电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套
电磁场与电磁波第二版课后答案 (2)
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波习题答案3杨儒贵
已知导体球的电位为,而镜像电荷及球外点电荷对于球面边界的电位没有贡献,因此,球心镜像电荷q的电量应满足
即
②当导体球携带的电荷为Q时,在离球心 处的镜像电荷仍然为 ,而球心处的镜像电荷 ,以保持电荷守恒,即 。
;
计算腔外场强也可应用镜像法,此时导体球的半径为a,如习题图3-15(b)所示。但是腔中必须引入两个镜像电荷q0和q,其中q0位于球心,q的位置和电量,以及q0的电量分别为
; ;
综上所述,腔内场强由两个点电荷q和q共同产生,腔外场强由三个点电荷q,q和q共同产生,而导体内的场强为零。
3-16已知点电荷q位于半径为a的导体球附近,离球心的距离为f,试求:①当导体球的电位为时的镜像电荷;②当导体球的电荷为Q时的镜像电荷。
由图可知
因此, ,即镜像电荷分布函数为
3-13已知一个不接地的半径为a的导体球携带的电荷为Q,若电荷为Q的点电荷移向该带电球,试问当点电荷受力为零时离球心的距离。(当点电荷所带电荷与导体球所带电荷相反时,点电荷肯定受到引力,即其受力不可能为零)。
解如习题题3-10所示,如前所述,根据镜像法,若导体球原先不带电,对于点电荷Q,必须在球内距离球心 处引入一个镜像电荷 ,而在球心处再放置另一个电量为 的点电荷,以保持电荷守恒及导体球为等位体。本题中导体球已带有电量为Q的电荷,因此在球心处放置的另一个镜像电荷的电量应为(Q )。那么,点电荷 将受到的镜像电荷的作用力为
若高度h>>a,上式还可进一步简化为
3-6一根无限长线电荷平行放置
在夹角60的电劈的中央部位,
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第8章
第八章 平面电磁波8-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。
解 非均匀的各向同性线性媒质中,正弦电磁场应该满足的麦克斯韦方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇)(),()(0),()(),()(),(),()(),(),(r r E r r H r r H r r E r E r r J r H ρεμμεt t t t t t t t t , 分别对上面两式的两边再取旋度,利用矢量公式A A A 2)(∇-⋅∇∇=⨯∇⨯∇,得⎪⎪⎭⎫ ⎝⎛∇⋅-∇+∂∂+∂∂⨯∇=∂∂-∇)()(),(),(),()(),()(),()()(),(222r r r E r r J r r H r r E r r r E εερμμμεt t t t t t t t t ⎪⎪⎭⎫ ⎝⎛∇⋅∇-∂∂⨯∇-⨯-∇=∂∂-∇μμεμε)(),(),()(),(),()()(),(222r r H r E r r J r H r r r H t t t t t t t 则相应的亥姆霍兹方程为⎪⎪⎭⎫ ⎝⎛∇⋅-∇++⨯∇=+∇)()()()()()(j )()(j )()()()(22r r r E r r J r r H r r E r r r E εερωμμωμεω⎪⎪⎭⎫ ⎝⎛∇⋅∇-⨯∇-⨯-∇=+∇μμεωμεω)()()()(j )()()()()(22r r H r E r r J r H r r r H 8-2 设真空中0=z 平面上分布的表面电流t J s x s sin 0ωe J =,试求空间电场强度、磁场强度及能流密度。
解 0=z 平面上分布的表面电流将产生向z +和z -方向传播的两个平面波,设z > 0区域中的电场和磁场分别为)(1z,t E ,)(1z,t H ,传播方向为z +;而z < 0区域中的场强为)(2z,t E 和)(2z,t H ,传播方向为z -。
杨儒贵版高等电磁理论课后习题解答 第 4 章
r2 r d cos r d sin sin
r d 时,电流源及其镜像在空间产生的矢量
Il r
1
2
1
A2 ez
Il jkr Il jkr e ez e 4 r2 4 r
2
所以空间的辐射场为:
1
1
kr kr kr Il Il (je jjkr1 je j kr2 ) sin E je je A1 A11sin sinsin ) EE j( (( sinsin A2 A22 sin ) jjje (e e A A ) e e e ) sin 44 r r Il kr kr Z Z kr IlIl je jjkr sin sin(kd sin sin ) e 0 Il 0 Il je j kr sin ee e sin( sin sin ) e e sinsin sin(kd sin sin e e sin sin( kd kd sin sin sin(kd sin sin ) 现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
4-2 应用镜像原理,如图4-2所示,r为场点到原点的距离,r1、r2分别为电流 源及其镜像到场点的距离,则
r1 r d cos r d sin sin
2
2
H e
E Il jkr e e sin sin(kd sin sin ) Z0 r
电磁场与电磁波基础教程(第2版)习题解答
《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。
1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。
1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。
1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。
1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
电磁场与电磁波第二版课后答案
电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E试求球内外各点的电位。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版
r1 r2 r1r2 因此,
cos sin1 sin2 (cos1 cos2 sin1 sin2 ) cos1 cos2 sin1 sin2 cos(1 2 ) cos1 cos 2
cos( ) cos cos sin sin 证明 由于两矢量位于 z 0平面内,因此均为二维矢量, 它们可以分别表示为
A ex A cos ey A sin B ex B cos ey B sin
已 知 A B A B c o s , 求 得
cos A B cos cos A B sin sin
AB
即
cos( ) cos cos sin sin
1-3 已 知 空 间 三 角 形 的 顶 点 坐 标 为 P1(0, 1, 2) , P2 (4, 1, 3) 及 P3 (6, 2, 5) 。试 问 :① 该 三 角 形 是 否 是 直 角 三 角形;②该三角形的面积是多少? 解 由题意知,三角形三个顶点的位置矢量分别为
解 ① A Ax2 Ay2 Az2 12 22 32 14
B
Bx2
B
2 y
Bz2
32 12 22 14
C Cx2 Cy2 Cz2 22 02 12 5
②
ea
A A
A 14
1 14
ex 2ey 3ez
4
将点 P(1,2,3)
的
坐
标
代
入
,
得
P
e y
6
e3
ez
3 e3 。 2
那么,在 P 点的最大变化率为
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q 根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(3 0 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇ 矢量磁位微分方程的解:V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
【精品】电磁场与电磁波课后习题答案杨儒贵编着第二版第4章
第四章静电场4-1已知一根长直导线的长度为1km ,半径为0.5mm ,当两端外加电压6V 时,线中产生的电流为61A ,试求:①导线的电导率;②导线中的电场强度;③导线中的损耗功率。
解(1) 由IR V =,求得 ()Ω==366/16R 由SR σ=,求得导线的电导率为 ()()m S 1054.3105.036107233⨯=⨯⨯⨯==-πσRS 导线中的电场强度为()m V 10610633-⨯===V E 单位体积中的损耗功率2E P l σ=,那么,导线的损耗功率为()W 122==L r E P πσ4-2设同轴线内导体半径为a ,外导体的内半径为b ,填充媒质的电导率为σ。
根据恒定电流场方程,计算单位长度内同轴线的漏电导。
解设0;,====ϕϕ时,时b r V a r 。
建立圆柱坐标系,则电位应满足的拉普拉斯方程为0d d d d 12=⎪⎭⎫⎝⎛=∇r r r r ϕϕ求得同轴线中的电位ϕ及电场强度E 分别为则 re E J ⎪⎭⎫ ⎝⎛-==b a Vr ln 1σσ单位长度内通过内半径的圆柱面流进同轴线的电流为⎪⎭⎫ ⎝⎛=⋅=⎰b a VI sln 2d πσs J 那么,单位长度内同轴线的漏电导为 ⎪⎭⎫⎝⎛===b a V I R G ln 21πσ()m S 4-3设双导线的半径a ,轴线间距为D ,导线之间的媒质电导率为σ,根据电流场方程,计算单位长度内双导线之间的漏电导。
解设双导线的两根导线上线电荷密度分别为+和,利用叠加原理和高斯定理可求得两导线之间垂直连线上任一点的电场强度大小为⎪⎭⎫ ⎝⎛-+=r D r E 112περ那么,两导线之间的电位差为 aaD V ad a-=⋅=⎰-lnd περr E 单位长度内两导线之间的电流大小为()a D D I ss-=⋅=⋅=⎰⎰ερσσs E s J d d 则单位长度内两导线之间的漏电导为()⎪⎭⎫⎝⎛--===a a D a D DVI R G ln 1πσ()m S 若a D >>则单位长度内双导线之间的漏电导为⎪⎭⎫⎝⎛=a D G ln πσ()m S 4-4已知圆柱电容器的长度为L ,内外电极半径分别为a 及b ,填充的介质分为两层,界面半径为c 。
电磁场与电磁波(杨儒贵_版)课后思考题答案
电磁场与波课后思考题之马矢奏春创作 创作时间:贰零贰壹年柒月贰叁拾日1-2 什么是标量与矢量?举例说明.仅具有大小特征的量称为标量.如:长度,面积,体积,温度,气压,密度,质量,能量及电位移等.不但具有大小而且具有方向特征的量称为矢量.如:力,位移,速度,加速度,电场强度及磁场强度.1-3 矢量加减运算及矢量与标量的乘法运算的几何意义是什么?矢量加减运算暗示空间位移.矢量与标量的乘法运算暗示矢量的伸缩.1-4 矢量的标积与矢积的代数定义及几何意义是什么? 矢量的标积: ,A矢量的模与矢量B在矢量 A方向上的投影大小θcos B A B A B A B A B A z z y y x x =++=⋅的乘积.矢积: 矢积的方向与矢量A,B 都垂直,且 由矢量A 旋转到B,并与矢积构成右旋关系,大小为1-5 什么是单位矢量?写出单位矢量在直角坐标中的表达式. 模为1的矢量称为单位矢量.1-6 梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的暗示式.标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向 在直角坐标中的暗示式: 1-7 什么是矢量场的通量?通量值为正,负或零时分别代表什么意义?矢量A 沿某一有向曲面S 的面积分称为矢量A 通过该有向曲面S 的通量,以标量暗示,即 通量为零时暗示该闭合面中没有矢量穿过.通量为正时暗示闭合面中有源;通量为负时暗示闭合面中有洞.z y x z y x z y x B B B A A A e e e B A =⨯θsin B A e z θsin B Aa e zy x e e e γβαcos cos cos ++=zy x e ze y e x ∂∂+∂∂+∂∂=∇⎰⋅=SS A Ψ d1-8 给出散度的定义及其在直角坐标中的暗示式. 散度:当闭合面S 向某点无限收缩时,矢量A 通过该闭合面S的通量 与该闭合面包抄的体积之比的极限称为矢量场A 在该点的散度。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第6章
第六章 电磁感应6-1 一个半径为a 的导体圆盘位于均匀恒定磁场0B 中,恒定磁场0B 的方向垂直于圆盘平面,若该圆盘以角速度ω绕其轴线旋转,求圆盘中心与边缘之间的电压。
解 将导体圆盘分割为很多扇形条,其半径为a ,弧长为φd a 。
当导体圆盘旋转时,扇形条切割磁力线产生的电动势等于圆盘中心与边缘之间的电压。
根据书中式(6-1-11),在离圆盘中心为r ,长度为r d 的线元中产生的电动势为0d d B v l ⋅⨯=e r r B d 0ω=因此,圆盘中心与边缘之间的电压为2000 21d a B r r Be aωω==⎰ 6-2 一个面积为b a ⨯的矩形 线圈位于双导线之间,位置 如习题图6-2所示。
两导线 中电流方向始终相反,其变 化规律为A )102sin(10921t I I ⨯==π, 试求线圈中感应电动势。
习题图6-2解 建立的坐标如图6-2所示。
在c b x c +<<内,两导线产生的磁感应强度为()x d c b I x I zz-+++=πμπμ222010e e Β 则穿过回路的磁通量为s Β⎰⋅=sm d Φx a x d c b x I z cb czd 11210e e ⋅⎪⎭⎫⎝⎛-+++=⎰+πμ ()()cdd b c b a I ++=ln 210πμ 则线圈中的感应电动势为te md d Φ-=()()t I cd d b c b a d d ln 210++-=πμ()()()V 10ln 102cos 1090⨯⎥⎦⎤⎢⎣⎡++⨯-=cd d b c b t a πμ 6-3 设带有滑条AB 的两根平行导线的终端并联电阻Ω2.0=R ,导线间距为0.2m ,如习题图6-3所示。
若正弦电磁场t B z sin 5ωe =垂直穿过该回路,当滑条AB 的位置以m ) cos 1(35.0t x ω-=规律变化时,试求回路中的感应电流。
解 建立的坐标如图6-3所示。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)第7章
第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。
(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。
设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。
那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。
7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。
习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。
7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。
解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版要点
为
P 3ex 9ey
在 P 点处的梯度
1-9 试 证 式 ( 1-6-11 ) 及 式 ( 1-6-12 )。
证 明 式 ( 1-6-11 ) 为 CA C A , 该 式 左 边 为
CA
CAx
CA y
CAz C Ax
Ay
Az
CA
x
y
z
xyz
即
CA C A
式 ( 1-6-12 ) 为
A
A A ,该式左边为
r2 sin 2 sin 2
r1 sin
1 sin
2 1
r2 cos 2
r1 cos
2 1
r22 r12 2r2r1 sin 2 sin 1 cos 2 1 cos 2 cos 1
1-11 已 知 两 个 位 置 矢 量 r1 及 r2 的 终 点 坐 标 分 别 为
(r1 , 1, 1) 及 (r2 , 2 , 2 ) , 试 证 r1 与 r2 之 间 的 夹 角 为
dx 4yd y ,则
P1
P1
A dl
ydx xd y
P1 4y 2 d y 2 y2 d y
P1 6 y2 d y 2 y3 1
14
P2
P2
P2
P2
2
② 积 分 路 线 为 直 线 。 因 P1, P2 两 点 位 于 z 1 平 面 内 ,
过 P1, P2 两 点 的 直 线 方 程 为 y 1
1-7 已 知 标 量 函 数
sin x sin y e z ,试 求 该 标 量 函
2
3
数 在 点 P (1,2,3) 处 的 最 大 变 化 率 及 其 方 向 。 解 标量 函 数在 某点 的最大 变化 率即 是函数 在该 点的 梯 度值。已知标量函数 的梯度为
(完整版)电磁场与电磁波(杨儒贵_版)课后思考题答案.docx
电磁场与波课后思考题1-1 什么是标量与矢量?举例说明 .仅具有大小特征的量称为标量.如:长度 ,面积 ,体积 ,温度 ,气压 ,密度 ,质量 ,能量及电位移等.不仅具有大小而且具有方向特征的量称为矢量 .如:力 ,位移 ,速度 ,加速度 ,电场强度及磁场强度 .1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么矢量加减运算表示空间位移.矢量与标量的乘法运算表示矢量的伸缩.1-3矢量的标积与矢积的代数定义及几何意义是什么?矢量的标积 : A B A x B x A y B y A z B z A B cos ,A 矢量的模与矢量 B 在矢量 A方向上的投影大小的乘积 .矢积 :e x e y e z矢积的方向与矢量A,B 都垂直 ,且A B A x A y A z e z A B sin由矢量 A 旋转到 B,并与矢积构成右B x B y B z旋关系 ,大小为 A B sin1-4什么是单位矢量 ?写出单位矢量在直角坐标中的表达式.模为 1的矢量称为单位矢量. e a cos e x cos e y cos e z1-5梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式 .标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向.梯度方向垂直于等值面,指向标量场数值增大的方向在直角坐标中的表示式:x e x y e y z e z1-6什么是矢量场的通量 ?通量值为正 ,负或零时分别代表什么意义?矢量 A 沿某一有向曲面S 的面积分称为矢量 A 通过该有向曲面S 的通量 ,以标量表示,即Ψ A dS通量为零时表示该闭合面中没有矢量穿过.S; 通量为负时表示闭合面中有洞 .通量为正时表示闭合面中有源1-7给出散度的定义及其在直角坐标中的表示式.d 散度:当闭合面S向某点无限收缩时,矢量 A 通过该闭合面S的通量div Alim S 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。
高等电磁理论-杨儒贵-课后习题详解
1-1利用fourier 变换,由时域形式的Maxwell方程导出其频域形式解:时域形式的Maxwell方程为:∇×H(r,t)=J(r,t)+ðD(r,t)ðt∇×E(r,t)=−ðB(r,t)ðt∇∙B(r,t)=0∇∙D(r,t)=ρ(r,t) Fourier变换的定义为F(ω)=∫f(t)+∞−∞e−iωt dt 将第一个方程两边同时进行Fourier变换得:∫∇×H(r,t) +∞−∞e−iωt dt=∫[J(r,t)+∞−∞+ðD(r,t)ðt]e−iωt dt对矢量场某点先取旋度再积分等于先积分再取旋度,整理得:∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+∫ðD(r,t)ðt+∞−∞e−iωt dt由于∫ðD(r,t)ðt+∞−∞e−iωt dt=∫e−iωt+∞−∞dD(r,t)=e−iωt D(r,t)|−∞+∞+iω∫D(r,t)+∞−∞e−iωt dt由Fourier 变换的绝对可积的条件可得:e−iωt D(r,t)|−∞+∞=0故∫ðD(r,t)ðt+∞−∞e−iωt dt=iω∫D(r,t)+∞−∞e−iωt dt∇×∫H(r,t)+∞−∞e−iωt dt=∫J(r,t)+∞−∞e−iωt dt+iω∫D(r,t)+∞−∞e−iωt dt因此:∇×H(r,ω)=J(r,ω)+iωD(r,ω)同理可得∇×E(r,ω)=−iωB(r,ω)∇∙B(r,ω)=0∇∙D(r,ω)=ρ1-2:各向异性的介电常数为ε̅=ε0[720240003]当外加电场强度为 (1) E 1=e x E 0 (2) E 2=e y E 0 (3) E 3=e z E 0(4) E 4=E 0(e x +2e y ) (5) E 4=E 0(2e x +e y ) 产生的电通密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。
解 在a r <区域中,电位为()()aqr a a q r aa rr+-=⋅+⋅=⋅=⎰⎰⎰∞∞222d d d r E r E r E ϕ 在a r >区域中,()rq r r=⋅=⎰∞r E d ϕ2-13 已知圆球坐标系中空间电场分布函数为⎪⎩⎪⎨⎧≥≤=a r ra a r r, ,253r e E试求空间的电荷密度。
解 利用高斯定理的微分形式0ερ=⋅∇E ,得知在球坐标系中 ()()r E r rr r 220d d 1εερ=⋅∇=E 那么,在a r ≤区域中电荷密度为()()20525d d 1r r rr r εερ== 在a r ≥区域中电荷密度为()()0d d 152==a rr r ερ 2-17 若在一个电荷密度为ρ,半径为a 的均匀带电球中,存在一个半径为b 的球形空腔,空腔中心与带电球中心的间距为d ,试求空腔中的电场强度。
解 此题可利用高斯定理和叠加原理求解。
首先设半径为a 的整个球内充满电荷密度为ρ的电荷,则球内P 点的电场强度为r e E r P 032013 3441ερρππε==r r 式中r 是由球心o 点指向P 点的位置矢量,再设半径为b 的球腔内充满电荷密度为ρ-的电荷,则其在球内P 点的电场强度为r e E rP '-='''-=0320233441ερρππεr r 式中r '是由腔心o '点指向P 点的位置矢量。
那么,合成电场强度P P E E 21+即是原先空腔内任一点的电场强度,即()d r r E E E P P P 002133ερερ='-=+= 式中d 是由球心o 点指向腔心o '点的位置矢量。
可见,空腔内的电场是均匀的。
2-19 已知内半径为a ,外半径为b 的均匀介质球壳的介电常数为ε,若在球心放置一个电量为q 的点电荷,试求:①介质壳内外表面上的束缚电荷;②各区域中的电场强度。
解 先求各区域中的电场强度。
根据介质中高斯定理习题图2-17re D s D 2244d rqq D r q sππ=⇒=⇒=⋅⎰ 在a r ≤<0区域中,电场强度为r e DE 2004rq πεε==在b r a ≤<区域中,电场强度为re DE 24rqπεε==在b r >区域中,电场强度为r e DE 2004r q πεε==再求介质壳内外表面上的束缚电荷。
由于()E P 0εε-=,则介质壳内表面上束缚电荷面密度为()2020414a qa q s πεεπεεερ⎪⎭⎫ ⎝⎛--=--=⋅-=⋅=P e P n r外表面上束缚电荷面密度为()2020414b qb q s πεεπεεερ⎪⎭⎫ ⎝⎛-=-=⋅=⋅=P e P n r 2-20 将一块无限大的厚度为d 的介质板放在均匀电场E 中,周围媒质为真空。
已知介质板的介电常数为ε,均匀电场E 的方向与介质板法线的夹角为1θ,如习题图2-20所示。
当介质板中的电场线方向42πθ=时,试求角度1θ及介质表面的束缚电荷面密度。
习题图2-20e n解 根据两种介质的边界条件获知,边界上电场强度切向分量和电通密度的法向分量连续。
因此可得221sin sin θθE E =; 221cos cos θθD D =已知220 ,E D E D εε==,那么由上式求得⎪⎭⎫⎝⎛=⇒==⇒=εεθεεθεεθεεθθ010201021arctan tan tan tan tan已知介质表面的束缚电荷)(0E D e P e ερ-⋅=⋅='n n s, 那么,介质左表面上束缚电荷面密度为10021020211cos 111θεεεεεεερE n s⎪⎭⎫⎝⎛--=⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅=⋅='D e D e P e n n1介质右表面上束缚电荷面密度为100220202222cos 111θεεεεεεερE n s⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅=⋅='D e D e P e n n 2-21 已知两个导体球的半径分别为6cm 及12cm ,电量均为6103-⨯C ,相距很远。
若以导线相连后,试求:①电荷移动的方向及电量;②两球最终的电位及电量。
解 设两球相距为d ,考虑到d >> a , d >> b ,两个带电球的电位为⎪⎭⎫ ⎝⎛+=d q a q 210141πεϕ;⎪⎭⎫⎝⎛+=d q b q 120241πεϕ 两球以导线相连后,两球电位相等,电荷重新分布,但总电荷量应该守恒,即21ϕϕ=及()C 106621-⨯==+q q q ,求得两球最终的电量分别为()()C 10231261-⨯=≈-+-=q q ab bd ad b d a q()()C 10432262-⨯=≈-+-=q q ab bd ad a d b q可见,电荷由半径小的导体球转移到半径大的导体球,移动的电荷量为()C 1016-⨯。
两球最终电位分别为()V 103415101⨯=≈a q πεϕ()V 103415202⨯=≈b q πεϕ3-4 一根无限长的线电荷平行放置在一块无限大的导体平面附近,如习题图3-4所示。
已知线电荷密度)C/m (10=l ρ,离开平面的高度5=h m ,空间媒质的相对介电常数4=r ε。
试求:① 空间任一点场强及能量密度;② 导体表面的电荷密度;③ 当线电荷的高度增加一倍时,外力对单位长度内的线电荷应作的功。
解 ①建立圆柱坐标,令导体表面位于xz 平面,导体上方场强应与变量z 无关。
根据镜像法,上半空间中任一点),(y x P 的场强为⎥⎦⎤⎪⎪⎭⎫ ⎝⎛+++--+-+⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++--+=⎥⎦⎤⎢⎣⎡++++--+-+=-+=y xy x y x e e e e e e r r E 222222222222222211)()()()( )()(2 )()()()(222h y x h y h y x h y h y x xh y x x h y x h y x h y x h y x r r rlr l r l r l περπερπερπερ电场能量密度为222222222222444222])([])([)222(221h y x h y x h y y x h x h y x h E w r l r ++-+-++++==περε 已知导体表面的电荷面密度0==y s nD ρ,那么)m /C ()(22200h x hl y yr y s +-=====πρερE D n 单位长度内线电荷受到的电场力可等效为其镜像线电荷对它的作用导体习题图3-4x力,即y e F 22)2(2h r lπερ-= 可见,线电荷受到的是吸引力。
所以,当线电荷的高度h 增加一倍时,外力必须做的功为11222221081.216d )2(2d )(⨯===⋅-=⎰⎰h y y W r l hhr l h hπερπερl F (J )。
3-10 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。
若将该球接地后,再计算点电荷q 的受力。
证明 根据镜像法,必须在球内距球心fa d 2=处引入的镜像电荷q faq -='。
由于球未接地,为了保持总电荷量为零,还必须引入另一个镜像电荷-q ',且应位于球心,以保持球面为等电位。
那么,点电荷q 受到的力可等效两个镜像电荷对它的作用力,即,rr e e F 22202201)(4)(4a f afq d f q q --=-'=πεπε(N ) r r e e F 30220244f aq f q q πεπε='-=(N )合力为 re F F F 22230223221)(4)2(a f f a f a q ---=+=πε(N ) 当导体球接地时,则仅需一个镜像电荷q ',故q 所受到的电场力为F 1。
3-11 在半径为a 的接地导体球附近,沿径向放置一根长度为l 的线电荷,如习题图3-11(a)所示。