键.直接得出xy的系数,利用其系数为零进而得出答案.【解答】∵代数式x2-3kxy-3y2+xy-8中不含xy项,∴-3k+1=0,解得:k=.故答案为.13.【答题】若代数式mx2+y2﹣5x2+5的值与字母x的取值无关,则m的值为______.【答案】5【分析】本题考查了合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.把代数式合并同类项得(m-5)x2+y2+5,∵与取值无关,故m-5=0,求解.【解答】由题意得mx2+y2﹣5x2+5=(m-5)x2+y2+5,,∵与取值无关,故m-5=0,∴m=5.14.【题文】已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.【答案】k=2.【分析】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.根据两个多项式是相同多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【解答】2x2+4xy﹣3y2+x2+kxy+5y2=3x2+(4+k)xy+2y2.∵它与多项式3x2+6xy+2y2是相等的多项式,∴4+k=6,解得k=2.15.【答题】多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -4【答案】C【分析】本题考查整式的加法以及合并同类项.【解答】2x3-8x2+x-1+3x3+2mx2-5x+3=5x3+(2m-8)x2-4x+2,∵不含二次项,∴2m-8=0,∴m=4.选C.16.【题文】关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求6m﹣2n+2的值.【答案】4.【分析】本题考查了多项式相关定义,掌握多项式的相关概念和性质是解决此题的关键.【解答】∵多项式6mx2+4nxy+2x+2xy﹣x2+y+4=(6m﹣1)x2+(4n+2)xy+2x+y+4不含二次项,即二次项系数为0,即6m﹣1=0,∴m=;∴4n+2=0,∴n=﹣,把m、n的值代入6m﹣2n+2中,∴原式=6×﹣2×(﹣)+2=4.17.【答题】下列运算中结果正确的是()A. 4a+3b=7abB. 4xy–3xy=xyC. –2x+5x=7xD. 2y–y=1【答案】B【分析】本题考查合并同类项.【解答】A.4a与3b不是同类项,不能直接合并,故本选项错误;B.4xy–3xy=xy,计算正确,故本选项正确;C.–2x+5x=3x,计算错误,故本选项错误;D.2y–y=y,计算错误,故本选项错误.选B.18.【答题】计算–2(x–y)–2y的结果是()A. –2x–4yB. –2xC. 2x–4yD. –4x+2y 【答案】B【分析】本题考查去括号法则以及合并同类项.【解答】原式=–2x+2y–2y=–2x,选B.19.【答题】计算4a2–5a2的结果是()A. –a2B. –1C. a2D. 9a2【答案】A【分析】本题考查合并同类项.【解答】原式=(4–5)a2=–a2,选A.20.【答题】若m、n互为相反数,则(3m–2n)–(2m–3n)的值为______.【答案】0【分析】本题考查去括号法则以及合并同类项.【解答】由题意m+n=0,∴(3m–2n)–(2m–3n)=3m–2n–2m+3n=m+n=0.。
苏科版七年级数学上册合并同类项(共23张)
新知学习
所含字母相同,并且相同字母的指数也相同 的项叫做同类项.
辨一辨
下列各题中的两项是不是同类项?为什么?
① 3a2b 与 2a2b 是 ③ 4m2n 与 nm2 是
② x2 y3z与 1ຫໍສະໝຸດ x2y3z 是2④ ab与 4ac 不是
⑤ a2bc 与 ab2c 不是 ⑥ 0.5与 9 是
⑦ 32与 23 是
小试牛刀
2、填空: (1) 2xy+ ( 5xy )=7xy
(2) -a2b- (-2a2b )=a2b
(3) m2+m+( 2m2)+( -3m )-1=3m2-2m-1
拓展提升
有这样一道题:“当a=6.58,b=-9.07时,求多 项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.” 有同学指出题目中的条件a=6.58,b= -9.07是多余 的.你认为这种说法有道理吗?
⑧ x2 与 22 不是
想一想:如何判断同类项?
归纳小结
判断同类项的方法:
1、抓两个相同: ①所含字母相同
②相同字母的指数也相同 2、与两个无关:
①与系数的大小无关 ②与字母的顺序无关 3、几个常数项也是同类项.
两者缺一不可
互动交流
请你任意写出一个单项式,并让你的同桌 写出它的一个同类项.
小试牛刀
新知运用
例 合并同类项:
(2) a2 3ab 5 a2 3ab 7
找同类项
解:原式 a2 a2 3ab 3ab 5 7
加法交换律
a2 a2 3ab 3ab 5 7 加法结合律
11a2 3 3ab 5 7 合并同类项法则
6ab 2
初中数学苏科版七年级上册第三章 代数式3.4 合并同类项-章节测试习题(9)
章节测试题1.【答题】下列单项式中,能够与a2b合并成一项的是()A. –2a2bB. a2b2C. ab2D. 3ab【答案】A【分析】本题考查了同类项的概念,只有同类项能够合并,不是同类项不能合并.能够与a2b合并成一项的单项式,必须是a2b的同类项,找出a2b的同类项即可.【解答】﹣2a2b与a2b是同类项,能够合并成一项.选A.2.【答题】已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A. ﹣6B. 6C. 5D. 14【答案】B【分析】本题考查合并同类项法则,掌握合并同类项的法则是解题的关键.直接利用合并同类项法则得出m,n的值进而得出答案.【解答】∵mx2y n﹣1+4x2y9=0,∴m=−4,n−1=9,解得m=−4,n=10,则m+n=6.选B.3.【答题】若单项式与﹣2x b y3的和仍为单项式,则其和为______.【答案】【分析】本题考查合并同类项.【解答】若单项式x2y a与-2x b y3的和仍为单项式,则它们是同类项.由同类项的定义得a=3,b=2,则其和为-x2y3.4.【答题】若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=______.【答案】【分析】本题考查同类项的定义.【解答】∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得m=3,n=1,∴m﹣n=3﹣1=;故答案为.5.【答题】合并同类项:8m2﹣5m2﹣6m2=______.【答案】﹣3m2【分析】本题考查了合并同类项,正确掌握合并同类项法则是解题关键.根据合并同类项法则合并求出答案.【解答】8m2﹣5m2﹣6m2=(8-5-6)m2=-3m2.6.【答题】若-4x a y+x2y b=﹣3x2y,则b﹣a=______.【答案】﹣1【分析】本题考查合并同类项的法则,两个单项式合并成一个单项式,说明这两个单项式为同类项.两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】由同类项的的定义可知,故答案为7.【答题】若﹣4x a+5y3+x3y b=-3x3y3,则ab的值是______.【答案】﹣6【分析】本题考查合并同类项法则,熟练掌握合并同类项的法则是解题的关键.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.【解答】﹣4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为−6.8.【题文】如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3;(2)-1.【分析】(1)根据同类项的概念可得关于a的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.【解答】(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.9.【题文】合并同类项:(1)2xy2﹣3xy2﹣6xy2;(2)2a2﹣3a﹣3a2+5a.【答案】(1)原式=﹣7xy2;(2)原式=﹣a2+2a.【分析】本题考查合并同类项,合并同类项时,字母和字母的指数保持不变,只要系数相加减即可.(1)根据合并同类项的法则把系数相加即可.(2)根据合并同类项的法则把系数相加即可.【解答】(1)原式=(2﹣3﹣6)xy2=﹣7xy2;(2)原式=(2﹣3)a2+(﹣3+5)a=﹣a2+2a.10.【题文】如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【答案】m k=25.【分析】本题考查合并同类项,掌握多项式不含有的项的系数为零是解题的关键.根据合并后不含三次项,二次项,可得含三次项,二次项的系数为零,可得m,k的值,根据乘方的意义,可得答案.【解答】3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x=3x4+(k﹣2)x3+(m+5)x2﹣3x+5,由合并同类项后不含x3和x2项,得k﹣2=0,m+5=0,解得k=2,m=﹣5.m k=(﹣5)2=25.11.【题文】去括号,并合并同类项:(1)(3a+1.5b)﹣(7a﹣2b);(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3).【答案】(1)﹣4a+3.5b;(2)﹣5x2+5y2+12.【分析】本题考查了去括号与添括号、合并同类项,解题的关键是掌握去括号与添括号,合并同类项.(1)先去掉括号,再找出同类项进行合并即可;(2)先把4与括号中的每一项分别进行相乘,再去掉括号,然后合并同类项即可.【解答】(1)(3a+1.5b)﹣(7a﹣2b)=3a+1.5b﹣7a+2b=﹣4a+3.5b;(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)=8xy﹣x2+y2﹣4x2+4y2﹣8xy+12=﹣5x2+5y2+12;12.【答题】下列各式中运算正确的是()A. B.C. D.【答案】C【分析】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.根据合并同类项的法则逐一进行计算即可.【解答】A.,故A选项错误;B.,故B选项错误;C.,正确;D.与不是同类项,不能合并,故D选项错误,选C.13.【答题】计算3x2﹣2x2的结果是()A. 1B. xC. x2D. ﹣x2【答案】C【分析】本题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行计算即可.【解答】3x2﹣2x2=x2.选C.14.【答题】合并同类项:______.【答案】【分析】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【解答】原式,故答案为.15.【答题】下列计算正确的是()A. 3x2﹣x2=3B. ﹣3a2﹣2a2=﹣a2C. 3(a﹣1)=3a﹣1D. ﹣2(x+1)=﹣2x﹣2【答案】D【分析】本题考查合并同类项以及去括号法则.【解答】A.原式=2x2,不符合题意;B.原式=-5a2,不符合题意;C.原式=3a-3,不符合题意;D.原式=-2x-2,符合题意,选D.16.【答题】若a2m−5b2与-3ab3-n的和为单项式,则m+n=______.【答案】4【分析】本题考查合并同类项.【解答】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得m=3,n=1.故m+n=4.故答案为4.17.【题文】去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【分析】本题考查去括号法则以及合并同类项.【解答】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.18.【答题】多项式8x2﹣3x+5与多项式3x3+2mx2﹣5x+7相加后,不含二次项,则常数m的值是______.【答案】-4【分析】根据题意,二次项合并的结果为0.由合并同类项法则得方程求解.【解答】根据题意得8x2+2mx2=0,∴8+2m=0.解得m=﹣4.19.【答题】下列合并同类项中,正确的是()A. B.C. D.【答案】C【分析】本题考查合并同类项.【解答】∵3x与3y不是同类项,不能合并,∴A错误;∵不是同类项,不能合并,∴B错误;∵,∴C正确;∵7x–5x=2x,∴D错误;选C.20.【答题】下列合并同类项,正确的是()A. B.C. D.【答案】D【分析】本题考查合并同类项.【解答】A.不是同类项不能合并.故错误.B.故错误.C.D.正确.选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 4 合并同类项
知识平台
1 .同类项的意义.
2 .合并同类项的意义.
3 .合并同类项的方法. 思维点击
1 .判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等, ?两
条标准缺一不可.
例如: 3x 2y 与 3xy 2 虽然所含字母相同,但在这两个单项式中,
x 的指数不相等, y 的
值数也不相等,所以不是同类项. - 2x 3y 与 3yx 3 两个项所含字母相同,字母 x , y?的指数也相
等,所以是同类项.
2 .合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并)
.
例如:合并同类项
3x 2y 和 5x 2y ,字母 x 、 y 及 x 、 y 的指数都不变, ?只要将它们的系
数 3 和 5 相加,即 3x 2 y+5x 2y= ( 3+5) x 2y=8x 2y .
考点浏览 ☆考点
了解同类项的意义,会合并同类项.
例 1
如果
1 x k
y 与 - 1 x 2
y 是同类项,则 k=______, 1 x k
y+(- 1 x 2
y )=________.
3
3
3
3
【解析】
k
2
1
x y 与 -
1
x y 是同类项,这两项中 x 的指数必须相等,所以 k=2; ?合并
3
3
同类项,只需将它们的系数相加,因为
1
与 -
1
互为相反数,它们的和为零,所以
1
x k y+
3 3
3
( - 1
x 2y ) =0.答案是: 2 0 .
3
例 2 合并下列多项式中的同类项.( 1) 4x 2y-8x y 2+7-4x 2y+10xy
2
-4 ;
( 2) a 2-2ab +b 2+a 2+2ab+b 2.
【解析】
( 1)初学时用不同记号标出各同类项,会减少运算的错误;
( 2)常数项
都是同类项;( 3)两个同类项的系数互为相反数,则合并后结果为
0.答案是:
2
2
2
2
( 1)原式 =( 4x y- 4x y ) +( -8 xy +10xy ) +(7-4 ) = ( 4-4 ) x 2y+ ( -8+10 ) xy 2+3
=2xy
2
+3;
2
2
2
2
( 2)原式 =( a +a ) +(-2ab+2ab ) +( b +b )
=2
a 2+2
b 2.
在线检测
- 1 -
1.将如图两个框中的同类项用线段连起来 :
3 a 2b b 2a 2.当 m=________时, - x 3b
2m
与
1
x 3b 是同类项.
-2x 3 3.如果 5a k
b 与 -4 a 2
4
mn 2 2
b 是同类项,
-1 3a b 那么 5a k
b+(-4a 2
b ) =_______.
x
5 ab 2
2mn 2
4.直接写出下列各式的结果:
1 1
xy=_______ ;
2
2
(1)-
xy+
( 2) 7a b+2a b=________;
2
2
( 3) -x-3x+2x=_______ ;( 4) x 2
y- 1
x 2
y- 1
x 2y=_______;
2 3
( 5) 3xy 2-7x y 2=________.
5.选择题 :
( 1)下列各组中两数相互为同类项的是( )
A .
2
2
2
. 2
2
2
n 与
1 2
3 x
y 与-x y ; B 0.5 a b 与
0.5 a c; C . 3b 与 3abc; D . -0.1 m 2 mn
( 2)下列说法正确的是( )
A .字母相同的项是同类项
B .只有系数不同的项,才是同类项
C .-1 与 0.1 是同类项
D .-x 2y 与 xy 2 是同类项
6.合并下列各式中的同类项
:
( 1) -4x 2y-8 xy 2+2x 2y-3xy 2
;
( 2) 3x 2-1-2x-5+3x-x 2;
( 3) -0.8a 2b-6ab-1.2 a 2b+5ab+a 2b ;
( 4) 5yx-3 x 2y-7x y 2+6xy-12xy+7x y 2+8x 2y .
7.求下列多项式的值 :
( 1)
2 2
-8a- 1 2 2
1 ,其中 a=
1 ;
3 a
+6a-
3 a +
4 2
2
- 2 -
( 2) 3x 2y 2+2xy-7 x 2y 2
- 3
xy+2+4x 2y 2
,其中 x=2, y= 1
.
2 4
3. 4 合并同类项(答案)
1.略 2 .略 3 . ab
4.( 1) 0 ( 2) 9a 2
b ( 3) -2x
( 4) 1
x 2y ( 5)-4x y 2
6
5.( 1) D ( 2)C
6.( 1) -2x 2y-11xy 2 ( 2) 2x 2+x-6 ( 3) -a 2b-ab ( 4) -xy+5 x 2y
7.(1)-
5
(2)
9
4
4
- 3 -。