药物理化性质和药效的关系
有机药物的化学结构与药效关系
定量结构――活性关系和药物设计
• Hansch方程
log (1/c)=-K1Π2+K2Π+K3σ+K4Es+K5
C为化合物产生的某种特定的生物活性的浓度
Π 为疏水参数σ为电子效应参数,Es为Taft
(空间效应参数)。
•
2 立体因素的影响
•
药物与受体形成复合体发生药理作 用时的构效关系
• 受体的激动剂和受体的阻断剂 • 药物进入机体,到达作用部位,如能与同
一受体结合,产生拟似某代谢物的的生理 作用,称为受体的激动剂。如果药物与受 体结合后,不产生效力,并干扰受体与相 应代谢物的结合,从而拮抗这种代谢物的 生理作用,称为拮抗剂或者受体的阻断剂 。
碱性药物如奎宁,麻黄碱,氨基比林 弱碱性药物如咖啡碱和茶碱 完全离子化的药物如季铵盐类和磺酸类
•
药物代谢过程中的构效关系
• 大部分药物在体内酶系统作用下将发生一 系列的生化变化,如氧化,还原,水解,脱 羧,环合等反应
•
药物与组织或受体相互作用的 构效关系
• 1 电子密度分布的影响
•
药物与组织或受体相互作用的 构效关系
有机药物的化学结构与 药效关系
2020年5月31日星期日
药物为什么会产生某种药效?药 效的强弱又取决于什么?
化学科学的发展认识了从天然药物分 离出的有效成分和它们的化学结构, 使我们希望从这些化学结构来发现它 们显示药效道理,进而改造它们,合成 新的药物,供临床应用。
•
受体学说
• 一般认为药物的作用是先与生物体的 某些成分,如酶系统,核酸,细胞膜上的某 种化合物等(这些统称为受体)结合,生成 复合物.然后或拟似天然的基质而产生 效应,或者拮抗天然的基质而减弱或取 消后者的效应.
中药化学成分与疗效的关系
中药化学成分与疗效的关系一种中药往往含有许多的化学成分,但并不是所有的成分都能起到防病治病的作用。
根据医药工作者长期实践经验和现在的科学认识水平,通常将中药所含的化学成分分为有效成分和无效成分两类。
所谓有效成分一般是指具有生物活性,能用分子式和结构式表示并具有一定的物理常数(如熔点、沸点、溶解度、旋光度等)的单体化合物,也称有效单体,如麻黄碱、小檗碱、延胡索乙素、黄芩苷、槲皮素等。
如尚未提纯成单体而只是某一种结构类型的混合物者,一般称为有效部位,如麻黄生物碱、人参皂苷、芸香油等。
对中药化学成分所作的这种划分是相对性的。
例如鞣质,在多数中药中对于治疗疾病不起主导作用,被视为无效成分,而在地榆、五倍子等中药中因其具有收敛、止血和抗菌作用,故为有效成分。
确定中药某些化学成分是否为有效成分,也有一个认识过程。
例如早年认为黄酮类为无用的色素,现在知道是一类具有多方面生物活性的成分。
对糖类、氨基酸、鞣质以前不甚了解其药用价值,随着研究的深入及水平的提高,对其活性的认识愈加丰富。
凡临床用之有效而尚未发现其有效成分的中药,应以疗效为基础,进一步寻找其有效成分,不可盲目的否定其药用价值。
对中药化学成分的认识不能被目前的研究水平所局限,随着药理实验和临床应用的不断进展,将会发现更多的有效成分。
无论有效成分还是无效成分,都应进行研究。
某些无效成分亦可有药用意义。
如一些有机酸生物活性尚不明了,但因其能与本来不溶于水的有效成分生物碱结合,生成可溶于水的生物碱盐,就可使生物碱在液体制剂如汤剂、口服液中充分溶解从而使药效得以发挥。
另外,为了提取有效成分去除无效成分。
也需对药物的各种化学成分有全面的了解。
某一中药含有多种有效成分,即可产生不同的作用,如甘草含有的甘草次酸有肾上腺皮质激素样作用,含有的黄酮苷可产生缓解胃肠平滑肌痉挛作用;罂粟壳含有的吗啡、可待因、罂粟碱可分别产生镇痛、镇咳、扩张血管作用。
这正说明了中药功效和应用的多样性,因而从一定意义上讲,一味中药也就是一个小复方。
药物的化学结构和药效的关系药物化学
总结词
计算机辅助药物设计利用计算机模拟 技术来预测和优化药物与靶点的相互 作用。
详细描述
这种方法通过建立药物与靶点相互作 用的数学模型,对大量化合物进行虚 拟筛选,快速找出具有潜在活性的化 合物。这大大缩短了新药研发的时间 和成本,提高了成功率。
先导化合物的优化
总结词
先导化合物优化是在找到具有初步活性的先 导化合物后,通过对其化学结构进行修饰和 优化,提高其药效、降低副作用的过程。
总结词
药物分子的极性影响其在体内的吸收、分布和代谢,从而影响药效。
详细描述
药物分子的极性与其化学结构密切相关,极性大小直接影响分 子在体内的溶解度和渗透性。一般来说,极性适中的药物分子 具有较好的水溶性和脂溶性,有利于其在体内的吸收和分布。 此外,药物的代谢过程也与其化学结构有关,某些结构特征可 以促进或抑制代谢酶的活性,从而影响药物的代谢速度和药效 持续时间。例如,某些药物分子中含有羟基或羧基等极性基团, 可以增加其在体内的溶解度和渗透性,从而提高药物的生物利 用度。
总结词
药物分子的电子分布影响其与靶点的相互作 用,从而影响药效。
详细描述
药物分子中的电子分布决定了其与靶点分子的相互作用方式, 如静电、共价键等。药物分子中的电子分布与其化学结构密切 相关,通过改变药物分子的电子分布,可以调整其与靶点的相 互作用,从而优化药效。例如,某些药物分子中的特定基团可 以通过电子转移与靶点分子形成共价键,从而提高药物的稳定 性。
氢键
总结词
氢键是一种相对较弱的相互作用力,但对药物与靶点的结合和药效的发挥具有重要影响。
详细描述
氢键的形成是由于药物分子中的氢原子与靶点分子中的电负性原子(如氧或氮)之间的 相互作用。这种相互作用虽然较弱,但能够使药物与靶点结合更加稳定,从而影响药物 的吸收、分布和代谢等过程。例如,某些药物通过与蛋白质的特定氨基酸残基形成氢键,
第一章 药物的化学结构与药效的关系
第一章药物的化学结构与药效的关系(一)药物的化学结构与药效的关系33分钟1.药物理化性质药物的溶解度、分配系数、解离度和官能团对药效的影响2.药物的电子云密度分布与立体结构电子云密度和立体结构对药效的影响3.键合特性药物和生物大分子作用时的键合形式对药效的影响药物具有不同的结构,具有不同的药效,结构决定功能。
影响药物产生药效的主要因素有两个方面:1.药物到达作用部位的浓度药物服用〉进入血液循环〉组织分布2.药物与受体的作用药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。
药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式。
药物和受体的结合方式有化学方式和物理方式。
药物的作用有两种不同类型,一类是结构非特异性药物:药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少;另一类是结构特异性药物:药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效。
而大多数药物属于结构特异性药物。
结构特异性药物中,能被受体所识别和结合的三维结构要素的组合又称为药效团。
受体与药物的结合实际上是与药物结构中药效团的结合,这与药物结构上官能团的静电性、疏水性及基团的大小有关。
(钥匙和孔)第一节药物理化性质和药效的关系(药物的溶解度、分配系数、解离度和官能团对药效的影响,)在对于结构非特异性药物,药物的理化性质直接影响药物的活性。
药物的理化性质主要有药物的溶解度、分配系数和解离度。
一、药物的溶解度和分配系数对药效的影响在人体中,大部分的环境是水相环境,体液、血液和细胞浆液都是水溶液,药物要转运扩散至血液或体液,需要溶解在水中,要求药物有一定的水溶性(又称为亲水性)。
而药物在通过各种生物膜(包括细胞膜)时,这些膜是由磷脂所组成的,又需要其具有一定的脂溶性(称为亲脂性)。
药物化学结构和药效的关系
例:
资料仅供参考,不当之处,请联系改正。
2.6 药物的电子云密度分布对药效的影响
如果药物分子中的电荷分布正好和其特定 受体相适应,药物与受体通过形成离子键、偶 极-偶极相互作用、范德华力、氢键等分子间引 力相互吸引,就容易形成复合物,而具有较高 活性。
资料仅供参考,不当之处,请联系改正。
下例为苯甲酸酯类局麻药分子与受体通过形成 离子键,偶极-偶极相互作用,范德华力相互作 用形成复合物的模型。
资料仅供参考,不当之处,请联系改正。
(2)增加药物分子的位阻:
抵抗青霉素酶得水解
资料仅供参考,不当之处,请联系改正。
(3)电性的影响:
资料仅供参考,不当之处,请联系改正。
2.卤素对药物生物活性的影响
强吸电子基,影响电荷分布
3.羟基、醚键对药物生物活性的影响
-OH增强与受体的结合力(氢键),增加水溶性,改变生物活性 -O-有利于定向排布,易于通过生物膜
资料仅供参考,不当之处,请联系改正。
药物的化学结构与生物活性(药效)间 的关系,通常称为构效关系(Structureactivity relationships, SAR),是药物化 学研究的主要内容之一。
资料仅供参考,不当之处,请联系改正。
本章内容
药物作用机制 受体学说 影响药物产生作用的主要因素 药物结构的官能团对药效的影响 药物的理化性质对药效的影响 药物的电子云密度分布对药效的影响 药物的立体结构对药效的影响
4.磺酸基、羧基与酯对药物生物活性的影响
-SO3H、-COOH使水溶性、解离度增大,不易通过生物膜, 生物活性减弱;
-COOR使脂溶性增大,生物活性增大
5.酰胺基与胺基对药物生物活性的影响
1药物的化学结构与药效关系
• 我们称分子势能最低的构象为优势构象(preferential conformation)
• 一般由X-射线结晶学测定的构象为优势构象。
官能团的作用
• 酸性和碱性基团 • 烷基 • 卤素 • 羟基与巯基 • 磺酸基和羧基 • 氨基和酰胺 • 醚键
一、酸性和碱性基团
• 极性基团,对药物的物理化学性质影响 较大,因而对生物活性有决定性的影响
二、烃基
• 药物分子中引入烃基,可改变溶解度、 离解度、分配系数,还可增加位阻,从 而增加稳定性。
• 醚类化合物由于醚中的氧原子有孤对电 子,能吸引质子,具有亲水性,碳原子 具有亲脂性,使醚类化合物在脂-水交界 处定向排布,易于通过生物膜。
第四节 立体结构对药效的影响
一、原子间距离对药效的影响
• 1.化学键的作用 结构特异性药物与特定的靶 点,通常是生物大分子(例如受体或酶)发生 相互作用形成药物-受体复合物,才能产生药 理作用,各种各样的化学键能使这种药物-受 体复合物稳定。这些化学键可分为可逆和不可 逆两类。药物与受体以共价键结合是不可逆的,
• 药物中光学异构体生理活性的差异反映了药物与受体结 合时的较高的立体要求。一般认为,这类药物需要通过 三点与受体结合,如图中D-(-)- 肾上腺素通过下列 三个基团与受体在三点结合:①氨基;②苯环及其两个 酚羟基;③侧链上的醇羟基。而L-异构体只能有两点结
合。
• 有一些药物,左旋体和右旋体的生物活性类型都不一样
• 药物分子的基本结构不同,但可能会以相同的 作用机制引起相同的药理或毒理效应,这是由 于它们具有共同的药效构象,即构象等效性 (conformational equivalence),从而以相同的 作用方式与受体部位相互作用。
药物的化学结构与药效的关系
2.生物电子等排体
①定义: 将凡具有相似的物理性质和化学性质 ,又能产生相似生物 活性的基团或分子都称为生物电子等排体。 ②类型: ⑴经典生物电子等排体 a.一价原子和基团 如F、Cl、OH、-NH2、-CH3等都有7 个外层电子。 b.二价原子和基团 如O、S、—NH—、—CH2— 等都有6个 外层电子。 c.三价原子和基团 如—CH=、—N=等都有5个外层电子。 d.四价基团 如 =C=、=N+=、=P+=等都有四个外层电 子。 ③意义:这些电子等排体常以等价交换形式相互替换,作用 相似
四、立体结构对药效的影响 1、药物的几何异构与官能团空间距离对药效的影 响 举例:如反式己烯雌酚的活性比顺式异构体约强 14倍;抑制纤维蛋白溶解酶原激活因子的氨甲环酸 的反式异构体的止血作用比顺式强。 2.光学异构对药效的影响 举例:如维生素C的L(+)-异构体的活性为D(-) -异构体的20倍;D(-)-肾上腺素的血管收缩作用 较L(+)-肾上腺素异构体强12-15倍;D(-)-异丙 肾上腺素的支气管扩张作用为L(+)-异丙肾上腺素 异构体的800倍。
6.酰胺 –在构成受体或酶的蛋白质和多肽结 构中含用大量的酰胺键,因此,酰胺类药物易 与生物大分子形成氢键,增强与受体的结合能 力。 7.胺类 –胺是碱性基团,易与蛋白质或核酸 的酸性基团发生作用,其氮原子上的未共用电 子对又可形成氢键,能与多种受体结合,表现 出多样的生物活性。
三、电子云密度分布对药效的影响 受体和酶都是以蛋白质为主要成分的生物大分子, 蛋白质分子从组成上来讲是由各种氨基酸经肽键结合 而成,在整个蛋白质的链上存在各种极性基团造成电 子云密度分布的不均匀,有些区域的电子云密度高, 形成负电荷或部分负电荷;有些区域的电子云密度低, 即带有正电荷或部分正电荷。如果药物分子中的电子 云密度分布正好和受体或酶的特定位点相适应时,由 于电荷产生的静电引力,有利于药物分子与受体或酶 结合,形成比较稳定的药物-受体或药物-酶的复合物。
农药制剂的理化指标
(3)气味测定 取一定量被试物置于适当容器中,对样品进行 评价,给出诸如“蒜味”“含硫物的气味”“芳香化合物的 气味”等定性描述。
2、密度或松密度、堆密度
作物叶片最外层的蜡质层由脂肪酸酯类酮醇类萜醛等有机物组成具有防止水分损失物理伤害病菌侵入抗寒以及减少太阳辐射造表皮的蜡层主要以两种形式存在一种是晶状一种是不规则状前者主要存在于禾本科植物后者主要存在于阔叶作物晶状的蜡层对农药在叶面的展布是不利的位于蜡质层以内的角质层其组成成分较为复杂不同植角质层的外层几乎完全由疏水的角质组成内层由含有一定数量角质的纤维素和果胶混合物组成
5、可燃性
液体可燃性:用闪点表示。用液体闪点来判断:联合 国《关于危险货物运输的建议书试验和标准手册》
6、腐蚀性
(1)非气雾剂产品测定要求:试验应在55°C条件下,14天 被试物体积与包装材料样本表面积之比不低于0.20ml/mm2, 以排除腐蚀性成分的耗竭以及腐蚀产品的局部而对腐蚀性 结果的影响。当使用完整商业包装容器为实验装置时,被 试物应与实际包装量相近。
液体滴加到固体界面上会出现润湿现象
为了研究液体在固体表面的润湿作用,将其分为沾湿(附着润 湿)、浸湿(浸入润湿)和铺展(扩散润湿)三种类型
(1)沾湿过程就是当液体与固体接触后,将液-气和固-气界面变为固一液 界面的过程。农药喷洒到植株上以后,以液滴的形式附着在植株上,两者间 形成一定的接触面,这种润湿称为沾湿。
农药制剂的理化指 标
小组成员:王月廷 于艳艳 周晓虹 陈严
河北科技师范学院
目录
一、农药制剂登记需要提供的理化性质 二、部分理化性质对药效的影响
17药物的化学结构与药效的关系
(2) 由带电荷的大分子层所组成的细胞膜, 能排斥或吸附离子,阻碍离子的通过 -----(如组成蛋白质的部分氨基酸可解离 为羟基负离子和铵基正离子)
计算公式
弱酸或弱碱类药物在体液中解离后,离 子与未解离分子的比率由酸(或碱的共轭 酸)的解离常数(pKa值)和体液介质的pH 值决定。
弱酸性药物在胃中的吸收
药物的化学结构与生物活性(包括 药理与毒理作用)之间的关系,简称构 效关系(structure-activity relationships SAR)。 研究药物的构效关系是药物化学的中 心内容之一。
根据药物化学结构对生物活性的影 响程度或药物在体内分子水平上的作用 方式,宏观上将药物分子分为两种类型: 结构非特异性药物 (structurally nonspecific drug) 结构特异性药物 (structurally specific drug)
分布 组织 血浆蛋白 排泄
(一)药物在作用部位的浓度
药物必须以一定的浓度到达作用部位, 才能产生应有的药效 ---该因素与药物的转运(吸收、分布、 排泄)密切相关,如
口服 抗疟药 人体 胃肠道粘膜
血流
红细胞膜
疟原虫体内
疟原虫细胞膜
(二)药物作用的体内靶点
• 药物的作用靶点:是指与药物在体内发生 相互作用的生物大分子,如酶、受体、离 子通道、核酸等。
• • 巴比妥酸的pKa值约为4.12, 在生理pH7.4时,有99%以上呈离子型, 不能通过血脑屏障进入中枢神经系统而起 作用。
O H R O R
5
OH NH N N OH OHH+ R
-O
ON N O-
N H
O
HO
苯巴比妥的生物活性
中药炮制对药物性能功效及理化性质的影响评价
中药炮制对药物性能功效及理化性质的影响评价
中药炮制是中医药传统加工方法的重要环节,对药物性能、功效及理化性质有着重要影响。
本文将从药物性能、功效和理化性质三个方面对中药炮制对药物的影响进行评价。
一、药物性能:
中药炮制可以改变药物的性质,如破壁、增溶、破纤维等。
通过炮制,药物的颗粒酵素、化学成分和药材组织得到改良,从而提高药物的生物利用度和药效。
中药炮制还能去除一些有害物质,如毒性成分、杂质等,提高药物的安全性。
人参经过炮制后,药效和药材理化性质都发生了明显的变化,药效更为显著。
二、药物功效:
中药炮制可以提高药物的疗效。
炮制过程中,药物的活性成分、挥发性物质和药效成分得以激活、增加和改善,使药物在体内的药效得到提高。
中药炮制还可以降低药物的毒性,增加药物对机体的适应性,从而提供更好的疗效。
炮制石决明能够去除其药材中有毒的草酸,降低药物的毒性,增加其对眼睛的清除作用。
三、理化性质:
中药炮制能够改变药物的理化性质,如颜色、形态、溶解度、挥发性等。
通过炮制,药物的物理性质得到改良,使其更易于制剂的加工和制备,并且提高了药物的稳定性和质量。
柴胡经过炮制后,颜色由黄变为红,这是因为药材中的酮类物质经过炮制后发生了氧化反应。
中药炮制对药物的影响是多方面的,从药物性能、功效和理化性质三个方面进行了评价。
通过炮制,药物的性能得到改良,功效得到提高,理化性质得到改变。
中药炮制不仅提高了药物的生物利用度和疗效,还增加了药物的安全性和稳定性,为临床应用提供了更好的药物基础。
药学专业知识2--药物的结构与药物作用
药学专业知识2--药物的结构与药物作用【知识点】结构非特异性药物药物的理化性质直接影响活性理化性质:溶解度、分配系数和解离度多项选择题影响结构非特异性药物活性的因素有A.溶解度B.分配系数C.几何异构体D.光学异构体E.解离度『正确答案』ABE【知识点】药物的溶解度、分配系数和渗透性对药效的影响药物亲水性或亲脂性的过高或过低都对药效产生不利影响。
(适当最好)脂水分配系数当药物脂溶性较低时,随着脂溶性增大,药物的吸收性先提高后降低,成抛物线的变化规律。
脂水分配系数可以反映药物的水溶性和脂溶性。
药物的吸收、分布、排泄过程是在水相和脂相间经多次分配实现的,因此要求药物既具有脂溶性又有水溶性。
A:关于药物的脂水分配系数对药效的影响叙述正确的是A.脂水分配系数适当,药效为好B.脂水分配系数愈小,药效愈好C.脂水分配系数愈大,药效愈好D.脂水分配系数愈小,药效愈低E.脂水分配系数愈大,药效愈低『正确答案』A【知识点】当pKa=pH 时,非解离型和解离型药物各占一半弱酸性在胃中易吸收(水杨酸巴比妥类)弱碱性在小肠易吸收(麻黄碱地西泮)强碱性的药物在整个胃肠道多是离子化的,难吸收。
(季铵盐类)酸酸分子易吸收,酸碱离子易排泄A:已知苯巴比妥的pKa约为7.4,在生理pH为7.4的情况下,其以分子形式存在的比例是A.30%B.40%C.50%D.75%E.90%『正确答案』C官能团:A:吗啡易被氧化变色是由于分子结构中含有以下哪种基团A.醇羟基B.双键C.醚键D.哌啶环E.酚羟基『正确答案』EA.烃基B.羰基C.羟基D.氨基E.羧基1.使酸性和解离度增加的是2.使碱性增加的是3.使脂溶性明显增加的是『正确答案』EDA【知识点】生物药剂学中根据药物溶解性和肠壁渗透性的不同组合将药物分为四类:高水溶解性、高渗透性的两亲性分子药物(体内吸收取决于胃排空速率):普萘洛尔、依那普利、地尔硫(艹卓)——那普尔低水溶解性、高渗性的亲脂性分子药物(体内吸收取决于溶解速率):双氯芬酸、卡马西平、匹罗昔康——双匹马高水溶解性、低渗透性的水溶性分子药物(体内吸收取决于渗透效率):雷尼替丁、纳多诺尔、阿替洛尔——雷纳尔多低水溶解性、低渗透性的疏水性分子药物(体内难吸收):特非那定、酮洛芬、呋塞米——特洛米A.普萘洛尔B.卡马西平C.雷尼替丁D.呋塞米E.葡萄糖注射液1.体内吸收取决于胃排空速率2.体内吸收取决于溶解速度3.体内吸收受渗透效率影响4.体内吸收比较困难『正确答案』ABCD【知识点】非共价键键合类型1)氢键:最常见,药物与生物大分子作用最基本的化学键合形式。
药物化学结构与药效的关系
化学结构相似的药物,能与同一受体结合,引起相似 作用(激动药,拟似药)或相反的作用(拮抗药,阻断药).
例:
乙酰胆碱
(神经递质)
氨甲酰胆碱
(拟胆碱药)
D=药物;R=受体;DR=药物-受体复合物 E=药理效应;
药物-受体复合物的键合方式包括:共价键、 氢键、离子键、离子-偶极和偶极-偶极作用、 范德华力等。
5. 受体激动药与受体拮抗药
根据药物与受体结合后所产生效应的不同,将药 物分为受体激动药与受体拮抗药
激动药(agonist):对受体既有亲和力又有内在 活性的药物,它们与受体结合并激活受体产生效 应。
2.2 受体学说
1. 受体的概念
受体(Receptor,R)是指对生物活性物质具有 识别能力,并选择性与之结合,传递信息,引起 特定效应的生物大分子。
受体存在于细胞内,具有一定坚固性的三维结 构. 各种药物的受体是不相同的, 但是它们可能 都具有:
(1) 一个高度折叠的近似球状的肽链; (2) 有一个空穴,此空穴至少部分被多肽区域 所 包围.
2.1 药物的作用机制:
药物的作用机制(mechanism of drug action)是研究药物如何与机体不 同靶细胞结合,又如何发挥作用的。
一.药物的作用机制简介:
1、理化作用 2、参与或干扰细胞代谢 3、影响酶的活性 4、影响生理物质的合成、释放与转运 5、影响离子通道 6、影响核酸代谢 7、影响免疫机制 8、作用于受体
2.7 药物的立体结构对药效的影响
1.官能团间的距离对药效的影响
药品生产技术《药物构效关系 数字化教材》
药物构效关系数字化教材院〔部〕食品药品学院教研室药品技术教师潍坊职业学院药物构效关系受体是一种细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质〔少数也可是糖脂〕。
影响药物产生作用的因素主要包括药物与受体的作用及药物到达作用部位的浓度大小,显然这两者均与药物的化学结构和理化性质密切相关。
本节讨论药物根本结构与药效关系、药物立体结构与药效关系、药物理化性质与药效关系。
药物根本结构与药效关系根据药物在体内的作用方式,可将药物分为结构非特异性药物和结构特异性药物。
结构非特异性药物的生物活性主要受药物的理化性质的影响,而对化学结构无特异要求,如全身麻醉药中的吸入麻醉药,其药效主要受药物的脂水分配系数的影响。
临床上使用的绝大对数药物属于结构特异性药物,药物生物活性除与理化性质相关外,主要受药物的化学结构影响,其与特异性受体相互作用形成复合物产生生物活性。
化学结构的微小变化,都可能导致药物活性大为降低甚至丧失。
被受体识别的药物可以与受体结合,生成药物和受体复合物,激活受体兴奋或抑制,产生一系列特定的生理生化反响,到达治疗疾病的目的。
受体对药物的识别主要表现在结构互补和立体化学的选择性方面,因此凡与受体结合的药物均为结构特异性药物。
在构效关系研究中,把具有相同药理作用的药物中相同局部的化学结构称为药物的根本结构。
具有根本结构的药物都是结构特异性药物,都能被受体识别并与之结合。
许多药物都具有根本结构,如含有对氨基苯甲酸酯根本结构的局部麻醉药、含有对氨基苯磺酰胺根本结构的磺胺类药物、含有苯乙胺根本结构的拟肾上腺素药物及含有吩噻嗪根本结构的抗精神病药等。
药物根本结构确实定有助于该类药物的结构优化,从而得到疗效好、毒性低的药物。
如在确定对氨基苯磺酰胺为磺胺类药物的根本结构后,通过嘧啶环或噻唑环等含氮杂环取代磺酰胺基氮原子上的氢,结果发现可使药物活性大为增强,进而得到N-单取代且以杂环取代疗效最正确的磺胺类药物;假设在苯环上再引入取代基后,抑菌作用那么降低或丧失,从而提示在苯环上其余四个位置上无需引入任何取代基。
药物与药效
药物的化学结构与药效的关系提要药物的化学结构与药效的关系是药物化学研究的重要任务之一。
药物在体内能否产生药效,主要取决于药物作用的动力学时相和药效学时相。
药物动力相的构效关系,简要介绍药物的转运、影响药物到达作用部位的因素等。
药物能否到达作用部位,主要受三个因素的影响,即药物的吸收、分布和与蛋白的结合等。
而药物的分配系数、溶解度及解离度与上述三个因素密切相关。
药效相的构效关系,详细介绍药物-受体的相互作用和立体因素对药效的影响。
药物-受体如何相互作用,如何产生药效?主要取决于药物的结构、电子云密度分布、药物-受体的亲和力(即氢键、离子键、共价键、疏水作用及范德华力等)和药物分子的立体因素。
药物为什么会产生药效?药物的化学结构与药效存在什么样的关系?是人们一直在探索的重要问题。
研究这些从实践中提出的问题,有助于认识药物与机体的作用规律。
生物化学、生物物理学、理论有机化学和药理学等学科的发展,尤其是分子生物学、分子药理学、量子生物化学取得的一系列成果,使得人们对机体的认识从宏观进入到微观的分子水平。
药物对机体的作用,也可能在分子水平上进行探讨。
现在可以比较深入地阐明药物在体内的作用机制以及显示药物的化学结构与药物作用的构效关系。
根据药物的化学结构对生物活性的影响程度,或根据药物在分子水平上的作用方式,可把药物分成两种类型,即非特异性结构药物(Structurally Nonspecific Drug)和特异性结构药物(Structurally Specific Drug)。
前者的药理作用与化学结构类型的关系较少,主要受药物理化性质的影响。
如较典型的全身吸入麻醉药,这类药物的化学结构可有很大的差异,但其麻醉强度与分配系数(Partition Coefficient)成正比。
后者的作用依赖于药物分子特异的化学结构及其按某种特异的空间相互排列。
其活性与化学结构的关系密切,其作用与体内特定的受体的相互作用有关。
药物化学药物的化学结构与药效的关系
CH3
利多卡因
达克罗宁
普鲁卡因
H N
H
δ
CO
Oδ
CH2CH2
C 2H 5 H
N
C 2H5
V
V
V
D
E
O
C 2H5
N O
CO O
CH2CH2
N C 2H5
无局麻作用
O
O
N .HCl
H2N
普鲁卡因的局麻作用似与分子极化有平行关系:
◆供e基甲氧基、乙氧基、二甲氨基取代-NH2, ED50减小 ◆吸e基硝基取代-NH2,ED50增大 ◆在苯环和碳基间嵌入乙撑基, 共轭效应被阻, ED50增大 ◆在苯环和碳基间嵌入乙烯基, 共轭效应不变, ED50不变
N-甲 酰 溶 肉 瘤 素
H
ClCH2CH2
N
Np O
C lC H 2C H 2
N
HO
尿嘧啶氮芥
ClCH2CH2
O
环磷酰胺
二、结构改造
结构变化带来新的物理性质,也改 变了分子化学反应性,可导致药物在细 胞与组织中分布的改变,进而改变对酶 及受体作用部位的结合,改变对这些部 位的反应速率及排泄方式。
四价
=C= =N+= =P+= =As+= =Sb+=
环 内 等 价 -CH =CH - -S- -O - -NH -
a. 一 价 原 子 或 基 团 的 取 代
H2N
S O2NHCONHC4H9 丁 磺 酰 脲
H3C
S O2NHCONHC4H9 甲 磺 丁 脲
氯磺丁脲
Cl
S O2NHCONHC4H9
延长半衰期
减低毒性
b. 二 价 原 子 或 基 团 的 交 换
药物化学结构和药效的关系专家讲座
第二章
药品化学结构与 药效关系
第1页
药品化学结构与生物活性(药效)间 关系,通常称为构效关系(Structureactivity relationships, SAR),是药品化 学研究主要内容之一。
药物化学结构和药效的关系专家讲座
第2页
本章内容
药品作用机制 受体学说 影响药品产生作用主要原因 药品结构官能团对药效影响 药品理化性质对药效影响 药品电子云密度分布对药效影响 药品立体结构对药效影响
药物化学结构和药效的关系专家讲座
第3页
2.1 药品作用机制:
药品作用机制(mechanism of drug action)是研究药品怎样与机体不 一样靶细胞结合,又怎样发挥作用。
药物化学结构和药效的关系专家讲座
第4页
一.药品作用机制介绍:
1、理化作用
2、参加或干扰细胞代谢
3、影响酶活性
4、影响生理物质合成、释放与转运
第24页
2.7 药品立体结构对药效影响
1.官能团间距离对药效影响
反式己烯雌酚两个羟基中氧原子间距离与雌二醇分子中 两个氧原子间空间长度一致,均为1.45 nm。反式己烯雌酚 含有较强雌激素活性。顺式己烯雌酚两个氧原子间距离较反 式小(0.72nm),活性很低, 顺式异构体活性仅为反式十分之 一。
药物化学结构和药效的关系专家讲座
药物化学结构和药效的关系专家讲座
第23页
当苯甲酸酯类局麻药分子中苯环对位引入供电
子基团比如氨基时,经过共轭效应能使酯羰基极性 增加,使药品与受体结合更牢靠,局麻作用较强。
当苯甲酸酯类局麻药分子中苯环对位引入吸电
子基团比如硝基时,则使羰基极性减小,与受体 结协力减弱,造成局麻作用降低。
药物的物理化学作用对药物及制剂性质的影响
药物的物理化学作用对药物及制剂性质的影响
药物的物理化学作用对药物及制剂性质产生的影响包括以下几个方面:
1. 溶解度:药物在水或其他溶剂中的溶解度受物理化学性质的影响,包括分子大小、极性、水合性等。
溶解度的大小会影响药物的口服吸收和药效。
2. 离子化状态:药物可以存在于不同状态下,如离子状态或非离子状态。
药物的离子状态会影响药物在不同体液和组织间的分布和渗透能力。
3. 化学稳定性:药物可能会在制剂或储存过程中发生化学反应,引起降解或失去活性。
药物的物理化学性质可以影响药物的稳定性,因此药物制剂的选型和保存条件需要谨慎选择。
4. 结晶形态:药物以不同的结晶形态存在,这可能在药物制剂中影响药物的稳定性、药效和生物利用度。
5. 药物相互作用:药物的物理化学性质还会影响药物与其他物质间的相互作用,如药物与受体或配体的结合力。
总之,药物的物理化学作用对药物及制剂性质的影响非常重要,需要经过严格的分析、测试和研究,才能选定最佳的药物配方和制剂方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药物理化性质和药效的
关系
文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
(药物的溶解度、分配系数、解离度和官能团对药效的影响,)在对于结构非特异性药物,药物的理化性质直接影响药物的活性。
药物的理化性质主要有药物的溶解度、分配系数和解离度。
一、药物的溶解度和分配系数对药效的影响
在人体中,大部分的环境是水相环境,体液、血液和细胞浆液都是水溶液,药物要转运扩散至血液或体液,需要溶解在水中,要求药物有一定的水溶性(又称为亲水性)。
而药物在通过各种生物膜(包括细胞膜)时,这些膜是由磷脂所组成的,又需要其具有一定的脂溶性(称为亲脂性)。
由此可以看出药物亲水性或亲脂性的过高或过低都对药效产生不利的影响。
在药学研究中,评价药物亲水性或亲脂性大小的标准是药物的脂水分配系数,用P来表示,其定义为:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。
由于生物非水相中药物的浓度难以测定,通常使用在正辛醇中药物
的浓度来代替。
C
org 表示药物在生物非水相或正辛醇中的浓度;C
W
表示药
物在水中的浓度。
P值越大,则药物的脂溶性越高,为了客观反映脂水分配系数的影响,常用其对数lgP来表示。
药物分子结构的改变对药物脂水分配系数的影响比较大。
影响药物的水溶性因素比较多,当分子中官能团形成氢键的能力和官能团的离子化程度较大时,药物的水溶性会增大。
相反若药物结构中含有较大的脂环等非极性结构时,则导致药物的脂溶性增大。
各类药物因其作用不同,对脂溶性有不同的要求。
如:作用于中枢神经系统的药物,需通过血脑屏障,应具有较大的脂溶性。
吸人性的全身麻醉药属于结构非特异性药物,其麻醉活性只与药物的脂水分配系数有关,最适lgP在2左右。
二、药物的解离度对药效的影响
有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型,脂不溶)或非解离的形式(分子型,脂溶)同时存在于体液中。
通常药物以非解离的形式被吸收,通过生物膜,进入细胞后,在膜内的水介质中解离成解离形式而起作用。
酸性药物解离:HA+H 20A - + H 30+
碱性药物解离:B+H 20BH + + OH -
药物的解离常数(pK a ,药物解离50%时溶液的pH 值)
由于体内不同部位,pH 的情况不同,会影响药物的解离程度,使解离形式和未解离形式药物的比例发生变化,这种比例的变化与药物的解离常数和体液介质的pH 有关,可通过下式进行计算:
酸性药物:
对酸性药物,环境pH 越小(酸性越强),则未解离药物浓度就越大 碱性药物:
对碱性药物,环境pH 越大(碱性越强),则未解离药物浓度就越大 根据药物的解离常数(pK a )可以决定药物在胃和肠道中的吸收情
况,同时还可以计算出药物在胃液和肠液中离子型和分子型的比率。
弱酸性药物如水杨酸和巴比妥类药物在酸性的胃液中几乎不解离,呈分子型,易在胃中吸收。
弱碱性药物如奎宁、麻黄碱、氨苯砜、地西泮在胃中几乎全部呈解离形式,很难吸收;而在肠道中,由于pH 值比较高,容易被吸收。
碱性极弱的咖啡因和茶碱在酸性介质中解离也很少,在胃中
易被吸收。
强碱性药物如胍乙啶在整个胃肠道中多是离子化的,以及完全离子化的季铵盐类和磺酸类药物,消化道吸收很差。
三、药物结构的官能团对药物理化性质及药效的影响
药物结构中不同的官能团的改变可使整个分子的理化性质、电荷密度等发生变化,进而改变或影响药物与受体的结合,影响药物在体内的吸收和转运,最终影响药物的药效,有时会产生毒副作用。
1.烃基
药物分子中引入烃基,可改变溶解度、离解度、分配系数,还可增加位阻,从而增加稳定性。
2.卤素
卤索是很强的吸电子基,可影响分子间的电荷分布和脂溶性及药物作用时间。
3.羟基和巯基
引入羟基可增强与受体的结合力,增加水溶性,改变生物活性。
4.醚和硫醚
醚类化合物由于醚中的氧原子有孤对电子,能吸引质子,具有亲水性,碳原子具有亲脂性,使醚类化合物在脂-水交界处定向排布,易于通过生物膜。
5.磺酸、羧酸、酯
磺酸基的引入,使化合物的水溶性和解离度增加,不易通过生物膜,导致生物活性减弱,毒性降低。
羧酸成盐可增加水溶性。
羧酸成酯可增大脂溶性,易被吸收。
6.酰胺
在构成受体或酶的蛋白质和多肽结构中含有大量的酰胺键,因此酰胺类药物易与生物大分子形成氢键,增强与受体的结合能力。
7.胺类。