铁碳合金的基本组织doc

合集下载

铁碳合金的基本组织名称类型特点

铁碳合金的基本组织名称类型特点

铁碳合金的基本组织名称类型特点引言铁碳合金是一种重要的结构材料,其基本组织对其性能具有重要影响。

本文将介绍铁碳合金的基本组织的名称、类型和特点,并对其进行全面详细、完整且深入的讨论。

铁碳相图在讨论铁碳合金的基本组织之前,我们先来了解一下铁碳相图。

铁碳相图是描述铁和碳在不同温度下形成的各种相和组织之间关系的图表。

根据温度和碳含量,铁碳相图可以分为几个不同区域,包括奥氏体区、珠光体区、贝氏体区等。

铁碳合金基本组织名称贝氏体贝氏体是铁碳合金中常见的一种基本组织,它由奥氏体和渗碳体共同组成。

贝氏体具有板状或条状的形态,其中奥氏体间隔着渗碳体。

珠光体珠光体是另一种常见的铁碳合金基本组织,它由奥氏体和渗碳体组成。

和贝氏体不同,珠光体中的奥氏体呈球状或半球状,渗碳体分布在奥氏体之间。

渗碳体渗碳体是铁碳合金中的一种特殊组织,其主要成分是铁和碳。

渗碳体可以分为多种类型,包括颗粒状、带状、网状等形态。

马氏体马氏体是铁碳合金中的一种相,其形成需要快速冷却过程。

马氏体具有板条状或针状的形态,具有较高的硬度和强度。

铁碳合金基本组织类型特点贝氏体贝氏体具有良好的韧性和延展性,适用于对抗冲击和振动载荷的应用。

然而,贝氏体的硬度较低,常常需要通过热处理来提高其强度。

珠光体珠光体具有较高的韧性和强度,适用于对静态载荷和腐蚀环境下的应用。

珠光体可以通过控制冷却速率来调节其形态和性能。

渗碳体渗碳体具有良好的耐磨性和硬度,适用于对摩擦和磨损要求较高的应用。

渗碳体可以通过调节温度和时间来控制其形态和厚度。

马氏体马氏体具有极高的硬度和强度,适用于对抗冲击和挤压载荷的应用。

然而,马氏体的脆性较高,容易发生断裂。

结论铁碳合金的基本组织包括贝氏体、珠光体、渗碳体和马氏体。

不同组织具有不同的特点和应用领域。

了解铁碳合金基本组织的名称、类型和特点对于设计合金材料具有重要意义。

在实际应用中,可以通过控制冷却速率、调节温度和时间等方法来控制铁碳合金的组织形态,从而实现所需的力学性能。

铁碳合金基本组织

铁碳合金基本组织

组织名称铁素体奥氏体渗碳体珠光体莱氏体符号含碳量存在温度强度硬度塑性韧性其他性能铁碳合金的基本组织1、根据构成合金元素之间相互作用不同,合金组织可分为______、_________、_______三种类型。

2、组元在固态时,互相溶解形成均匀一致的固体合金称为______,根据溶质原子在熔剂晶格中所处的位置不同,它可分为__ ___和___ __两种。

3、组成合金的组元,发生________,而形成一种具有________的固体物质,称为金属化合物,其性能特点是___ 、 ___、______和____ __。

4、两种或两种以上的相,按一定质量百分数组成物质称为_______。

铁碳合金中,这样的组织有________和________。

5、填写铁碳合金基本组织的符号:奥氏体 ;铁素体;渗碳体 ;珠光体 ;高温莱氏体 ;低温莱氏体 。

6、珠光体是由 和 组成的机械混合物。

7、莱氏体是由 和 组成的机械混合物。

8、奥氏体在1148℃时质量分数可达 ,在727℃时碳的质量分数为9、727℃以上存在的莱氏体称为 莱氏体;727℃以下存在的莱氏体称为莱氏体或 莱氏体。

10、碳溶解在_ __中所形成的 固溶体称为奥氏体。

11、碳溶解在_ _ _中所形成的 固溶体称为铁素体。

12、铁碳合金室温的基本组织有__ _、_ _、___、和 等。

13、铁素体 晶格,奥氏体为 晶格,渗碳体为晶格。

A.体心立方 B.面心立方 C.密排六方 D.复杂的14、珠光体是一种( )A.两相混合物B.单相固溶体C.Fe与C化合物D.金属化合物15、渗碳体的性能特点是 。

( )A、强度和硬度不高,塑性良好B、硬度高,极脆,塑性几乎等于零C、强度较高,硬度适中,有一定的塑性16、碳钢的下列各组织中,哪个是复相组织( )A、珠光体B、铁素体C、渗碳体D、马氏体17、铁素体的力学性能特点是( )A.强度高,塑性好,硬度高B.强度低,塑性差,硬度低C.强度高,塑性好,硬度低D.强度低,塑性好,硬度低18、组元是指组成合金的最基本的独立物质。

3-2铁碳合金的基本组织

3-2铁碳合金的基本组织

明朝国家栋梁
谢 谢
谢谢观看! 请多指导!
渗碳体 Fe C 3
珠光体 莱氏体
P
Ld
L
4.3
硬度很高,塑性、韧性 极差
§3-2 铁碳合金的基本组织与性能
1、铁碳合金的基本组织的符号。
2、铁碳合金的基本组织的含碳量。 3、铁碳合金的基本组织的性能。
一、填空题:
1、铁碳合金的基本组织有五种, 它们是 铁素体、 奥氏体、
渗碳体、 珠光体、 莱氏体。




全国中等职业技术学校机械类通用教材
中国劳动社会保障出版社
金属材料与热处理
张春英
第五版
第三章
§3 -2
铁碳合金
铁碳合金的基本组织与性能
1、什么是合金? 2、什么是合金中的组元和相? 3、什么是合金的组织?
4、合金的组织有哪几种类型?
1、什么是合金?
合金是由两种或两种 以上的元素所组成的金属 材料。
奥 氏 体
1、符号: 用“A ”表示
2、溶碳能力: 较强。在1148℃时可溶碳 为2.11%,在727℃时,可 溶碳为0.77%。
3、性能特点:
强度、硬度不高,具有良好 的塑性,是绝大多数钢在高温 进行锻造和轧制时所要求的组 织。
三、渗碳体 渗碳体是含碳
量为6.69%的铁
与碳的金属化合 物,其化学式为
由于奥氏体在727℃时转变为珠 光体,所以在室温下的莱氏体由 珠光体和渗碳体组成的混合物。
2、溶碳能力:C=4.3% 3、性能特点:硬度很高,塑 性、韧性极差。
.
组织名称
符号
含碳量 %
性能特点
铁素体
F A
奥氏体

第4讲铁碳合金基本组织及铁碳合金相图分析

第4讲铁碳合金基本组织及铁碳合金相图分析

第4讲铁碳合⾦基本组织及铁碳合⾦相图分析第三章铁碳合⾦第⼀节基本组织⼀、铁碳合⾦的基本组织1、铁素体(F)铁素体是碳溶解在α-Fe中形成的间隙固溶体。

由于α-Fe晶粒的间隙⼩,溶解碳量极微,其最⼤溶碳量只有0.0218%(727℃)所以是⼏乎不含碳的纯铁。

=180~230Mpa性能:σbHB=50~80δ=30~50%φ=70~80%ak=156~196J·cm-2显微镜下观察,铁素体呈灰⾊并有明显⼤⼩不⼀的颗粒形状。

Array C)2、渗碳体(Fe3渗碳体是铁与碳形成的稳定化合物。

含碳量为6.69%性能:HB=800,硬度很⾼,脆性极⼤,是钢中的强化相。

显微镜下观察,渗碳体呈银⽩⾊光泽。

渗碳体在⼀定条件下可以分解出⽯墨,3、奥⽒体(A)奥⽒体是碳溶解在γ-Fe中形成的间隙固溶体。

γ-Fe的溶碳能⼒较⾼,最⼤为2.11%(1148℃)。

由于γ-Fe⼀般存在于727~1394℃之间,所以奥⽒体也只出现在⾼温区域内。

显微镜观察,奥⽒体呈现外形不规则的颗粒状结构,并有明显的界限。

性能:δ=40~50%,具有良好的塑性和低的变形抗⼒。

是绝⼤多数钢种在⾼温进⾏压⼒加⼯所需的组织。

4、珠光体(P)珠光体是铁素体和渗碳体组成的共析体。

珠光体的平均含碳量为0.77%,在727℃以下温度范围内存在。

显微镜观察,珠光体呈层⽚状特征,表⾯具有珍珠光泽,因此得名。

=750Mpa性能:σbHB=160~180较⾼δ=20~25%φ=30~40%适中5、莱⽒体(Ld)莱⽒体是由奥⽒体和渗碳体组成的共晶体。

铁碳合⾦中含碳量为4.3%的液体冷却到1148℃时发⽣共晶转变,⽣成⾼温莱⽒体。

合⾦继续冷却到727℃时,其中的奥⽒体转变为珠光体,故室温时由珠光体和渗碳体组成,叫低温莱⽒体。

统称莱⽒体。

第⼆节铁碳合⾦相图分析各主要线的意义:相图中的线是把具有相同转变性质的各个成分合⾦的开始点和终了点,分别⽤光滑曲线连接起来得到的,代表了铁碳合⾦内部组织发⽣转变的界限。

§3-2 铁碳合金的基本组织与性能

§3-2  铁碳合金的基本组织与性能
§3-2 铁碳合金的基本组织与性能
§3-2 铁碳合金的基本组织与性能
一、铁素体(F)
二、奥氏体(A)
三、渗碳体(Fe3C或Cm) 四、珠光体(P) 五、莱氏体(Ld)
一、铁素体(F)
碳溶解在α—Fe中形成的间隙固溶体,用符号 F 表示。
铁素体的晶胞示意图
铁素体的显微组织
铁素体(F)
(1)概念:碳溶解在α-Fe中形成的间隙固溶体称
有奥氏体和渗碳体; L΄d(低温莱氏体,温度<7270C) 有珠光体和渗碳体组成。 (3)溶碳能力:C=4.3% (4)性能特点:硬度很高,塑性很差。
小结
1.铁碳合金有五种组织:铁素体、奥氏体、渗碳体、珠光体、 莱氏体 2.铁碳合金三种基本组织:铁素体、渗碳体、奥氏体
3.室温下铁碳合金由铁素体和渗碳体组成
珠光体(P)
(1)概念:是铁素体与碳光体的混合物
(2)符号: P ,是铁素体和渗碳体片层相间,交
替排列。 (3)溶碳能力:在7270C时,C=0.77% (4)性能特点:取决于铁素体和渗碳体的性能, 强度较高,硬度适中,具有一定的塑性。
五、莱氏体(分为高温莱氏体和低温莱氏体)
(一)、高温莱氏体 1.定义: 液态铁碳合金发生共晶转变所形成奥氏体 和渗碳体组成的混合物 2.表示符号: Ld 3.存在温度区间: 727℃ ——1148℃ 4.含碳量: 4.3% 5.特点:硬度高,塑性很差。
三、渗碳体(Fe3C或Cm)
渗碳体是含碳量为 6.69%的铁与碳的金属
化合物,其化学式为
Fe3C。
渗碳体的晶胞示意图
渗碳体(Fe3C或Cm)
( 1 )概念:含碳量为 6.69% 的铁与碳的金属化合
物。
(2)符号:Fe3C (3)溶碳能力: 复杂的斜方晶体 C=6.69%

铁碳合金

铁碳合金

第二章铁碳合金§2-1 铁碳合金的基本组织一、【纯铁的同素异构转变】:固态金属随温度变化而发生晶格改变的现象,称为同素异构转变。

纯铁即具有同素异构转变的特征,如图所示:同素异构转变是纯铁的一个重要特性,以铁为基的铁碳合金之所以能通过热处理显著改变其性能,就是由于铁具有同素异构转变的特性。

金属的同素异构转变过程与液态金属的结晶过程相似,实质上它是一个重要结晶过程。

因此,它同样遵循着结晶的一般规律:有一定的转变温度;转变时需要过冷;有潜热产生;转变过程也括晶核的形成和晶核的长大两阶段。

二、铁碳合金的基本组织【铁碳合金的(基本组织)相】:铁素体、奥氏体、渗碳体均是铁碳合金的基本相。

1、【铁素体Ferrite(F)】:碳溶于α铁中的间隙固溶体称为铁素体,用符号F或α表示。

它仍保持α铁的体心立方晶格;在727℃时的最大溶碳量为Wc=0.0218%,在600℃是溶碳量约为Wc=0.0057%,室温下几乎为零Wc=0.0008%。

其室温性能几乎和纯铁相同,铁素体的强度、硬度不高(σb=180-280MPa,50-80HBS),但具有良好的塑性和韧性(δ=30%-50%,Akv=128-160J)。

所以以铁素体为基体的铁碳合金适于塑性成形加工。

2、【奥氏体Austenite(A)】:碳溶于γ铁中的间隙固溶体称为奥氏体,用符号A或γ表示。

它仍保持γ铁的面心立方晶格。

在727℃时的溶碳量为Wc=0.77%,到1148℃是时达到最大Wc=2.11%。

奥氏体的力学性能与其溶碳量及晶粒大小有关,一般奥氏体的强度、硬度为(σb 约为400MPa,160-200HBS),但具有良好的塑性和韧性(δ=40%-50%),无磁性。

因为奥氏体的硬度较低而塑性较高,易于锻压成型。

3、【渗碳体Cementite】渗碳体具有复杂晶格的间隙化合物,分子式为Fe3C,其Wc=6.69%,是钢和铸铁中常用的固相。

熔点约为1227℃,渗碳全硬度很高(950-1050HV),而塑性与韧性几乎为零,脆性很大。

第四章铁碳合金的基本组织与状态图

第四章铁碳合金的基本组织与状态图

第四章铁碳合金的基本组织与状态图
n 共析转变:一定成分的固溶体在一定的恒
温下同时析出个新固体的转变。铁碳相图 中S点
n
7270C
n A0.77%C → P(F0.0218%C+Fe3C )
第四章铁碳合金的基本组织与状态图
Fe - Fe3C 相图
A T°
L+A
E
A
G
A+
A+F S Fe3CⅡ F P ( F+ Fe3C )
第四章铁碳合金的基本 组织与状态图
2020/11/29
第四章铁碳合金的基本组织与状态图
n 1-5 铁碳合金的基本组织与状态图 n 1-5-1铁碳合金的基本组织 n 液态:无限互溶 n 固态:碳能溶于铁的晶体中,形成间隙 固溶体,和固溶体与Fe3C构成机械混合物。
n (一)铁素体(F) n 碳溶于α—Fe(体心立方晶格)中形成间
第四章铁碳合金的基本组织与状态图
共晶白口铁组织金相图
第四章铁碳合金的基本组织与状态图
共晶合金组织形态
第四章铁碳合金的基本组织与状态图
n 3)过共晶白口铸铁 C 4.3~6.69%范围,室 温组织为一次渗碳体和低温莱氏体组成。 显微组织中亮白色的条状(板状)为初生 渗碳体(Fe3CⅠ),基体为低温莱氏体, 其中黑点为珠光体、白色部分为渗碳体。
第四章铁碳合金的基本组织与状态图
渗碳体组织金相图
第四章铁碳合金的基本组织与状态图
n Fe3C的结构决定了它极硬(可刻画玻璃)、 极脆,是铁碳合金中的硬组元。熔点为
12270C, 无同素异晶转变。
n
n 一定条件下(高温、长期保温)渗碳体可 分解:
n
Fe3C → 3Fe +C(石墨)

铁碳合金的基本组织

铁碳合金的基本组织
10
铁素体
铁素体是在体心立方晶格α铁中最多只含有碳0.02%的固溶体。它的显微组织是多边形的晶粒。铁索体具有体心立方晶格,含碳量极少,其性能与纯铁极为相似,也叫纯铁体。铁索体极可塑且软,并有低的抗拉强度和高的延伸率,抗拉强度为275.790Mpa,延伸率是40%
11
渗碳体
渗碳体是铁和6.69%的碳组成的间隙化合物,也称碳化三铁(Fe3C)。当它作为一种相在钢中出现时其化学组成将由于锰和其它碳化物形成元素的存在而改变,具有复杂的晶格结构。是不稳定相,给予足够的时间,渗碳体会分解为两种完全平衡的成分,即铁和石墨。其性能硬而脆,几乎没有塑性,抗拉强度约为34.474Mpa,延伸率等于0
16
贝氏体
贝氏体是过饱和铁素体和渗碳体的混合物,是奥氏体的分解产物。又分为上贝氏体(呈现羽毛状)和下贝氏体(呈针状)。下贝氏体性能优于上贝氏体。硬度随着转变温度的降低而增加
17
马氏体
马氏体是钢在低于奥氏体的转变温度形成的亚稳定相,通常是指碳在体心立方晶格α的铁中的间隙式过饱和固溶体。马氏体转变在冷却过程中几乎是立刻发生的,而且转变的百分比仅取决于冷却达到的温度。其显微组织是针状的。钢中马氏体的硬度随含碳量的增加而提高。高碳马氏体硬度高而脆,低碳马氏体则有较高的韧性。但无论含碳多少,马氏体都是奥氏体转变产物中硬度最高的
13
莱氏体
莱氏体是铁碳合金中的一种共晶组织。在高温由奥氏体和渗碳体、在室温由珠光体和渗碳体构成。含碳4.3%(质量分数)。这种共晶是C>2.0%的铁-碳合金的组织,并且以此原因把C2.0%作为钢和铸铁之间的分界线。性硬而脆,通常仅存在于白口铁中,在某些高碳高合金钢(例如:高速工具钢、Cr12型合金工具钢)中,也会出现,但数量较少
12

第三节铁碳合金

第三节铁碳合金

4.相图的实际应用
1)为选材提供成分依据 2)为制定热加工工艺提供依据 3)局限性
1)为选材提供成分依据
• 若零件要求塑性,韧性好,如建筑结构和容器等, 应选用低碳钢(0.10~0.25%C);
• 若零件要求强度、塑性、韧性都较好,如轴等,应 选用中碳钢(0.25~0.60%C);
• 若零件要求硬度高、耐磨性好,如工具等,应选用 高碳钢(0.6~1.3%C)。
Fe3C % ≈ 0.4 / 6.67 = 6 % F % ≈ 1 – 6 % = 94 %
室温组织:
F + P,500×
亚共析钢
亚 共 析 钢
(4)过共析钢 ( C % = 1.2 % )结晶过程
各组织组成物的相对量:
Fe3CII % = ( 1.2 – 0.77 ) / ( 6.67 – 0.77 ) ≈7%
共晶铸铁
共 晶 铸 铁
(6)亚共晶白口铁 ( Wc = 3.0% )
(7)过共晶白口铁 ( Wc = 5.0% )
标注了组织组成物的相图
3.铁碳合金的 成分-组织-性能关系
含碳量与相的相对量关系: C %↑→F %↓,Fe3C %↑
含碳量与组织关系: 图(a)和(b)
含碳量与性能关系 HB:取决于相及相对量 强度:C%=0.9% 时最大 塑性、韧性:随C%↑而↓
2. 1) 铁素体的本质是碳在α- Fe 中的间隙相。(No) 2) 20 钢 比 T12 钢 的碳质量分数要高。(No)
3) 在退火状态(接近平衡组织)45 钢 比 20 钢 的塑性和强度都 高。 (No)
4) 在铁碳合金平衡结晶过程中,只有碳质量分数为4.3%的铁 碳合金才能发生共晶反应。(No)
3. 1) 奥氏体是:

铁 碳 合 金

铁 碳 合 金
铁碳合金
铁碳合金
铁碳合金是以铁和碳为基本组元的合金,它是现代机械工业中应 用最广泛的金属材料。要合理地选择铁碳合金,就必须熟悉铁碳合 金的成分、组织和性能之间的关系。
1.1 铁碳合金的基本组织
铁碳合金中含有质量分数为0.10%~0.20%的杂质,称之为 工业纯铁。工业纯铁虽然塑性、导磁性良好,但强度较低,不适 宜制作机械零件。为了提高纯铁的强度、硬度,常在纯铁中加入 少量碳元素,可形成等五种基本组织。
谢谢观看!
K
727
P
727
6.69 0.0218
Fe3C的成分点 碳在α-Fe中的最大溶解度
S
727
0.77
共析点
Q 600(室温) 0.0057(0.0008) 600℃(或室温)时碳在α-Fe中的溶解度
铁碳合金分类
通常根据铁碳合金含碳量和室温组织的特点,由Fe—Fe3C相图中的P 点和E点将铁碳合金分为工业纯铁、钢及白口铸铁三类。
铁素体、奥氏体、渗碳体、珠光体、莱氏体
1.2 铁碳合金相图
表2-1 Fe—Fe3C相图中的特性点
符号 温度(℃) 含碳量(%)
说明
A
1538
0
纯铁的熔点
C
1148
4ห้องสมุดไป่ตู้30
共晶点
D
1227
6.69
渗碳体的熔点
E
1148
2.11
碳在γ-Fe中的最大溶解度
F
1148
6.69
渗碳体的成分点
G
912
0
Α-Fe与γ-Fe同素异构转变点
工业纯铁 是指P点以左的铁碳合金(含碳量小于0.0218%),室温组织为铁素 体+少量三次渗碳体。工业纯铁的性能特点是塑性韧性好,硬度和强度较 低。 钢 是指高温固态组织为单相固溶体的一类铁碳合金,相图中P点成分与E 点成分之间的铁碳合金(含碳量0.0218%~2.11%),具有良好的塑性, 适于锻造、轧制等压力加工,根据室温组织的不同又分为亚共析钢、共 析钢和过共析钢三种。 白口铸铁 是指E点成分以右(含碳量2.11%~6.69%)的铁碳合金。白口铸铁有 较低的熔点,流动性好,便于铸造,脆性大。根据室温组织的不同,白 口铸铁又分为亚共晶白口铸铁、共晶白口铸铁和过共晶白口铸铁三类。

1.3铁碳合金

1.3铁碳合金
1.3 铁碳合金
▪ 铁碳合金:以铁为基体,有不
同碳含量的合金,称为铁碳合金。
铁碳合金是工业上应用最 广泛的合金。
第1页,共23页。
1.3.1 铁碳合金的基本组织
(1).铁碳合金中,固态时可形成
固溶体、化合物、机械混合 物
(2).铁碳合金的基本组织有铁 素体、奥氏体、渗碳体、珠光体 和莱氏体。
(3).纯铁:熔点1538℃,有同素
当冷却到4点 温度时,剩余傲视 体的w(C)减少至 0.77%,达到共 析成分,发生共析 反应,转变为珠光
第18页,共23页。
(4)共晶白口铸铁结晶过程 动画演示
L → Ld(A+Fe3C) → Ld(A+Fe3C+Fe3CⅡ) → L’d(P+ Fe3C+Fe3CⅡ)
当液态合金冷 却到1点以下温度 时,发生共晶反 应,转变为莱氏 体,随着温度的下 降,碳在澳氏体中 的溶解度不断下 降。由奥氏体中不 断析出渗碳体。
思考题
1.比较铁碳合金各种基本组织的晶体结构和力学性 能。
2.碳钢与铸铁在成分与组织上有哪些区别?
3.试分析W(C)分别为0.2%、0.77%、1.3%的铁碳合金自 高温缓慢冷却至室温的组织转变过程。
第23页,共23页。
返回目录
当冷却到2点 温度时,剩余液体 的w(C)减至 4.3%,达到共晶 成分,发生共晶反 应,转变为莱氏 体。
温度在2点和3 点之间时,莱氏体 中的奥氏体由于冷
第21页,共23页。
1.3.3 碳对铁碳合金组织和性能的影响
(1)当w(c)<0.9%时,随着含碳量的增加,钢的强度的
硬度不断提高,而塑性不断下降,这是由于钢中珠光体 的含量不断增多,铁素体的含量不断减少所致。

铁碳合金基本组织

铁碳合金基本组织

第二章 铁碳合金 第一节 铁碳合金的基本组织*什么叫组织? 表示晶体的种类、大小、分布状况。

可以由一个相或多个相组成一.纯铁的晶体结构及其结晶1.(简)同素异晶体:同种元素组成的具有不同晶体结构的晶体,如石墨是金刚石的同素异晶体;α-Fe 与γ-Fe2.(简)纯铁的同素异晶转变α-Feγ-Fe3.重结晶固态下的结晶与液态到固态的结晶的异同...........(以铁为例)同:都属于结晶过程,都有“形核——长大”的过程、“过冷”等现象。

异:在固态下结晶时应力不能及时释放,产生应力。

因此把这种结晶称作:重结晶钢铁材料的种类较多,掌握其性能不太容易。

但这些材料的性能是由其组织决定的。

二.铁碳合金的五种基本组织及其性质1.铁素体温(F ) 形成:碳溶入α-Fe特点:塑性、韧性好,强度、硬度低 δ:30~50%σb :180~280MPa 。

HBS :50~80,很软。

小刀刻划例:08钢,F 含量90%,估计其塑性、韧性2.奥氏体(A ) 形成:碳溶入γ-Fe特点:常温下:塑性和韧性好,具有一定的强度和硬度。

δ:40~50% σb : HBS :170~220高温下(800o C 以上):塑性极好,强度极低。

应用:锻压。

“趁热打铁” 3.渗碳体(Fe 3C )形成:铁与碳生成的化合物 特点:硬而脆、塑性极差 作用:?(双重) 4.珠光体(P )形成:Fe 3C 与F 片状交分布形成的层状结构。

(示意图) 特点:强度、硬度较高。

塑性和韧性不高。

δ:20~30% σb :770MPaHBS :1805.莱氏体(Ld )形成:由A 与Fe 3C 组成 特点:类似于渗碳体根据钢的组织比较性能:10钢(F 多87%+P )与45钢(F 少42%+P ) 10钢(F 多87%+P )与20钢(F 中等74%+P ) 45钢(F+P )与T10A 钢(P+Fe 3C )第二节 铁碳相图如何才能知道钢中某种组织的含量?一.基本概念 1.相图的作用了解合金的组织指导热加工和选材例:仪表、汽车的外壳 选塑性好的材料 F 含量多的钢。

材料科学基础铁碳合金的组织及其性能

材料科学基础铁碳合金的组织及其性能
材料科学基础铁碳合金的组 织及其性能
组元: Fe, Fe3C
L+Fe3C
0.0218 2
组元: Fe, Fe3C
L+Fe3C
0.0218 3
基本相
高温铁素体:碳溶于δ-Fe中的间 隙固溶体,体心立方,符号: ;最大溶碳量:0.09%
L+Fe3C
奥氏体:碳溶于γ-Fe中的间隙固 溶体,面心立方,符号:A或γ ;最大溶碳量:2.11%
但随着成分的不同,合金经历的转变不同, 因而相的相对量、相的形态、分布差异很大,也 就是说不同成分的铁碳合金的组织有很大的差异 。因为合金的性能是由其组织决定的,所以人们 更关注合金的组织。
温度
A
L+
H
B
NJ
A+
L
D
L+A
A
E
C
L+ Fe3C F
A+ Fe3C
G
A+
Ld
F
A+F
S Fe3CⅡ A+ Fe3CⅡ+Ld
3333
(6) 亚共晶白口铸铁( WC = 3.0% 的合金)
室温组织:P+Fe3CII+Ld’
34
亚共晶白口铁室温组织为P+Fe3CⅡ+Ld’,室温下组织组成物相 对重量百分比为:
N
1
D
2
C
E
F
3
4
(7) 过共晶白口铸铁( WC = 5.0% 的合金)
室温组织:Fe3CI+Ld’
37
以上分析可知,铁碳合金不管其成分如何, 其室温下的相组成都是铁素体和渗碳体。
始析出线。

第四章 铁碳合金的基本组织与状态图

第四章 铁碳合金的基本组织与状态图
变反应式。
二个重要温度: 1148 ℃ 、727 ℃ 。
一二三四五六巧记铁碳相图:
“一”指一种合金组织渗碳体( Fe3C ): 特别需要注意从金属液态直接结晶出渗碳 体称为一次渗碳体( Fe3C Ⅰ),而从A (奥氏体)中析出渗碳体称为二次渗碳体 ( Fe3C Ⅱ)。很易把两者混淆。
“二”指二个坐标:C/%、T/0C;在画 的时候容易忘记这两坐标标注。
(5)ECF共晶线:金属液态结晶出奥氏体和渗 碳体的机械混合物,莱氏体(Ld)。
(6)PSK、A1共析线:当合金组织冷却到 7270C以下奥氏体(A)全部转成珠光体 (P)。
共析反应(7270C)
结晶
A
P
析出
F
Fe3C
Fe3C
L
共晶反应(1148OC) Ld 727C
L'd
1-5-3 铁碳状态图上合金的分类及其组织
铸钢和铸铁的浇注温度,为铸造工艺提供 依据。
共晶成分的铸铁合金熔点最低,结晶温 度范围小,有良好的铸造性能。因此在铸 造生产中,经常选用接近共晶成分的铸铁。 同铸铁相比钢的熔化温度和浇注温度要高 的多,其铸造性能差,易产生收缩,因此 钢的铸造工艺比较复杂。
根据Fe- Fe3C相图可以确定合金的浇注温 度。浇注温度一般在液相线以上50℃~ 100℃。从相图上可看出,纯铁和共晶白口 铸铁的铸造性能最好,它们的凝固温度区 间最小,因而流动性好,分散缩孔少,可 以获得致密的铸件,所以铸铁在生产上总 是选在共晶成分附近。在铸钢生产中,碳 含量规定在0.15-0.6%之间,因为这个范围 内钢的结晶温度区间较小,铸造性能较好。
5.莱氏体 ( Ld )奥氏体和渗碳体组成的机械混合物。
1-5-2 Fe—Fe3C状态图 几个概念:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



A或γ
σb:400MPa
HBS:160~220
δ:40%~50%
奥氏体是碳溶入γ-Fe中的间隙固溶体,面心立方晶格。碳在γ-Fe中的溶解度相对较高,在1148℃时其溶解度最大,达2.11%,在727℃时为0.77%。奥氏体的强度和硬度比铁素体高,具有良好的塑性和低的变形能力,生产中常将钢材加热到奥氏体状态进行压力加工。其显微组织为明亮的多边形晶粒,晶界较铁素体平直。
莱氏体
Ld
(Ld´)
硬度高(约700HBW)、塑性很差
莱氏体是由奥氏体和滲碳体组成的机械混合物,是铁碳合金在1148℃时发生共晶转变的产物。存于1148~727℃的莱氏体称高温莱氏体(Ld),存于727℃以下的莱氏体称低温莱体(Ld´)。其硬度很高,塑性很差。



P
σb:750~900MPa
HBS:180~280
δ:20%~25%
珠光体是由铁素体和滲碳体组成的机械混合物。它是奥氏体冷却时,在727℃恒温下发生共析转变的产物,平均碳含量wc=0.77%,性能介于铁素体和滲碳体之间,强度较高,硬度适中,有一定的塑性。显微组织为铁素体和滲碳体片层状交替排列。
铁碳合金的基本组织
名称
晶格、组织
符号
性能
说明



F或α
σb:180~280MPa
HBS:50~80
δ:30%~50%
AK:128~160J
铁素体是碳溶入α-Fe中的间隙固溶体,体心立方晶格,碳在α-Fe中溶解度很小,在727℃时溶解度最大,为0.0218%,室温时为0.0008%,几乎为零。铁素体的力学性能与工业纯铁接近,其强度和硬度较低,塑性、韧性良好。其显微组织呈明亮白色等轴多边形晶粒。
滲碳体
Fe3C
硬度高(约800HBW),塑性、韧性差,δ、AK接近于零,脆性很大
渗碳体是钢与碳组成的金属化合物,碳含量wc=6.69%,熔点为1227℃,具有复杂的晶体结构,是铁碳合金的重要的强化相。渗碳体在铁碳合金中的形态可呈片状、粒状、网状、板条状。它的数量和形态对铁碳合金的力学性能有很大影响。渗碳体越细小,并均匀地分布在固溶体基体中,合金的力学性能越好;反之,越粗大或呈网状分布则脆性越大。
相关文档
最新文档