03多组分系统热力学
大学物理化学 第三章 多组分系统热力学习指导及习题解答
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
03-物理化学课程讲义-第三章1
B
TdS pdV B dnB
B
dH TdS V dp B dnB
B
TdS Vdp B dnB
B
dG S dT V dp B dnB
B
SdT Vdp B dnB
B
dA S dT p V B dnB
B
SdT pdV B dnB
例如:体系只有两个组分,其物质的量和偏摩尔 体积分别为 n1,V1 和 n2 ,V2 ,则体系的总体积为:
V n1V1 n2V2
偏摩尔量的集合公式
写成一般式有:U nBUB
B
H nB HB B
A nB AB
B
S nBSB B
G nBGB B
U U B ( nB )T , p,nc (cB)
物理化学课程讲义
—— 第三章 多组分系统热力学
引言
多组分系统 两种或两种以上的物质(或称为组分)所形
成的系统称为多组分系统。 多组分系统可以是均相的,也可以是多相的。
混合物(mixture) 多组分均匀系统中,各组分均可选用相同的方 法处理,有相同的标准态,遵守相同的经验定律, 这种系统称为混合物。
则
dZ Z1dn1 Z2dn2 Zkdnk
k
= ZBdnB B=1
在保持偏摩尔量不变的情况下,对上式积分
Z Z1
n1 0
dn1
Z2
n2 0
dn2
Zk
nk 0
dnk
n1Z1 n2 Z2 nk Zk
偏摩尔量的集合公式
k
Z= nB ZB
B=1
这就是偏摩尔量的集合公式,说明体系的总的容 量性质等于各组分偏摩尔量的加和。
组分体系
物理化学(3)
X 即:X B n B T , p ,nCB
系统中B物质的偏摩尔量
偏摩尔量是:在恒T、p条件下,保持除B组元外 的其他组元量不变,向溶液中加入dnB的B 组元 引起溶液容量性质X(如 S,U,H,A,G,V等)的变化
等温等压下: dX X B dnB
* A
pB p xB
* B
二、 Henry定律 对挥发性溶质(气体):
pB k x ,B xB
k x ,B —— Henry常数,与pB有相同的量纲。
浓度的表示形式有多种, 但Henry定律形式一定。
即,溶液中B组元在与溶液平衡的蒸气中的分压 pB与其在溶液中的浓度成正比:
pB k x ,B xB km,BmB kc ,BcB kw,B wB
fB 则: B (T ) RT ln p
B
fB ——逸度,相对于理想气体的校正压强; 集中了各种压强因素(理想、非理想),
§5. 稀溶液的两个经验定律一、Leabharlann aoult定律 大量实验发现
加入溶质
导致
溶剂蒸气压↓
且蒸气压降低量只与溶质的量有关,而与溶质
的种类无关。如,同浓度的蔗糖水溶液和尿素
三、化学势与温度、压强的关系 1.化学势与温度的关系 G B GB , ( ) p S T B GB S ( )p ( ) p S B ( )T , p ,nCB T T nB 2.化学势与压强的关系 G B GB , ( )T V p
V溶液
20 40 60 80
cm3 100.4 100.4 100.4 100.4
cm3 31.68 84.47 190.05 506.80
物理化学答案――第三章_多组分系统热力学及其在溶液中的应用习.
第三章多组分系统热力学及其在溶液中的应用一、基本公式和内容提要1. 偏摩尔量定义:其中X为多组分系统的任一种容量性质,如V﹑U﹑S......全微分式:总和:偏摩尔量的集合公式:2. 化学势定义物质的化学势是决定物质传递方向和限度的强度因素,是决定物质变化方向和限度的函数的总称,偏摩尔吉布斯函数只是其中的一种形式。
3. 单相多组分系统的热力学公式4. 化学势判据等温等压、只做体积功的条件下将化学势判据用于多相平衡和化学平衡中,得多组分系统多相平衡的条件为:化学平衡的条件为:5.化学势与温度、压力的关系(1)化学势与压力的关系(2)化学势与温度的关系6.气体的化学势(1)纯组分理想气体的化学势理想气体压力为(标准压力)时的状态称为标准态,称为标准态化学势,它仅是温度的函数。
(2)混合理想气体的化学势式中:为物质B的分压;为物质B的标准态化学势;是理想气体混合物中B组分的摩尔分数;是B纯气体在指定T,p时的化学势,p是总压。
(3)实际气体的化学势式中:为实际气体或其混合物中物质B的化学势;为B的标准态化学势,其对应状态是B在温度T、压力、且假想具有理想气体行为时的状态,这个状态称为实际气体B的标准态;分别为物质B的逸度系数和逸度。
7. 稀溶液中的两个经验定律(1)拉乌尔定律一定温度时,溶液中溶剂的蒸气压与溶剂在溶液中的物质的量分数成正比,其比例系数是纯溶剂在该温度时的蒸气压。
用公式表示为。
对二组分溶液来说,,故拉乌尔定律又可表示为即溶剂蒸气压的降低值与纯溶剂蒸气压之比等于溶质的摩尔分数。
(2)亨利定律一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比。
用公式表示。
式中:为溶质的浓度分别为摩尔分数、质量摩尔浓度和物质的量浓度表示时的亨利系数,单位分别为Pa、和。
使用亨利定律时应注意:①是溶质在液面上的分压;②溶质在气体和在溶液中的状态必须是相同的。
8.溶液的化学势(1)理想液态混合物中物质的化学势①定义:在一定的温度和压力下,液态混合物中任意一种物质在任意浓度均遵守拉乌尔定律的液态混合物称为理想液态混合物。
物理化学 3第三章 多组分体系热力学
第三章 多组分体系热力学内容提要只要指定两个强度性质便可以确定单组分体系的状态。
在多组分体系中,决定体系状态的变量还需包括组成体系的各物质的量。
在多组分体系热力学中,有两个重要的概念:偏摩尔量和化学势。
1、偏摩尔量(1)定义:设X 代表多组分体系中任一容量性质,在等温、等压、组成不变的条件下,体系中B 物质的容量性质Z 对B 物质的量n B 的偏微分称偏摩尔量,表示为Z 。
Z =(∂Z∂n B )T,p,nB(B ≠B )偏摩尔量是强度性质,和体系的总量无关,和组成体系各物质的浓度有关。
(2)偏摩尔量的集合公式∑==1B B B Z n Z多组分体系的广度性质等于体系中各组分物质的量与该物质偏摩尔性质的乘积之和。
(3)吉布斯-杜亥姆公式01=∑=B BB dZn该式表述了当发生一个无限小过程时,体系中各组分偏摩尔量变化值之间的关系。
它表明在均相体系中各组分的偏摩尔量之间是相互联系的,具有此消彼长的关系。
2、化学势(1)定义:偏摩尔吉布斯能G B,称为化学势,用μB 表示,单位为J·mol -1。
μB =(∂G∂n B )T,P,nB≠B广义的化学势:μB =(∂U ∂n B )s,v,nB(B≠B ) =(∂H ∂n B )s,p,nB(B≠B ) =(∂F ∂n B )T,V ,nB(B≠B ) =(∂G ∂n B )T,P,nB(B≠B ) (2)多组分组成可变体系的四个热力学基本公式:dU=TdS-pdV+B BBdn ∑μdH=TdS-pdV+B BBdn ∑μdF=sdT-Vpd+B BB dn ∑μdG=sdT-Vpd+B BBdn ∑μ(3)化学势的一些关系式 化学势集合公式∑=BB B n G μ等温、等压条件下化学势的吉布斯-杜亥姆公式∑BB Bd nμ化学势与温度的关系(∂μB∂T )p,nB=-V m ,B ) 化学势与压力的关系(∂μB ∂p )T,nB =v m ,B3、化学势判据等温、等压、W'=0条件下0≤∑B BB dn μ(1)相平衡:在等温、等压、W'=0的条件下,组分B 在α、β、…等各相达到平衡的条件是μB (α)=μB (β)=…在上述条件下,如果μB (α)>μB (β),则组分B 自发地从α相向β相转移。
第三章 多组分系统热力学
第三章 多组分系统热力学一、选择题1.1 mol A 与n mol B 组成的溶液,体积为0.65dm 3,当x B = 0.8时,A 的偏摩尔体积 V A = 0.090dm 3·mol -1,那么B 的偏摩尔V B 为: ( )(A) 0.140 dm 3·mol -1 ; (B) 0.072 dm 3·mol -1 ;(C) 0.028 dm 3·mol -1 ; (D) 0.010 dm 3·mol -1 。
2.注脚“1”代表298K 、p 的O 2,注脚“2”代表298K 、2p 的H 2,那么: ( )(A) 2121,μμμμ≠≠; (B) 因为21μμ≠,1μ与2μ大小无法比较 ;(C) 2121,μμμμ=>;(D) 2121,μμμμ<<。
3.气体B 的化学势表达式:()()B B B ln ln g g x RT p p RT +⎪⎪⎭⎫⎝⎛+=μμ,那么:⑴上式表 明气体B 在混合理想气体中的化学势;⑵()()g g B B μμμ-=∆体现在该条件下做非 体积功的本领;⑶μB (g)是表明做非体积功的本领;⑷μB (g)是气体B 的偏摩尔Gibbs 自由能。
上述四条中正确的是: ( )(A) ⑴⑵⑶ ; (B) ⑵⑶⑷ ; (C) ⑴⑶⑷ ; (D) ⑴⑵⑷ 。
4.373K 、p 时H 2O(g) 的化学势为μ1;373K 、0.5p 时H 2O(g) 的化学势μ2,那么: ①21μμ=;②μ2 - μ1 = RT ln2;③μ2 - μ1 = -RT ln2;④μ2 = μ1 – RT ln0.5。
以上四条中 正确的是: ( )(A) ①② ; (B) ①③ ; (C) ③④ ; (D) ②④5.对于A 、B 两种实际气体处于相同的对比状态,对此理解中,下列何者正确:( )(A) A 、B 两种气体处于相同的状态 ; (B) A 、B 两种气体的压力相等 ;(C) A 、B 两种气体的对比参数π、τ相等 ; (D) A 、B 两种气体的临界压力相等 。
物理化学-多组分系统热力学
①μa = μb ②μc < μd ③μe > μf ④μa < μd ⑤ μb < μd ⑥ μd > μf
4. 化学势判据及应用举例 恒温、恒容
封闭系统,W′=0
恒温、恒压
分别代入
dG SdT Vdp B α dnB α αB
封闭系统,W′=0
恒温恒容或恒温恒压
化学势判据
化学势 判据
系统某广度量 X表现为温度 T、压力 p 及系统各组 分物质的量 nB、nC、nD、…等的函数:
X (T , p, nB, nC , nD ,)
恒温恒压下,系统中每一组分物质的量增加相同的倍数λ , 则其广度量也增加同样的倍数:
X T , p, nB , nC , nD , X T , p, nB, nC, nD,
解: 由题意得:水和甲醇的偏摩尔体积分别为:17.35ml/mol和
39.01ml/mol. 由集合公式可得,混合后溶液体积为:
nBVB V
V=0.4mol× 39.01ml/mol+0.6mol×17.35ml/mol=26.01ml
未混合前,甲醇和水各自体积的加和为:
V
n甲醇M甲醇
甲醇
n水M 水
S ,V ,nC
H nB
S , p,nC
A nB
T ,V ,nC
保持上述四个基本热力学函数U/H/A/G的特征变量和除B 以外其它组分物质的量不变,某热力学函数随组分B的物质 的量的变化率称为化学势。
注意不同的下标变量:不能把任意的热力学函数对nB的 偏微商都称为化学势,一定的限制条件。
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等:
Bα B
第2章 多组分系统热力学
含两个或两个以上组分的系统称为多组分系统。 含两个或两个以上组分的系统称为多组分系统。 多组分系统 均相(单相 非均相(多相 多组分系统可以是均相 单相) 也可以是非均相 多相)的 多组分系统可以是均相 单相 ,也可以是非均相 多相 的。 多组分均相系统又可以区分为混合物 溶液。 混合物和 多组分均相系统又可以区分为混合物和溶液。并以不同的方法 加以研究: 加以研究: 混合物:混合物中的各组分不分为溶剂 溶质, 溶剂及 混合物:混合物中的各组分不分为溶剂及溶质,对各组分 均选用同样的标准态 标准态; 均选用同样的标准态; 溶液:溶液中的各组分区分为溶剂 溶质, 溶剂及 溶液:溶液中的各组分区分为溶剂及溶质,并选用不同的 标准态加以研究。 标准态加以研究。 气态混合物 液态溶液 混合物 液态混合物 溶液 固态溶液(固溶体) 固态溶液(固溶体) 固态混合物
(2-18)
可得: 又µB=GB=HB-TSB ,可得: HB = µB+TSB 有
µ B 1 ∂µ B ∂(µ B / T ) =− 2 + ( ) p ,n ∂T T ∂T T p ,n
=−
2) 化学势与压力的关系
µB
T
2
HB −S + =− 2 T T
(2-19)
∂µ B ( ) T ,n = VB ∂p
X = ∫ dX = ∑ ∫0 X B dn B = ∑ n B X B
X
nB
0
(2-7)
3 吉布斯 杜哈姆公式 吉布斯–杜哈姆公式 在温度、压力下, 微分, 在温度、压力下,对(2-7)微分,得: 微分
B
B
2 偏摩尔量集合公式 由X= f (T,p,nA,nB,……),当温度、压力一定时,对 = , ,当温度、压力一定时, 一微小变化, 一微小变化,
第3章 多组分系统的热力学,逸度和活度
3.1 引言
I.
多组分系统的热力学
3.2 偏摩尔量 3.3 化学势与热力学基本方程 3.4 平衡判据与平衡条件 3.5 相律
返回首页
II. 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13
逸度、活度和混合性质 化学势与逸度 逸度和逸度因子的求取 拉乌尔定律和亨利定律 理想混合物和理想稀溶液 化学势与活度(1) 活度和活度因子的求取 化学势与活度(2) 混合性质与超额函数
2.组成可变的多相多组分系统 多相系统的广延性质
X X ( 1 ) X ( 2 ) X ( ) X ( )
dX dX
(1)
dX
( 2)
dX
1 ( )
dX ( )
1
热力学基本方程
dU TdS pdV
返回章首
I. 多组分系统的热力学
3.2 偏摩尔量
1.偏摩尔量的定义与物理意义
根据关于状态函数的基本假定,对于均相 多组分系统的广延性质X,可写出
X X (T , p, n1 , n2 , , nK )
K
X X dX dT dp T p p ,n j T ,n j
51.823 0.2788nB / mol cm 3 mol -1
A
返回章首
V nAVA nBVB
VA V nBVB / nA M A / m A V nBVB 18.0152 / 1 10 3 1002.935 51.832nB / mol 0.1394nB / mol
《多组分系统热力学》课件
02
03
气候变化
多组分系统热力学可用于研究温室气 体在大气中的分布和变化,为气候变 化研究提供数据支持。
在生物学中的应用
生物代谢过程
多组分系统热力学可用于研 究生物体内的代谢过程,分 析代谢产物的生成和能量转
换效率。
生物分子相互作用
利用多组分系统热力学模型 ,可以研究生物分子之间的 相互作用和结合机制,为药 物设计和生物工程提供理论
依据。
生物系统稳定性
通过多组分系统热力学模型 ,可以分析生物系统的稳定 性和动态变化,为生物保护 和生态平衡提供理论支持。
THANK YOU
感谢聆听
相变过程
相变的概念
物质在一定条件下,从一种相转变为另一种相的过程 。
相变的热力学条件
相变过程总是向着熵增加的方向进行,同时满足热力 学第一定律和第二定律。
相变过程的分类
根据相变过程中物质状态的变化,可以分为凝聚态物 质相变和气态物质相变等。
化学反应过程
化学反应的概念
化学反应是指分子破裂成原子,原子 重新排列组合生成新分子的过程。
化学势具有加和性,即对于多组分 系统中的某一组分,其化学势等于 其他组分的化学势之和。
相平衡和化学平衡
相平衡是指多组分系统中各相之间的平衡状态,是 热力学的基本概念之一。
化学平衡是指多组分系统中化学反应达到平衡状态 时的状态,是热力学的基本概念之一。
相平衡和化学平衡是相互关联的,可以通过化学势 来判断是否达到相平衡或化学平衡状态。
04
多组分系统的热力学过程
热力学过程
热力学第一定律
能量守恒定律,即在一个封闭系统中,能量不能被 创造或消灭,只能从一种形式转化为另一种形式。
第三章 多组分系统热力学《物理化学》要点
B
μB dnB
B
μB dnB
不但适用于变组成的封闭系统,还适用于变组成的敞开系统。
二、化学势在相平衡中的应用
•在等温等压且W′=
0条件下,封闭体系中过程
自发性判据为:
dGT , P 0
{
自发 (W ' 0) 平 衡态
对于多组分均相系统:等温等压且W′= 0条 件下判据为:
dGT , P B dnB 0
B
{
自发 (W ' 0) 平衡态
对于一个单组分多相封闭系统有
相
相
假设 B 由 相 转移至 相 的物质的量 dn 无限小,且:
dn 0 而: dn -dn
dG dG( ) dG( )
B dn B dn
B (dn ) B dn
G 其中只有 n B
T,p, n C
是偏摩尔量,其余三个均不是
偏摩尔量。
对组成可变的系统四个热力学方程为:
dU T dS p dV
dH T dS V dp
B
μB dnB
μB dnB
B
dA -S dT V dP
dG S dT V dp
(3) 多相系统平衡时有: μ в(α)= μв(β) =……B物质在各相 中的化学势相等.
三、化学势与温度压力的关系
( B ) p , nC S B T
SB>0,所以当温度升高时,化学势降低。
( B / T ) 1 B B B TS B HB [ ] p , nC ( ) p ,nC 2 2 2 T T T T T T
多组分系统热力学
多组分系统热力学
多组分系统热力学是研究多个组分构成的系统的热力学行为的科学。
在多组分系统中,各个组分之间可能会相互作用,从而影响整个系统的热力学性质。
多组分系统热力学的研究内容包括:
1.热力学第一定律:能量守恒定律,即在一个封闭系统中,能量不
能被创造或消除,只能从一种形式转化为另一种形式。
2.热力学第二定律:熵增定律,即在一个封闭系统中,熵(即系统
的混乱程度)只能增加,不能减少。
这意味着,系统总是朝着熵增的方向演化,而不是熵减的方向。
3.相平衡:研究在给定的温度和压力下,不同物质之间是如何平衡
的。
4.化学平衡:研究在给定的温度和压力下,化学反应是如何平衡的。
5.热力学第三定律:绝对零度不能达到原理,即任何物质在绝对零
度下的熵均为零。
这些定律和原理对于理解多组分系统的热力学行为非常重要。
在化学工程、材料科学、生物工程等领域中,多组分系统热力学被广泛应用于研究复杂系统的热力学性质和行为。
物理化学第3章 多组分系统的热力学,逸度和活度
3.1 引言
I.
多组分系统的热力学
3.2 偏摩尔量 3.3 化学势与热力学基本方程 3.4 平衡判据与平衡条件 3.5 相律
返回首页
II. 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13
逸度、活度和混合性质 化学势与逸度 逸度和逸度因子的求取 拉乌尔定律和亨利定律 理想混合物和理想稀溶液 化学势与活度(1) 活度和活度因子的求取 化学势与活度(2) 混合性质与超额函数
26.42
25.47
H2O(A) —C2H5OH(B)
返回章首
偏摩尔量的物理意义 偏摩尔量Xi 是1mol物质i在一定T,p下 对一定 浓度的均相多组分系统某广延性质X的贡献。 2.集合公式 X ni ni K K X 0 dX i 1 0 X i dni i 1 X i 0 dni
返回章首
本章框架 ◆ 多组分系统的热力学 偏摩尔量(化学势,…)
组成可变的多相多组分系统的热力学基本方程
主要应用:导出用化学势表示的平衡判据;
相平衡和化学平衡条件;相律
◆ 逸度、活度和混合热力学性质 选用一定的参考状态,用逸度和活度表达化学 势,由各组分纯物质的热性质与混合热性质表 达多组分系统的热性质。
返回章首
I. 多组分系统的热力学
3.2 偏摩尔量
1.偏摩尔量的定义与物理意义
根据关于状态函数的基本假定,对于均相 多组分系统的广延性质X,可写出
X X (T , p, n1 , n2 , , nK )
K
X X dX dT dp T p p ,n j T ,n j
3.1 引言
物理化学第七版第三章 多组分系统热力学
B1
常见偏摩尔量如下:
VB ,m
V ( nB
)T , p,n jB
U B ,m
U ( nB
)T , p,n jB
H
H B,m
( nB
)T , p,n jB
S SB,m ( nB )T , p,njB
F FB,m ( nB )T , p,njB
G
GB,m
( nB
)T , p,n jB
注意:1、只有广度性质才有偏摩尔量,偏摩尔量是 强度性质的状态函数。
广义化学势:保持特征变量和除B以外其它组分不变 时,某热力学函数随物质的量 nB的变化率称为广义化 学势。
注意:任意热力学函数的偏摩尔量并不都是化学势, 只有偏摩尔吉布斯能才是化学势。
二、化学势与温度及压力的关系(自学)
G f (T , p, n1, n2 , ...) 组成恒定时 dG -SdT Vdp
dG SdT Vdp BdnB
恒温恒压下: dG BdnB
化学势判据:恒温恒压且不做非体积功时:
dG BdnB 0
dG BdnB 0
k
dG BdnB 0 B1
自发进行 可逆或平衡 不能进行
1、化学势在相平衡中的应用
恒温恒压下,dnB摩尔的B物质由 相转移到 相:
dG=dG+dG 相 dnB
H* m,A
(s)
RT 2
dT
ln
xA
fus
H* m,A
R
1
Tf
1 Tf*
Tf
RTf*Tf
fus
H* m,A
ln xA
K f
ln
xA
K f
ln(1
xB )
多组分系统热力学
第四章 多组分系统热力学 主要内容1.混合物和溶液(1)多组分系统的分类含一个以上组分的系统称为多组分系统。
多组分系统可以是均相(单相)的,也可以是非均相(多相)的。
将多组分均相系统区分为混合物和溶液,并以不同的方法加以研究:(Ⅰ)混合物:各组分均选用同样的标准态和方法处理;(Ⅱ)溶液:组分要区分为溶剂及溶质,对溶剂及溶质则选用不同的标准态和方法加以研究。
(2)混合物及溶液的分类混合物有气态混合物液态混合物和固态混合物;溶液亦有气态溶液液态溶液和固态溶液。
按溶液中溶质的导电性能来区分,溶液又分为电解质溶液和非电解质溶液(分子溶液)。
2.拉乌尔定律与亨利定律拉乌尔定律与亨利定律是稀溶液中两个重要的经验规律。
(1)拉乌尔定律平衡时,稀溶液中溶剂A 在气相中的蒸气分压A p 等于纯溶剂在同一温度下的饱和蒸气压与该溶液中溶剂的摩尔分数A x 的乘积。
这就是拉乌尔定律。
用数学式表达拉乌尔定律为 A *A Ax p p = (2)亨利定律一定温度下,微溶气体B 在溶剂A 中的溶解度B x 与该气体在气相中的分压B p 成正比。
也可表述为:一定温度下,稀溶液中挥发性溶质B 在平衡气相中的分压力B p 与该溶质B 在平衡液相中的摩尔分数B x 成正比。
这就是亨利定律。
用数学式表达亨利定律为: B B ,B x k p x =B ,x k 、B ,b k 为以不同组成标度表示的亨利系数,其单位分别为Pa ,Pa·kg·mol -1。
应用亨利定律时,要注意其不同表达式所对应的亨利系数及其单位。
还要注意亨利定律适用于稀溶液中的溶质分子同气相同种分子相平衡,即亨利定律适用于稀溶液中的溶质在液相及气相中具有相同分子形态的场合。
3.偏摩尔量(1)偏摩尔量的定义设X 代表V ,U ,H,S ,A ,G 这些广度性质,则对多组份系统(混合物或溶液)即 X =f (T ,p ,n A ,n B ,…)定义 ()B C C,,,B B def ≠⎪⎪⎭⎫ ⎝⎛∂∂n p T n X X式中,X B称为广度性质X (X=V ,U ,H ,S ,A ,G 等)的偏摩尔量,它们分别为只有系统的广延量才具有偏摩尔量,偏摩尔量是强度量。
第三章 多组份系统热力学判断题及答案
1.溶液的化学势等于溶液中各组分化学势之和。
解:错,对溶液整体没有化学势的概念。
2.系统达到平衡时,偏摩尔量为一个确定的值。
解:错,不同相中的偏摩量一般不相同。
3.对于纯组分,化学势等于其吉布斯函数。
解:错,纯组分物质的化学势应等于摩尔吉布斯函数。
4.在同一稀溶液中组分B的浓度可用x B、m B、c B表示,因而标准态的选择是不相同的,所以相应的化学势也不同。
解:错,化学势与标准态、浓标的选择无关。
5.水溶液的蒸气压一定小于同温度下纯水的饱和蒸气压。
解:错,当溶质不挥发时才一定成立。
6.将少量挥发性液体加入溶剂中形成稀溶液,则溶液的沸点一定高于相同压力下纯溶剂剂的沸点。
溶液的凝固点也一定低于相同压力下纯溶剂的凝固点。
解:错,因加人挥发性溶质,沸点不一定升高。
凝固点是否降低要看溶质是否析出。
7.纯物质的熔点一定随压力升高而增加,蒸气压一定随温度的增加而增加,沸点一定随压力的升高而升高。
解:第一个结论错,如水的熔点随压力增大而降低。
后两个结论都正确。
8.理想稀溶液中溶剂分子与溶质分子之间只有非常小的作用力,以至可以忽略不计。
解:错,两种分子之间的作用力和同种分子之间的作用力都较大,不可忽略。
9.当温度一定时,纯溶剂的饱和蒸气压越大,溶剂的液相组成也越大。
解:错,液相组成与纯溶剂的蒸气压无关。
10.在一定的温度和同一溶剂中,某气体的亨利系数越大,则此气体在该溶剂中的溶解度也越大。
解:错,当压力一定时,溶解度与亨利系数成反比。
11.在非理想溶液中,浓度大的组分的活度也大,活度因子也越大。
解:错,一般而言,浓度大活度也大,但活度因子不一定大。
12.在298K时0.01mol·kg-1的蔗糖水溶液的渗透压与0.01mol·kg-1的食盐水的渗透压相同。
解:错,食盐因电离;溶液中粒子数多,渗透压大。
13.物质B在α相和β相之间进行宏观转移的方向总是从浓度高的相迁至浓度低的相。
解:错,相变的方向是以化学势的大小而不是以浓度的大小来判断。
第三章 多组分系统热力学
d Vm dp
• 理想气体的化学势:
d O O Vm dp O
p
p
(T , p) O (T ) RT ln
p pO
• (2)理想气体混合物中各组分化学势 • 若混合气体的温度为T、压力为p,组分B在混合理想
气体中的分压为pB,则组分B的化学势
O B (T , p, y B ) B (T ) RT ln
bB nB mA
• bB的单位为mol· -1。 kg • 对于二组分溶液,xB与bB之间的关系为
xB bB 1 bB MA
• 若溶液足够稀,则 • xB = bBMA
• §4—2 偏摩尔量与化学势 • 1、偏摩尔量 • (1)偏摩尔量的定义
乙醇浓 度 wB% 10 20 30 40 50 60 V醇/cm3 V水/cm3
B
• U = U(S, V, nB, nC, nD,……) • H = H(S, p, nB, nC, nD,……) • A = A(T, V, nB, nC, nD,……)
B (
dU TdS pdV (
B
U )S ,V ,nCB dnB nB
dH TdS Vdp (
1.19 2.42 3.45 3.09 4.12 3.96
第一,乙醇与 水混合后所得溶 液体积不等于混 合前乙醇与水的 体积之和; 第二,100g溶 液的体积与组成 有关。
70
80 90
88.69
101.36 114.03
30.12
20.08 10.04
118.81
121.44 124.07
115.25
• (2)化学势与温度压力的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
39
多组分 RT ln p RT ln p * RT ln(1 p ) RT ln(1 p* )
*
若 p*→0
f * p *
p p f (1 p) 1 p 9. 在 273.15K 、 101.325kPa 时 , 设 NH3 气 服 从 范 德 华 方 程 式 , 范 德 华 气 体 常 数 a=0.423Pa·m6·mol-1,b=3.71×10-5m3·mol-1,求气体的逸度。 解: Vm d V m dp p T ln f ln p ln(1 p) ln
MB 0.2283kg mol -1 63.2 8.8 28 : : 3 : 5 : 1 (3 12 5 1 1 16)n 228.3 n 4 C 12 H 20 O 4 12 1 16 17. 1.22×10-2kg 苯甲酸,溶于 0.10kg 乙醇后,使乙醇的沸点升高了 1.13K,若将 1.22×10-2kg 苯甲酸溶于 0.10kg 的苯中,则苯的沸点升高了 1.39K,计算苯甲酸在两种溶剂中的分子量, 计算结果说明什么问题。 12.2 解:在乙醇中,Kb=1.19 M1 128g T K b m1 1.19 10 1.13 M1
多组分系统热力学 乙醇的质量百分数 96﹪ 56﹪ VH /(10-6m3·mol-1) 14.61 17.11 V 乙醇 m/(10-6m3·mol-1) 58.01 56.58
2 O,m
解:设 96﹪酒中乙醇及水的量为 n1、n 2 mol 由偏摩尔量集合公式
V n1V1 n2 V2
6 6 即 10.0 n1 58.01 10 n2 14.61 10 96 n1 46.07 4 n2 18.02 5 解出: n1 1.68 10 mol n2 1.79 10 4 mol 设加入水的数量为 x mol,使 96﹪的酒变为 56﹪,此时乙醇的数量未变,故有 56 n1 46.07 x 3.19 10 5 mol n 2 x 44 18.02 0.01802 3 1 6 1 水的摩尔体积 VH O m mol 18.04 10 m3 mol 999.1 6 (1)加入水的体积 xVH O 3.19 10 5 18.04 10 m 3 =5.75m3
在苯中, K b 2 .6
41
多组分系统热力学
( 2) 1 gh1 2 gh2
1 1
13 2
618.99 h1 13 760m 63.14m 101.325 22. 某水溶液含有非挥发性溶质,在 271.7K 时凝固,求: (1)该溶液的正常沸点。 (2)在 298.15K 时的蒸气压(该温度时纯水的蒸气压为 3.178kPa) (3)298.15K 时的渗透压(假定溶液是理想的) Tf K b 1 .5 Tf Kf 0.52 解: ( 1) Tb K 0.42K Tb Kb Kf 1.86 t 100 0.42 100.42 ℃ Tf 1 .5 ( 2) T f K f m B m B kg mol -1 0.806kg mol -1 Kf 1.86 0.806 xB 0.0143 1000 0.806 18.02
m
* m
∵p*→0 时 f*=p* V*= V b a f b a ∴上式为 RT ln RT RT ln m * f* Vm b Vm Vm Vm
RT ln f RT ln p * RT
V b b 2a RT ln m * Vm b Vm Vm
* p * Vm b 2a ln f ln Vm b RTV m Vm b b 2a RT ln f ln Vm b RTV m Vm b 当 NH3 的 T=473.15K,p=1013.25kPa 时,NH3 的摩尔体积为
( 3) Π
p A p * xB ) 3.178 0.9857 Pa 312081Pa A (1
nB RT m B RT 0.806 8.314 298kPa 1998.13kPa V
23.三氯甲烷(A)和丙酮(B)所成的溶液,若液相的组成为 xB=0.713,则在 301.35K 时的 总蒸气压为 29.39kPa,在蒸气中 yB=0.818。已知在该温度时,纯三氯甲烷的蒸气压为 29.57kPa,试求: (1)混合液中三氯甲烷的活度。 (2)三氯甲烷的活度系数。
+2mol(B) ↑ △G1 1mol(A) + +1mol(A) △G2↑ 1mol(A) + 2mol(B)
△G=W=△G2-△G1= RT[1×ln(1/3)+2ln(2/3)]-RT(2ln0.5+2ln0.5) =2139J *16.某一新合成的有机物(X) , 其中含碳 63.2%, 氢 8.8%,其余的是氧 (均为质量百分数) 。 -5 -4 今将化合物 7.02×10 kg 溶于 8.04×10 kg 樟脑中,凝固点比纯樟脑低 15.3K,求 X 的摩尔质 量及化学式。樟脑的 Kf=40K·mol-1·kg。 5 WB 7.02 10 解: Tf 15.3 kf 40 4 M BWA 8.04 10 MB
12.2 233g T k b m2 2.60 10 1.36 M 2 M2 说明苯甲酸在苯中聚合(因为苯甲酸相对分子量为 122) 19.(1)求 4.40%葡萄糖(C6H12O6)的水溶液,在 300.2K 时的渗透压。 (2)若将溶液与水用半透膜隔开,试问在溶液的一方需要多高的水柱才能使之平衡。 (溶 3 -3 液的密度为 1.015×10 kg·m ) 4 .4 8.314 300 n RT ( 1) Π C 2 RT B 18.1 618.99kPa 1000 V 1.015
大量的 A 和 B 的等物质量 的混合物
dT=0
1mol 纯物质 A
+
大量的 A 和 B 的等物 质量的混合物 -1mol 纯物质 A
1) G W RT ln 0.5 [ 8.314 298.15ln 0.5]J 1717J B B 2) 2mol(A) △G 1mol(A) + 2mol(B)
40
多组分系统热力学
0.432Pa m mol 5 1 (1013250Pa )(Vm2 3.71 10 m3 mol ) 2 Vm
6 2
3 1 Vm 3.81 10 m3 mol
5
则
3.71 10 2 0.423 8.314 473 .15 f exp ln Pa 3 5 3 3 5 3.81 10 3.71 10 8.314 473 .15 3.81 10 3.81 10 3.71 10 =9.95×105Pa 12. 在 298.15K 时,要从下列混合物中分出 1mol 的纯的 A,试计算最少必须作功的值。 (1)大量的 A 和 B 的等物质量的混合物;(2)含 A 和 B 物质的量各为 2mol 的混合物。 解:
f RT ln p ∴ d RTdln(f/p) f f RTd ln Vm dp f* p
RT ln f f* Vm dp
p* p
(1)
Vm
V
p*
p
m
dp pV m
p
pVm p *Vm
* * pdV pVm p Vm pdV
3.在 301.2K 和 p压力下,使干燥的空气 0.025dm3 通入水中,然后在水面上收集。若忽略空 气在水中的溶解,已知 301.2K 时, p H 2O =3733Pa ,求( 1 )若使收集的气体的体积仍为 0.025dm3,问其压力为若干?(2)若压力为 p,问气体的体积为若干? p=p=[101325+3733]Pa=105058Pa p V 105058 0.025 V 1 1 dm 3 0.02592dm 3 p2 101325 31.在 292.15K,p时,某酒窖中存有 10.0m3 的酒,其中含乙醇 96﹪(质量百分数) 。今欲加 水调制为含乙醇 56﹪的酒,问 (1)应加多少体积的水; (2)能得到多少 m3 的含醇 56﹪的酒。 已知该条件下水的密度为 999.1kg·m-3,水和乙醇的偏摩尔体积分别为
∴ RT ln
V RT b a a 2 dV V f* Vm b Vm Vm b Vm 1 V b b a 1 RT RT ln m a * * Vm b Vm Vm b V m Vm
f
RT
2 2 2 2
1 K O n O
2
2
1 K N n N
2
2
1 K Ar n Ar
nO 3.11
2
n' O
x' O
2
2
1 1 1 nN 1.57 n Ar 3.3 RT RT RT 0.21 3.11 0.78 1.57 0.0094 3.36 n' N n' Ar RT RT RT , nO 0.6531 1.2246 , 0.34 x' N 0.64 , , nO nN n Ar 1.9093 1.9093
g p px A 29.39(1 0.918) 解:(1) a A A 0.181 * * pA pA 29.57
* Vm * Vm
Vm
* 在上式中 V*是在 p*→0 时的体积,这时气体具有理想气体的性质,因此 p* Vm =RT。
则上式为: V m dp pV m RT pdV
p*