最新化工原理下册天津大学柴诚敬31-32学时

合集下载

化工原理下册天津大学柴诚敬43-44学时

化工原理下册天津大学柴诚敬43-44学时
2020/6/3
一、热量衡算基本方程
物料的焓值
I1 cm1
湿物料的 平均比热

I2 cm2
I2 I1 cm (2 1)
绝干料的 平均比热

水的比 热容
cm csXw ccs 4 .18 X7
2020/6/3
一、热量衡算基本方程
由 Q Q P Q D L ( I 2 I 0 ) G ( I 2 I 1 ) Q L
作业题: 3、4、5
2020/6/3
=100 % 饱和空气线 ❖ 水汽分压线( p 线) 范围 0~26 kPa
2020/6/3
二、 H -I 图的应用
1.已知状态点求湿空气的参数
已知状态点可由 H-I 图求出湿空气的各参数值:
❖ 湿度 H ❖ 相对湿度
❖ 温度
❖焓I ❖ 水汽分压 p
干球温度t 露点td 绝热饱和冷却温度tas(湿球温度 tW)

预热器
QP
L t1
I1 H 1
干燥器




G 2
I
2
QD
干燥器热量衡算示意图
Qp— 预热器消耗热量,kW QD— 干燥器补充热量,kW Q — 2020/6L/3 热损失速率,kW
QL
L t2
废 气
I2 H 2 湿
G
I
1
1
物 料
一、热量衡算基本方程
预热器热量衡算
LI0 Qp LI1
干燥器热量衡算
2020/6/3
一、湿物料的含水量
1.湿基含水量 湿基含水量是指湿物料中水分的质量分率。
湿物料中水分质量
w
湿物料的总质量

《化工原理-下》课程教学大纲

《化工原理-下》课程教学大纲

《化工原理-下》课程教学大纲课程编号:CHET2017课程类别:学科基础课程授课对象:化学工程与工艺专业开课学期:春季学分:2学分主讲教师:朱秀林、程振平、张正彪等指定教材:夏清,陈长贵主编,《化工原理》(下册),天津科学技术出版社,2006年第七章蒸馏课时:6周,共12课时教学内容第一节两组分溶液的气液平衡一、相律和相组成教学要点:相律,质量分数与摩尔分数的换算二、两组分理想物系的气液平衡教学要点:用饱和蒸气压表示气液平衡关系,相对挥发度,t-x-y图,x-y图三、两组分非理想物系的气液平衡教学要点:恒沸组成,t-x-y图,x-y图第二节平衡蒸馏和简单蒸馏一、平衡蒸馏教学要点:平衡蒸馏的流程及计算二、简单蒸馏第三节精馏原理和流程一、精馏原理及操作流程教学要点:部分汽化与冷凝,精馏段,提馏段第四节两组分连续精馏的计算一、理论板的概念及恒摩尔流的假定教学要点:理论板,恒摩尔液流,恒摩尔气流二、物料衡算和操作线方程教学要点:全塔物料衡算,精馏段的操作线方程,提馏段的操作线方程三、进料热状况的影响教学要点:加料板,进料热状况参数四、理论板的求法教学要点:逐板计算法,图解法,进料方程五、几种特殊情况时理论板层数的求法教学要点:直接蒸气加热,多侧线塔六、回流比的影响及其选择教学要点:全回流,最少理论板层数,芬斯克方程,最小回流比,适宜回流比的选择七、简捷法求理论板层数,塔高和塔径的计算教学要点:吉利兰图及应用,塔高的计算,塔径的计算八、连续精馏装置的焓衡算及精馏塔的操作和调节教学要点:冷凝负荷,再沸器的热负荷,精馏过程的节能,影响精馏操作的主要因素,精馏塔的控制和调节第五节间歇精馏一、回流比恒定时间歇精馏的计算教学要点:确定理论板层数,瞬间x D和x W的关系,釜液量的计算二、溜出液组成恒定的间歇精馏的计算教学要点:理论板层数的确定,x W和R的关系,气化量的计算第六节恒沸精馏和萃取精馏一、恒沸精馏教学要点:原理及特点二、萃取精馏教学要点:原理及特点第七节多组分精馏一、流程方案的选择教学要点:精馏塔的数目,流程方案的选择二、多组分物系的气液平衡教学要点:理想系统的气液平衡,非理想系统的气液平衡,相平衡常数的应用 三、关键组分的概念及各组分在塔顶和塔底产品中的分配教学要点:关键组分的概念,清晰分割四、最小回流比,简捷法确定理论板层数教学要点:轻重关键组分,吉利兰图思考题:1、压强对气液平衡有何影响?一般如何确定精馏塔的操作压强?2、进料量对塔板层数有无影响?为什么?3、对不正常形状的气液平衡曲线,是否必须通过曲线的切点来确定最小回流比R min,为什么?4、通常,精馏操作回流比R = (1~2) R min,试分析根据哪些因素确定倍数的大小。

化工原理(天津大学第二版)下册答案

化工原理(天津大学第二版)下册答案

化工原理(天津大学第二版)下册部分答案第8章2. 在温度为25 ℃及总压为101.3 kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。

试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。

已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8 kg/m 3。

解:水溶液中CO 2的浓度为33350/1000kmol/m 0.008kmol/m 44c == 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318c ==kmol/m 3 水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯ 由 54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa < *p故CO 2必由液相传递到气相,进行解吸。

以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3. 在总压为110.5 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。

测得在塔的某一截面上,氨的气、液相组成分别为0.032y =、31.06koml/m c =。

气膜吸收系数k G =5.2×10-6 kmol/(m 2·s ·kPa),液膜吸收系数k L =1.55×10-4 m/s 。

假设操作条件下平衡关系服从亨利定律,溶解度系数H =0.725 kmol/(m 3·kPa)。

(1)试计算以p ∆、c ∆表示的总推动力和相应的总吸收系数;(2)试分析该过程的控制因素。

解:(1) 以气相分压差表示的总推动力为t 1.06*(110.50.032)kPa 2.0740.725c p p p p y H ∆=-=-=⨯-=kPa 其对应的总吸收系数为246G L G 11111()(m s kPa)/kmol 0.725 1.5510 5.210K Hk k --=+=+⋅⋅⨯⨯⨯ 35252(8.89910 1.92310)(m s Pa)/kmol 2.01210(m s Pa)/kmol =⨯+⨯⋅⋅=⨯⋅⋅6G 1097.4-⨯=K kmol/(m 2·s ·kPa)以液相组成差表示的总推动力为33*(110.50.0320.725 1.06)kmol/m 1.504kmol/m c c c pH c ∆=-=-=⨯⨯-=其对应的总吸收系数为m/s 10855.6m/s 102.5725.01055.11111664G L L ---⨯=⨯+⨯=+=k H k K(2)吸收过程的控制因素气膜阻力占总阻力的百分数为%58.95%100102.51097.4/1/166G G G G =⨯⨯⨯==--k K K k 气膜阻力占总阻力的绝大部分,故该吸收过程为气膜控制。

化工原理(天津大学)下册课后习题答案.

化工原理(天津大学)下册课后习题答案.

化工原理(天津大学下册课后习题参考答案第五章蒸馏1. 已知含苯 0.5(摩尔分率的苯 -甲苯混合液,若外压为 99kPa ,试求该溶液的饱和温度。

苯和甲苯的饱和蒸汽压数据见例 1-1附表。

t(℃ 80.1 85 90 95 100 105x 0.962 0.748 0.552 0.386 0.236 0.11解:利用拉乌尔定律计算气液平衡数据查例 1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压 P B *, P A *,由于总压 P = 99kPa,则由 x = (P-PB */(PA *-P B * 可得出液相组成,这样就可以得到一组绘平衡 t-x 图数据。

以 t = 80.1℃为例 x =(99-40 /(101.33-40 = 0.962同理得到其他温度下液相组成如下表根据表中数据绘出饱和液体线即泡点线由图可得出当 x = 0.5时,相应的温度为 92℃2. 正戊烷(C 5H 12和正己烷(C 6H 14的饱和蒸汽压数据列于本题附表,试求 P = 13.3kPa下该溶液的平衡数据。

温度 C5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压 (kPa 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下 C 5H 12(A 和 C 6H 14(B 的饱和蒸汽压以 t = 248.2℃时为例,当 t = 248.2℃时 PB * = 1.3kPa查得 P A *= 6.843kPa得到其他温度下 A ¸B 的饱和蒸汽压如下表t(℃ 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3P A *(kPa 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.20089.000101.300 P B *(kPa 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据平衡液相组成以 260.6℃时为例当 t= 260.6℃时 x = (P-PB */(PA *-P B *=(13.3-2.826 /(13.3-2.826 = 1平衡气相组成以 260.6℃为例当 t= 260.6℃时 y = PA *x/P = 13.3×1/13.3 = 1同理得出其他温度下平衡气液相组成列表如下t(℃ 260.6 275.1 276.9 279 289x 1 0.3835 0.3308 0.0285 0y 1 0.767 0.733 0.524 0根据平衡数据绘出 t-x-y 曲线3. 利用习题 2的数据,计算:⑴相对挥发度; ⑵在平均相对挥发度下的 x-y 数据, 并与习题 2 的结果相比较。

化工原理下册天津大学柴诚敬33-34学时

化工原理下册天津大学柴诚敬33-34学时

能量消耗
对热敏性物系的分离,应采用较低的塔板压降。
2020/3/30
一、板式塔的流体力学性能
3. 液面落差 当液体横向流过塔板时,为克服板上的摩擦阻
力和板上部件(如泡罩、浮阀等)的局部阻力,需 要一定的液位差,则在板上形成由液体进入板面到 离开板面的液面落差。
液面 落差
2020/3/30
塔板上的液面 落差示意图
2020/3/30
一、塔有效高度的计算
气相单板效率
EMV
yn yn1 y*n yn1
液相单板效率
EML
xn1 xn xn1 x*n
2020/3/30
t n 1
x
tn n1
tn1
y
n1
yn
(
y
n
)
y
n1
(
x n
)
x
n
x n 1
单板效率分析
一、塔有效高度的计算
(3)点效率
点效率是指塔板上 各点的局部效率。
❖ 鼓泡接触状态 ❖ 蜂窝接触状态 ❖ 泡沫接触状态 ❖ 喷射接触状态
2020/3/30
一、板式塔的流体力学性能
(1)鼓泡接触状态 气速较低时,气
体以鼓泡形式通过液 层。由于气泡的数量 不多,形成的气液混 合物基本上以液体为 主,气液两相接触的 表面积不大,传质效 率很低。
2020/3/30
鼓泡接触状态
❖ 两组分理想物系的气液平衡关系 ❖ 平衡蒸馏与简单蒸馏 ❖ 两组分连续精馏的计算
理论板与恒摩尔流的概念 物料衡算与操作线方程 进料热状况的影响 理论板层数的计算 回流比的影响及选择 简捷法求理论板层数 连续精馏装置的热量衡算
2020/3/30

化工原理课程设计柴诚敬

化工原理课程设计柴诚敬

化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。

技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。

本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。

教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。

课程目标分解为具体学习成果,以便于后续教学设计和评估。

通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。

二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。

2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。

3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。

4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。

5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。

教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。

化工原理下册天津大学柴诚敬19-20学时

化工原理下册天津大学柴诚敬19-20学时
分离越容易
二、气液平衡关系式
1.拉乌尔定律 当理想溶液气液两相呈平衡时,溶液上方组分
的分压与溶液中该组分的摩尔分数成正比。
pA p*AxA
拉乌尔定律
pBpB *xBpB *(1xA)
2020/7/1
二、气液平衡关系式
溶液上方的总压 p总 等于各组分的分压之和
p总pApB
p总 p* AxApB *(1xA)
两相区
气相线 液相线
一、气液平衡相图
2. 气—液相组成图 气—液相组成图直观地表达了在一定压力下,
处于平衡状态的气液两相组成的关系,在蒸馏计 算中应用最为普遍。
x –y图
2020/7/1
x1与y1互成平衡
y1
2020/7/1
x1 苯-甲苯混合液的 x- y 图
平衡线
对角线
yx
平衡线与对 角线之间的 距离越大
3.计算气液平衡组成
已知 p总 、 t 求 x- y关系
t
p
* i
给定 xi
ki
yi
列表
xi yi
2020/7/1
课外资料:气液平衡数据获取途径
1.由安托尼方程求取
lgpi*
Ai
t
Bi Ci
2.由手册查得
安托尼方程
权威的气液平衡数据手册
Gmehlimg J, et al. 《Vapor-Liquid Equilibrium Data Collection》
yA kAxA
以平衡常数表示 的气液平衡方程
2020/7/1
二、气液平衡关系式

yA
p
* A
p总
xA
代入泡点方程,得
yA

化工原理天大柴诚敬

化工原理天大柴诚敬

第一章流体流动1.4流体流动的基本方程—、概述流体动力学流体动力学主要研究流体流动过程中流速、压力等物理量的变化规律,研究所采用的基本方法是通过守恒原理(包括及)进行质量、能量及动量衡算,获得物理量之间的内在联系和变化规律。

作衡算时,需要预先指定衡算的空间范围,称之为 ,而包围此控制体的封闭边界称为控制面。

第一章流体流动1.4流体流动的基本方程1・4.1总质量衡算-连续性方程131-11管路系统的总质量衡算如图1・11所示,选择一段管路或容器作为所研究的控制体,该控制体的控制面为管或容器的内壁面、截面1・1与2・2组成的封闭表面。

管路系统的总质量衡算根据质量守恒原理可得_ dM £2,2 q加,1 +」门au=0(1-28)对于定态流动,dM/d0 = O则%,1 = %,2PyLlyAy —(1-29)推广到管路上任意截面q m-QM/i = P2U2^2~........ - puA二常数(1-30) 枉定态流动系统中,流体流经各截面时的质量流量恒定。

对于不可压缩流体,p=常数,则为q v s = u x A x—U2^2= .... —必=常数” -31)冇页压缩性流体流经各截面时的体积流量也不变.流速u与管截面积成反比,截面积越小,流速越大;反之, 截面积越大,流速越小。

此规律与管路的布畫形式及管路上是否有管件、阀则可变形为:(1-31 a)不可压缩流体征圆形管道申,任意截面的对于圆形管道u {%2g 加———... —puA.—吊不可压缩流体Qv.s—LI | iA | ― Lt 2 ^~2 ~—nA二常数—二(牛)2管内定态流动的连续性方程%2 ]注意:以上各式的适用条件例10、例11 (P26)例如附图所示,管路由一段^39 X4mm的管1、一段4 108 X 4mm的管2和两段© 57 XS.&nm 的分支管3a^3b连接而成。

若水以9X10 3JTL/S的体积流量流动,且在两段分支管內的流量相等,试求水在各段管內的速度。

最新化工原理上册天津大学柴诚敬29-30学时

最新化工原理上册天津大学柴诚敬29-30学时

流化床实际操作速度与临界流化速度的比值称 固体流态化
3.4 固体流态化 3.4.1 流态化的基本概念 3.4.2 流化床的流体力学特性 3.4.3 流化床的浓相区高度与分离高度 (自学)
33
第三章、非均相混合物 分离及固体流态化
3.4 固体流态化 3.4.1 流态化的基本概念 3.4.2 流化床的流体力学特性 3.4.3 流化床的浓相区高度与分离高度 3.4.4 气力输送简介
36
一、概述
混合比R(或固气比) 单位质量气体所输送的固体质量,即
R Gs G
混合比在25以下(通常R=0.1~5)的气力输 送称为稀相输送。混合比大于25的气力输送称为 密相输送。
37
二、稀相输送
1. 稀相输送的分类 (1)吸引式 (2)压送式
2. 稀相输送的流动特性 (1)水平管内输送 (2)垂直管中的输送 (3)倾斜管中输送
θ ψT 60ψ n
浸没度
代入恒压过滤方程,得每小时所得滤液体积, 即生产能力为:
Q 6 0 n V 6 0 [6 0 K A 2 ψ n V e 2 n 2 ) V e n ]
9
二、连续过滤机的生产能力
当滤布阻力可以忽略时, Ve=0,则上式简化为:
Q60n KA260ψ 465AKnψ n
化工原理上册天津大学柴 诚敬29-30学时
滤饼的洗涤
洗涤滤饼的目的是回收滞留在颗粒缝隙间 的滤液,或净化构成滤饼的颗粒。
洗涤速率 单位时间内消耗的洗水容积
洗涤时间
dV
( d
)W
W
VW
(dV d
)W
2
二、连续过滤机的生产能力
在一个过滤周期内,转筒表面上任何一块过 滤面积所经历的过滤时间均为:

化工原理 下册 天津大学柴诚敬 35-36学时_OK

化工原理 下册 天津大学柴诚敬 35-36学时_OK

用质量比 计算方便
萃取相中溶 质的质量比
分 配


萃余相中溶 质的质量比
22
三、分配曲线
以xA为横坐标,yA为纵坐标,在直角坐标图上,
每一对共轭相可得一个点,将这些点联结起来,得 到曲线称为分配曲线。
溶解度曲线
分配曲线
23
y yx
P P
x
分配曲线的作法
24
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.2 液-液相平衡关系 10.2.1 液-液平衡相图 10.2.2 液-液平衡方程与分配曲线 10.2.3 萃取剂的选择
第十章 液-液萃取和液-固浸取
学习目的 与要求
通过本章学习,应掌握液-液相平衡在三角形 相图上的表示方法,能用三角形相图对单级萃取过 程进行分析和计算。了解多级萃取过程的流程与计 算方法;萃取设备的类型及结构特点。
1
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.1.1 萃取的原理与流程
气液平衡方程 yA k A xA
液液平衡方程 y A k A xA
萃取相

溶质分

kA
yA xA




kB
yB xB
萃余相 中 溶质分 数
21
二、以质量比表示的平衡方程
若 S与 B完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变
液液平衡方程 YA KA X A
25
一、萃取剂的选择性与选择性系数
萃取剂的选择性是指萃取剂 S对原料液中两个组 分溶解能力的差异。 选择性系数
萃取相中A的质量分数 萃取相中B的质量分数

化工原理天大柴诚敬学时

化工原理天大柴诚敬学时

第—草流体输送机械O 、通过本章学习,拿握化工中常用流体输送机械的基本结构、工作原理和操作特性,能够根据生产工艺要求和流体特性,合理地选择和正确操作流体输送机械,并使之在高效下安全可靠运行。

第二章流体输送机械2. 1概述2.1.1流体输送机械的作用管路对流体输送机械的能量要求由伯努利方程计算。

对于液体,采用以单位重量(1N)流体为基准的伯努利方程式+眷等 + 輕J/" —(2-1)K =立+也Pg7T2dA g心z+誉等+沪方程对于通风机的气体输送系统,在风机进出口截面间采用以单位体积(1m3)为基准的伯努利方程式,乩=Q£AZ+A D +卫-Q + Q 好G ・l/m3HVPa(2-6)流体输送机械除满足工艺上对流量和压头(对气体为风压与风量)两项主要技术指标要求外, 还应满足如下要求:①结构简单,重量轻,投资费用低。

②运行可靠,操作效率高,日常操作费用低。

③能适应被输送流体的特性,如黏度、可燃性、第二章流体输送机械2. 1概述2.1.1流体输送机械的作用2. 1.2流体输送机械的分类r输送液体泵按输送流体J的状态分类1 C通风机I输送气体鼓风机I压缩机动力式(叶轮式)按工作原理分类Y容积式(正位移式)流体作用式第二章流体输送机械2. 2离心泵2. 2. 1离心泵的工作原理和基本结构—・离心泵的工作原理是工业生产中应用最为广泛的液体输送机械。

其突出是结构简单、体积小、流量均匀、调节控制方便、故障少、寿命长、适用范围广(包括流量、压头和介质性质)、购置费和操作费用均较低。

—・离心泵的工作原理122-1离心泵装置简图g :斗r F离心泵的工作原理077//////////离心泵的叶轮吸液方式单吸式双吸式平衡图2-3离心泵的吸液方式图2-4泵壳和导轮泵轴与泵壳之间的密封称为轴封,其作用 是防止泵内高压液体从间隙漏出,或避免外界 空气进入泵内。

常用的轴封装置有填料密封和 机械密封两大类。

化工原理(下册)第二版天津大学出版社资料

化工原理(下册)第二版天津大学出版社资料
返回
武汉理工大学化工原理电子课件
四、挥发度和相对挥发度
1、挥发度:
对于纯液体:用其蒸气压表示挥发度。
对于二元溶液:
pA vA xA
对于理想溶液: vA = pAo
pB vB xB
5 9
vB = pBo
对于非理想溶液:
vi ≠ pio
返回
武汉理工大学化工原理电子课件
2. 相对挥发度:
气相或液相
B
A A
固相
C
+
A
吸附 脱附
返回
武汉理工大学化工原理电子课件
干燥
液体(水)经过汽化,从固体表面或 内部转入气相,属多相系分离。
固相
B
A
气相
A
C + A 干燥
+
-----
返回
武汉理工大学化工原理电子课件
精馏
液体混合物的分离 不同物质在汽液两相间相互转移。
液相
A + A B B
汽相
5 2
pA0、 pB0为溶液温度下纯组分A和B的饱和蒸气压, 可查有关手册或由下面安托因方程求得:
B lg p A C T
0
5 3
返回
武汉理工大学化工原理电子课件
当溶液沸腾时,溶液上方的总压等于各组分的 蒸气压之和:
P pA pB
由式5-2和5-4得:
0 P pB xA 0 0 p A pB
p=pA+pB
设A-B是一对理想溶液体系,若在纯液体 A中逐渐加入较难挥发的液体B形成A、B溶 液,A的平衡分压(蒸汽压)pA仅仅由于被 B的稀释而降低,则:
pA pA · xA
0

化工原理课程设计柴诚敬

化工原理课程设计柴诚敬

化工原理课程设计柴诚敬一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念和基本公式,能够运用化工原理解决实际问题。

具体来说,知识目标包括:了解化工原理的基本概念,掌握化工原理的基本公式,理解化工过程的基本原理。

技能目标包括:能够运用化工原理的基本公式进行计算,能够分析化工过程的基本原理,能够解决实际的化工问题。

情感态度价值观目标包括:培养学生的科学思维能力,提高学生对化工行业的认识和理解,激发学生对化工原理的兴趣和热情。

二、教学内容本节课的教学内容主要包括化工原理的基本概念、基本公式和基本原理。

具体来说,教学大纲如下:1.化工原理的基本概念:介绍化工原理的定义、特点和作用。

2.化工原理的基本公式:讲解化工原理的基本公式,包括质量守恒定律、能量守恒定律、动量守恒定律等。

3.化工过程的基本原理:讲解化工过程的基本原理,包括反应原理、传递原理、控制原理等。

三、教学方法为了达到本节课的教学目标,我将采用多种教学方法进行教学。

包括讲授法、案例分析法和实验法。

1.讲授法:通过讲解化工原理的基本概念、基本公式和基本原理,使学生掌握化工原理的基本知识。

2.案例分析法:通过分析实际的化工过程案例,使学生能够运用化工原理解决实际问题。

3.实验法:通过实验操作,使学生能够直观地了解化工过程的基本原理,提高学生的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我将准备以下教学资源:1.教材:选用《化工原理》作为主教材,为学生提供系统的化工原理知识。

2.参考书:提供相关的化工原理参考书,供学生自主学习。

3.多媒体资料:制作多媒体课件,通过图片、动画等形式,丰富学生的学习体验。

4.实验设备:准备化工原理实验设备,为学生提供实验操作的机会。

五、教学评估本节课的教学评估将采用多元化的方式,以全面、客观地评价学生的学习成果。

评估方式包括:1.平时表现:通过观察学生在课堂上的参与度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

化工原理下册天津大学柴诚敬49-50学时

化工原理下册天津大学柴诚敬49-50学时
A
D
G B
G F F
FE
稳定区
超溶 解度 曲线
溶解 度曲
线
溶液的过饱和与 超溶解度曲线
EFG EFG
EFG
冷却法 蒸发法 真空绝热蒸发法(冷却-蒸发法)
2020/6/3
第十二章 其他分离方法
12.1 结晶 12.1.1 结晶的基本概念 12.1.2 结晶热力学简介 12.1.3 结晶动力学简介
2020/6/3
初级成核 二级成核
初级成核速率 > 二级成核速率
超细粒子制造
初级成核
大粒子制造
二级成核
2020/6/3
二、晶体的生长
1.晶体生长的过程 晶体成长系指过饱和溶液中的溶质质点在过饱
和度推动力作用下,向晶核或加入晶种运动并在其 表面上层层有序排列,使晶核或晶种微粒不断长大 的过程。
2020/6/3
晶体 生长
一、晶核的形成
1.晶核产生
溶液中快速运动的 溶质元素(原子、离 子或分子)
相互碰撞
线体单元
线体单元增长
晶胚分解
晶核
晶胚增长
晶胚
晶核直径:数十纳米至几微米
2020/6/3
一、晶核的形成
2.初级成核与二级成核
没有晶体存在的过饱和溶 液中自发产生晶核的过程
有晶体(晶种)存在过饱 和溶液中产生晶核的过程
2020/6/3
第十二章 其他分离方法
12.1 结晶 12.2 膜分离(选读) 12.3 吸附(选读) 12.4 离子交换(选读)
2020/6/3
练习题目
思考题 1.何为晶格、晶系和晶习? 2.何为溶解度和超溶解度? 3.结晶动力学包括哪些内容?

化工原理下课后习题解答天津大学化工学院柴诚敬

化工原理下课后习题解答天津大学化工学院柴诚敬

化工原理下课后习题解答天津大学化工学院柴诚敬目录第七章传质与分离过程概论 ....................................................................................................... 1 第八章气体吸收 ...........................................................................................................................4 第九章蒸馏 .......................................................................................................................... ......... 18 第十章液-液萃取和液-固浸取 .................................................................................................. 30 第十一章固体物料的干燥习题解答 . (44)第七章传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。

已知入塔混合气中氨含量为5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比1Y 、2Y 。

解:先计算进、出塔气体中氨的摩尔分数1y 和2y 。

120.055/170.09030.055/170.945/290.002/170.00340.002/170.998/29y y ==+==+进、出塔气体中氨的摩尔比1Y 、2Y 为10.09030.099310.0903Y ==- 20.00340.003410.0034Y ==-由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阀孔,每个阀孔装有一个可上下浮动的阀片,阀 片本身连有几个阀腿,插入阀孔后将阀腿底脚拨 转90°,以限制阀片升起的最大高度,并防止阀 片被气体吹走。阀片周边冲出几个略向下弯的定 距片,当气速很低时,由于定距片的作用,阀片 与塔板呈点接触而坐落在阀孔上,可防止阀片与 板面的粘结。
浮阀实物
浮阀塔板
a.F1 型浮阀;b. V-4 型浮阀;c. T 型浮阀
泡罩实物
泡罩塔板 a.操作示意图;b.塔板平面图;c.圆形泡罩
一、塔板的类型
泡罩塔板的优缺点 优点
❖ 操作弹性适中 ❖ 塔板不易堵塞
缺点
❖ 生产能力及板效率较低 ❖ 结构复杂、造价高
一、塔板的类型
(2)筛孔塔板 筛孔塔板简称筛板,其结构特点是在塔板上
开有许多均匀小孔,孔径一般为3~8mm。筛孔在 塔板上为正三角形排列。塔板上设置溢流堰,使 板上能保持一定厚度的液层。
化工原理下册天津大学柴诚敬 31-32学时
一、恒沸精馏的概念
若在两组分恒沸液中加入第三组分(称为夹带 剂),该组分能与原料液中的一个或两个组分形成 新的恒沸液,从而使原料液能用普通精馏方法予以 分离,这种精馏操作称为恒沸精馏。恒沸精馏可分 离具有最低恒沸点的溶液、具有最高恒沸点的溶液 以及挥发度相近的物系。
因此,浮舌塔板兼有浮阀塔板和固定舌型塔板的 特点,处理能力大、压降低、操作弹性大。
浮舌塔板示意图
二、塔板的性能评价
塔板的性能评价指标
❖ 生产能力大 ❖ 塔板效率高 ❖ 塔板压降低 ❖ 操作弹性大 ❖ 结构简单,制造维修方便,造价低
二、塔板的性能评价
常见塔板的性能比较
——————————————————————————
筛孔塔板 a.操作示意图;b.筛孔布置图
一、塔板的类型
筛孔塔板的优缺点 优点
❖ 结构简单、造价低 ❖ 生产能力大 ❖ 板上液面落差小,气体压降低 ❖ 塔板效率较高
缺点
❖ 操作弹性小 ❖ 筛孔易堵塞,不宜处理易结焦、黏度大的物料
一、塔板的类型
(3)浮阀塔板 浮阀塔板的结构特点是在塔板上开有若干个
塔板的分类
一、塔板的类型
2. 塔板的主要形式
(1)泡罩塔板 泡罩塔板是工业上应用最早的塔板,它由升气
管及泡罩构成。泡罩安装在升气管的顶部,分圆形 和条形两种,以前者使用较广。泡罩有80、100 和150mm三种尺寸,可根据塔径大小选择。泡罩 下部周边开有很多齿缝,齿缝一般为三角形、矩形 或梯形。泡罩在塔板上为正三角形排列。
舌形塔板 1.3~ 1.5 1.1 小 低 简单 0.4~ 0.5
斜孔塔板 1.5~ 1.8 1.1 中 低 简单 0.4~ 0.5
——————————————————————————
第九章 蒸 馏
9.9 板式塔 9.9.1 塔板的类型及性能评价 9.9.2 塔板的结构
一、塔板的结构参数
塔板结构参数示意图
二、塔板的溢流装置
1. 降液管 降液管是塔板间液体流动的通道,也是使溢流
液中所夹带气体得以分离的场所。
圆形降液管
适用于小直径塔
降液管
弓形降液管√
适用于中等直径塔
矩形降液管
适用于中大直径塔,采用中间溢流
二、塔板的溢流装置
塔板溢流类型
二、塔板的溢流ቤተ መጻሕፍቲ ባይዱ置
2. 受液盘
受液盘用于接受上层塔板下降的液体,通过进 口堰形成液封,并使液体在塔板上分布均匀。
塔板类型 相对生 相对塔 操作 压力降 结构 成本 产能力 板效率 弹性
——————————————————————————
泡罩塔板
1.0
1.0 中 高 复杂 1.0
筛孔塔板 1.2~ 1.4 1.1 低 低 简单 0.4~ 0.5
浮阀塔板 1.2~ 1.3 1.1~ 1.2 大 中 一般 0.4~ 0.5
受液盘
平受液盘 适用于小直径塔 凹形受液盘
适用于大直径塔
受液盘示意图
a.平受液盘;b. 凹型受液盘
练习题目
思考题 1.恒沸精馏的原理是什么? 2.萃取精馏的原理是什么? 3.塔板有哪些主要类型? 4.评价塔板性能的指标有哪些方面,开发新型塔
板应考虑哪些问题?
作业题: 无
结束语
谢谢大家聆听!!!
第九章 蒸 馏
9.7 特殊精馏 9.7.1 恒沸精馏 9.7.2 萃取精馏 9.7.3 盐效应精馏(选读) 9.8 多组分精馏概述(选读) 9.9 板式塔 9.9.1 塔板的类型及性能评价
一、塔板的类型
1. 塔板分类
有降液管式塔板√
塔板 无降液管式塔板
错流式 逆流式
a.有降液管式塔板 b.无降液管式塔板
舌孔,方向朝塔板液体流出口一侧张开。舌片与 板面成一定的角度,有18°、20°、25°三种 ( 一 般 为 2 0 ° ) , 舌 片 尺 寸 有 5 0 × 5 0 mm 和 25×25mm两种。舌孔按正三角形排列,塔板的 液体流出口一侧不设溢流堰,只保留降液管。
舌形塔板示意图
一、塔板的类型
② 浮舌塔板 浮舌塔板的结构特点是,其舌片可上下浮动。
V-V塔板
梯形导向浮阀塔板
新型浮阀塔板
一、塔板的类型
浮阀塔板的优缺点 优点
❖ 结构简单、造价低 ❖ 操作弹性大 ❖ 生产能力大 ❖ 塔板效率较高
缺点
❖ 处理易结焦、高黏度物料阀片易与塔板粘结 ❖ 操作时阀片易脱落或卡死
一、塔板的类型
(4)喷射型塔板
① 舌型塔板 舌型塔板的结构特点是,在塔板上冲出许多
35
相关文档
最新文档