八年级数学上册第15章分式小结与复习导学案新版新人教版
初中数学八年级上册第十五章分式教案、导学案 人教版
第十五章 分 式 15.1 分 式 15.1.1 从分数到分式1.了解分式的概念,理解分式有意义的条件,分式的值为零的条件. 2.能熟练地求出分式有意义的条件,分式的值为零的条件.重点:理解分式有意义的条件,分式的值为零的条件.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.一、自学指导自学1:自学课本P127-128页,掌握分式的概念,完成填空.(5分钟)总结归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,分式AB中,A 叫做分子,B 叫做分母.点拨精讲:分式是不同于整式的另一类式子,它的分母中含有字母可以表示不同的数,所以分式比分数更具有一般性.自学2:自学课本P128页“思考与例1”,理解分式有意义的条件,分式的值为零的条件.(5分钟)总结归纳:分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式A B 才有意义;当B ≠0,A =0时,分式AB=0.点拨精讲:分式的分数线相当于除号,也起到括号的作用.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 课本P128-129页练习题1,2,3.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 当x 取何值时:(1)分式12x 2x -3有意义?(2)分式12x 2x 2+3有意义?(3)分式3x2x -1无意义?(4)分式12x |x|-3无意义?(5)分式|x|-22x +4的值为0?(6)分式x 2-9x -3的值为0?解:(1)要使分式12x 2x -3有意义,则分母2x -3≠0,即x≠32;(2)要使分式12x2x 2+3有意义,则分母2x 2+3≠0,即x 取任意实数;(3)要使分式3x 2x -1无意义,则分母2x -1=0,即x =12;(4)要使分式12x |x|-3无意义,则分母|x|-3=0,即x =±3;(5)要使分式|x|-22x +4的值为0,则有⎩⎪⎨⎪⎧|x|-2=02x +4≠0,即x =2;(6)要使分式x 2-9x -3的值为0,则有⎩⎪⎨⎪⎧x 2-9=0x -3≠0,即x =-3.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.当a =-1时,分式a 2+aa 2-a=0.2.当x 为任何实数时,下列分式一定有意义的是(C )A .x 2+1x 2 B .x -1x 2-1 C .x +1x 2+1 D .x -1x +13.若分式x -2x 2-1的值为0,则x 的值为(D )A .1B .-1C .±1D .24.下列各式中,哪些是整式?哪些是分式?1a ,x -1,3m ,b 3,c a -b ,a +62b ,34(x +y),x 2+2x +15,m +n m -n. 解:整式有x -1,b 3,34(x +y),x 2+2x +15;分式有1a ,3m ,c a -b ,a +62b ,m +n m -n.(3分钟)1.分式的值为0的前提条件是此分式有意义.2.分式的分数线相当于除号,也具有括号的作用.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)第十五章 分式 15.1 分 式 15.1.1 从分数到分式1.以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2.能够通过分式的定义理解和掌握分式有意义的条件.重点理解分式有意义的条件及分式的值为零的条件. 难点能熟练地求出分式有意义的条件及分式的值为零的条件.一、复习引入1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式?①8m +n 3;②1+x +y 2;③a 2b +ab 23;④a +b 2;⑤2x 2+2x +1;⑥3a 2+b 2;⑦3x 2-42x .二、探究新知 1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时.轮船顺流航行90千米所用的时间为9030+v 小时,逆流航行60千米所用时间为6030-v 小时,所以9030+v =6030-v.(2)学生完成教材第127页“思考”中的题.观察:以上的式子9030+v ,6030-v ,S a ,Vs ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是AB (即A÷B)的形式.分数的分子A 与分母B 都是整数,而这些式子中的A ,B 都是整式,并且B 中都含有字母.归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义. 学生自学例1.例1 下列分式中的字母满足什么条件时分式有意义? (1)23x ;(2)x x -1;(3)15-3b ;(4)x +y x -y. 解:(1)要使分式23x 有意义,则分母3x≠0,即x≠0;(2)要使分式xx -1有意义,则分母x -1≠0,即x≠1;(3)要使分式15-3b 有意义,则分母5-3b≠0,即b≠53;(4)要使分式x +yx -y有意义,则分母x -y≠0,即x≠y.思考:如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗? 巩固练习:教材第129页练习第3题.3.补充例题:当m 为何值时,分式的值为0? (1)m m -1;(2)m -2m +3;(3)m 2-1m +1.思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零. 答案:(1)m =0;(2)m =2;(3)m =1. 三、归纳总结 1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义. 3.分式的值为零的条件:(1)分母不能为零;(2)分子为零. 四、布置作业教材第133页习题15.1第2,3题.在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.15.1.2 分式的基本性质1.掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义; 2.使学生理解分式通分的意义,掌握分式通分的方法及步骤.重点:知道约分、通分的依据和作用,掌握分式约分、通分的方法; 难点:掌握分式约分、通分的方法,理解分式的变号法则.一、自学指导自学1:自学课本P129-130页“思考与例2”,掌握分式的基本性质,完成填空.(3分钟)总结归纳:分式的分子与分母乘(或除以)同一个不等于0)的整式,分式的值不变.用式子表示为:A B =A·C B·C ,A B =A÷CB÷C(C≠0).自学2:自学课本P130-131页“思考与例3”,掌握分式约分的方法,能准确找出分子、分母的公因式,理解最简分式的概念.(3分钟)总结归纳:根据分式的基本性质,把一个分式的分子、分母的公因式约去,叫做约分.分子与分母没有公因式的分式,叫做最简分式.分式的约分,一般要约去分子与分母所有的公因式,使所得结果成为最简分式或者整式.自学3:自学课本P131-132页“思考与例4”,掌握分式通分的方法,学会找最简公分母.(3分钟)总结归纳:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.找最简公分母的方法:①若分母是多项式的先分解因式;②取各分式的分母中系数的最小公倍数;③各分式的分母中所有字母或因式都要取到;④相同字母(或因式)的幂取指数最大的.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.下列等式的右边是怎样从左边得到的?(1)x2+xyx2=x+yx;(2)y+1y-1=y2+2xy+1y2-1(y≠-1).点拨精讲:对于(1),由已知分式可以知道x≠0,因此可以用x去除分式的分子、分母,因而并不特别需要强调x≠0这个条件,而(2)是在已知分式的分子、分母都乘以y +1得到的,是在条件y+1≠0下才能进行,这个条件必须强调.解:(1)根据分式的基本性质,分子、分母同时除以x;(2)∵y≠-1,∴y+1≠0,∴根据分式的基本性质,分子、分母同时乘以y+1.2.课本P132页练习题1,2.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1 不改变分式的值,把下列各式的分子与分母各项系数都化为整数.(1)12x+23y12x-23y;(2)0.3a+0.5b0.2a-b.解:(1)12x+23y12x-23y=(12x+23y)×6(12x-23y)×6=3x+4y3x-4y;(2)0.3a+0.5b0.2a-b=(0.3a+0.5b)×10(0.2a-b)×10=3a+5b2a-10b.探究2 不改变分式的值,使下面分式的分子、分母都不含“-”号.(1)-5y-x2;(2)-a2b;(3)4m-3n;(4)--x2y.解:(1)-5y-x2=5yx2;(2)-a2b=-a2b;(3)4m-3n=-4m3n;(4)--x2y=x2y.点拨精讲:分式的分子、分母以及分式本身三个符号,改变其中任何两个符号,分式的值不变.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.课本P133页习题4,6,7.2.课本P134页习题12.(3分钟)1.分式的约分:分子、分母都是多项式的先分解因式,便于找公因式,分式化简的结果一定要是最简分式.且一般分子、分母中不含“-”.2.分式的通分关键是找准最简公分母,若分母是多项式的先分解因式,便于找最简公分母.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)15.1.2 分式的基本性质 第1课时 分式的基本性质1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.重点理解并掌握分式的基本性质. 难点灵活运用分式的基本性质进行分式变形.一、类比引新 1.计算:(1)56×215;(2)45÷815. 思考:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基本性质. 2.你能说出分数的基本性质吗?分数的分子与分母都乘(或除以)同一个不为零的数,分数的值不变. 3.尝试用字母表示分数的基本性质:小组讨论交流如何用字母表示分数的基本性质,然后写出分数的基本性质的字母表达式.a b =a·c b·c ,a b =a÷c b÷c.(其中a ,b ,c 是实数,且c≠0) 二、探究新知1.分式与分数也有类似的性质,你能说出分式的基本性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不为零的整式,分式的值不变. 你能用式子表示这个性质吗?A B =A·C B·C ,A B =A÷C B÷C.(其中A ,B ,C 是整式,且C≠0) 如x 2x =12,b a =aba2,你还能举几个例子吗? 回顾分数的基本性质,让学生类比写出分式的基本性质,这是从具体到抽象的过程. 学生尝试着用式子表示分式的性质,加强对学生的抽象表达能力的培养. 2.想一想下列等式成立吗?为什么? -a -b =a b ;-a b =a -b =-a b.教师出示问题.学生小组讨论、交流、总结.例1 不改变分式的值,使下列分式的分子与分母都不含“-”号: (1)-2a -3a ;(2)-3x 2y ;(3)--x 2y. 例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数都化为正数: (1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x +1. 引导学生在完成习题的基础上进行归纳,使学生掌握分式的变号法则. 例3 填空:(1)x 3xy =( )y ,3x 2+3xy 6x 2=x +y ( ); (2)1ab =( )a 2b ,2a -b a 2=( )a 2b.(b≠0) 解:(1)因为x3xy 的分母xy 除以x 才能化为y ,为保证分式的值不变,根据分式的基本性质,分子也需除以x ,即x 3xy =x 3÷x xy ÷x =x 2y. 同样地,因为3x 2+3xy 6x 2的分子3x 2+3xy 除以3x 才能化为x +y ,所以分母也需除以3x ,即3x 2+3xy 6x 2=(3x 2+3xy )÷(3x )6x 2÷(3x )=x +y2x . 所以,括号中应分别填入x 2和2x.(2)因为1ab 的分母ab 乘a 才能化为a 2b ,为保证分式的值不变,根据分式的基本性质,分子也需乘a ,即1ab =1·a ab·a =a a 2b. 同样地,因为2a -b a 2的分母a 2乘b 才能化为a 2b ,所以分子也需乘b ,即2a -b a 2=(2a -b )·b a 2·b =2ab -b2a 2b. 所以,括号中应分别填a 和2ab -b 2.在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化.三、课堂小结1.分式的基本性质是什么? 2.分式的变号法则是什么?3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业教材第133页习题15.1第4,5题.通过算数中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但要重点强调分子分母同乘(或除)的整式不能为零,让学生养成严谨的态度和习惯.第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3;(3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分?什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑? 四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.15.2 分式的运算 15.2.1 分式的乘除(1)1.通过实践总结分式的乘除法,并能较熟练地进行分式的乘除法运算. 2.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力.重点:分式的乘除法运算.难点:分式的乘除法、混合运算中符号的确定.一、自学指导自学1:自学课本P135-137页“问题1,思考,例1,例2及例3”,掌握分式乘除法法则.(7分钟)类比分数的乘除法法则,计算下面各题:(1)4ac 3b ·9b 22ac 3;(2)4ac 3b ÷9b 22ac 3. 解:(1)原式=4ac·9b 23b ·2ac 3=36ab 2c 6abc 3=6b c 2;(2)原式=4ac 3b ·2ac 39b 2=8a 2c427b3.点拨精讲:计算的结果能约分的要约分,结果应为最简分式.总结归纳:分式的乘法法则——分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母.即:a b ·c d =a·cb·d.分式的除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:a b ÷c d =a b ·d c =ad bc. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 课本P137-138练习题1,2,3.点拨精讲:分子、分母是多项式时,通常先分解因式,再约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 计算:(1)x +12x ·4x2x 2-1;(2)8x 2x 2+2x +1÷6x x +1. 解:(1)x +12x ·4x 2x 2-1=x +12x ·4x 2(x +1)(x -1)=2xx -1;(2)8x 2x 2+2x +1÷6x x +1=8x 2(x +1)2·x +16x =4x3x +3. 点拨精讲:如果分子、分母含有多项式,应先分解因式,再按法则进行计算. 探究2 当x =5时,求x 2-9x 2+6x +9÷1x +3的值.解:∵x 2-9x 2+6x +9÷1x +3=(x +3)(x -3)(x +3)2·x +31=x -3,∴当x =5时,原式=x -3=5-3=2.点拨精讲:先对分式的结果化简,可以使计算变得简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.计算:(1)3xy 24z 2·(-8z 2y );(2)-3xy÷2y 23x ;(3)m -2m -3÷m 2-6m +9m 2-4;(4)a 2-6a +91+4a +4a 2÷12-4a2a +1. 2.有这样一道题“计算:x 2-2x +1x 2-1÷x -1x 2+x -x 的值,其中x =998”,甲同学错把x =998抄成了x =999,但他的计算结果却是正确的,请问这是怎么回事?解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴无论x取何值,此式的值恒等于0.(3分钟)1.分式乘除法的法则可类比分数的乘除法则进行.2.当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.3.分式乘除法运算的最后结果能约分的要约分,一定要是一个最简分式.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)15.2.1 分式的乘除(2)1.使学生在理解和掌握分式的乘除法法则的基础上,运用法则进行分式的乘除法混合运算.2.使学生理解并掌握分式乘方的运算性质,能运用分式的这一性质进行运算.重点:分式的乘除混合运算和分式的乘方. 难点:对乘方运算性质的理解和运用.一、自学指导自学1:自学课本P138-139页“例4、思考与例5”,掌握分式乘方法则及乘除、乘方混和运算的方法,完成填空.(7分钟)1.a n表示的意思是n 个a 相乘的积;a 表示底数,n 表示指数.2.计算:(23)3=23×23×23=2×2×23×3×3=2333=827.3.由乘方的定义,类比分数乘方的方法可得到: (a b )2=a b ·a b =a·a b·b =a2b 2; ……(a b )n =a b ·a b ·…·a b =a·a·…·a b·b·…·b ,\s\up6(n 个))_,\s\do4(n 个))_=a nb n . 点拨精讲:其中a 表示分式的分子,b 表示分式的分母,且b≠0.总结归纳:分式的乘方法则——分式乘方是把分子、分母各自乘方.即:(a b )n =anb n (n 为正整数);乘除混合运算可以统一为乘法运算;式与数有相同的混合运算顺序:先乘方,再乘除.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P139练习题1,2. 2.判断下列各式正确与否:(1)(3-a 2)2=9a 4;(2)(-b 2a )3=b 6a 3;(3)(3b 2a )3=3b 32a 3;(4)(2x x +y )2=4x 2x 2+y2.3.计算:(1)(-x 2y )2·(-y 2x )3÷(-y x )4;(2)(x +1)2(1-x )2(x 2-1)2÷(x -1)2x 2-1. 解:(1)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(2)原式=(x +1)2(x -1)2(x +1)2(x -1)2·(x +1)(x -1)(x -1)2=x +1x -1. 点拨精讲:注意符号及约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 先化简代数式(a +1a -1+1-a a 2-2a +1)÷1a -1,然后选取一个使原式有意义的a 值代入求值.解:∵(a +1a -1+1-a a 2-2a +1)÷1a -1=[(a +1a -1+1-a (a -1)2)]·a -11=a +1a -1·a -11+1-a (a -1)2·a -11=a +1-1=a ,当a =3时,原式=3. 点拨精讲:这里a 的取值要让分式有意义,保证各分母及除式不能为0.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.x =1,y =1,求4x 2-4xy +y 22x +y ÷(4x 2-y 2)的值.2.使代数式x +3x -3÷x +2x -4有意义的x 的值是(D )A .x ≠3且x≠-2B .x ≠3且x≠4C .x ≠3且x≠-4D .x ≠3且x≠-2且x≠43.计算:(1)5a -109a 3b ·6aba 2-4; (2)(-12x 4y)2÷(-3x 2y)3;(3)x -y x 2+xy ·x 2y 2-x 4xy -x2; (4)2x -6x 2-4x +4·(x +3)(x -2)12-4x ÷x +32. (3分钟)1.分式的分子或分母带“-”的n 次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式的分子分母可直接乘方.2.注意熟练、准确运用乘方运算法则及分式乘除法 法则.3.注意混合运算中应先算括号,再算乘方,然后乘除.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除法1.理解并掌握分式的乘除法则.2.运用法则进行运算,能解决一些与分式有关的实际问题.重点掌握分式的乘除运算. 难点分子、分母为多项式的分式乘除法运算.一、复习导入1.分数的乘除法的法则是什么? 2.计算:35×1512;35÷152.由分数的运算法则知35×1512=3×155×12;35÷152=35×215=3×25×15.3.什么是倒数?我们在小学学习了分数的乘除法,对于分式如何进行计算呢?这就是我们这节要学习的内容.二、探究新知问题1:一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b 时,当容器的水占容积的mn时,水面的高度是多少?问题2:大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?问题1求容积的高V ab ·m n ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的a m ÷bn 倍.根据上面的计算,请同学们总结一下对分式的乘除法的法则是什么?分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.a b ·c d =a·c b·d ;a b ÷c d =a b ·d c =a·d b·c . 三、举例分析 例1 计算:(1)4x 3y ·y 2x 3;(2)ab 32c 2÷-5a 2b 24cd. 分析:这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.解:(1)4x 3y ·y 2x 3=4xy 6x 3y =23x2;(2)ab 32c 2÷-5a 2b 24cd =ab 32c 2·4cd -5a 2b 2=-4ab 3cd 10a 2b 2c 2=-2bd 5ac . 例2 计算:(1)a 2-4a +4a 2-2a +1·a -1a 2-4;(2)149-m 2÷1m 2-7m. 分析:这两题是分子与分母是多项式的情况,首先要因式分解,然后运用法则. 解:(1)原式(a -2)2(a -1)2·a -1(a +2)(a -2)=a -2(a -1)(a +2); (2)原式1(7-m )(7+m )÷1m (m -7)=1(7-m )(7+m )·m (m -7)1=-mm +7.例3 “丰收1号”小麦试验田边长为a 米(a >1)的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍? 分析:本题的实质是分式的乘除法的运用. 解:(1)略.(2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=a +1a -1. “丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a +1a -1倍.四、随堂练习1.计算:(1)c 2ab ·a 2b 2c ;(2)-n 22m ·4m 25n 3;(3)y 7x ÷(-2x );(4)-8xy÷2y 5x ;(5)-a 2-4a 2-2a +1·a 2-1a 2+4a +4;(6)y 2-6y +9y +2÷(3-y).答案:(1)abc ;(2)-2m 5n ;(3)-y 14;(4)-20x 2;(5)-(a +1)(a -2)(a -1)(a +2);(6)3-y y +2.2.教材第137页练习1,2,3题.五、课堂小结(1)分式的乘除法法则;(2)运用法则时注意符号的变化; (3)因式分解在分式乘除法中的应用;(4)步骤要完整,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式,如(a -1)2a 或a 2-2a +1a.六、布置作业教材第146页习题15.2第1,2题.本节课从两个具有实际背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实际需要产生的,进而激发他们学习的兴趣,接着,从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘法法则.有利于学生接受新知识,而且能体现由数到式的发展过程.第2课时 分式的乘方及乘方与乘除的混合运算1.进一步熟练分式的乘除法法则,会进行分式的乘、除法的混合运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.重点分式的乘方运算,分式的乘除法、乘方混合运算. 难点分式的乘除法、乘方混合运算,以及分式乘法、除法、乘方运算中符号的确定.一、复习引入1.分式的乘除法法则.分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: a n=a·a·a·…·a(n 为正整数). 二、探究新知例1(教材例4) 计算2x 5x -3÷325x 2-9·x5x +3. 解:2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3 (先把除法统一成乘法运算) =2x23.(约分到最简公式) 分式乘除运算的一般步骤: (1)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式; (3)确定分式的符号,然后约分; (4)结果应是最简分式.1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳. (1)(a b )2=a b ·a b =a 2b2;↑ ↑由乘方的意义 由分式的乘法法则 (2)同理:(a b )3=a b ·a b ·a b =a 3b3; (a b )n =a b ·a b ·…·a b n 个=a ·a ·…·an 个b ·b ·…·bn 个 =a nb n . 2.分式乘方法则:分式:(a b )n =anbn .(n 为正整数)文字叙述:分式乘方是把分子、分母分别乘方.3.目前为止,正整数指数幂的运算法则都有什么?(1)a n ·a n =a m +n ;(2)a m ÷a n =a m -n;(3)(a m )n =a mn ;(4)(ab)n =a n b n; (5)(a b )n =a nb n .三、举例分析 例2 计算: (1)(-2a 2b 3c)2;(2)(a 2b -cd 3)3÷2a d 3·(c 2a )2. (3)(-x 2y )2·(-y 2x )3÷(-y x )4;(4)a 2-b 2a 2+b 2÷(a -b a +b)2. 解:(1)原式=(-2a 2b )2(3c )2=4a 4b 29c 2; (2)原式=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b38cd 6;(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(4)原式=(a +b )(a -b )a 2+b 2·(a +b )2(a -b )2=(a +b )3(a -b )(a 2+b 2). 学生板演、纠错并及时总结做题方法及应注意的地方:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘;②做乘方运算要先确定符号.例3 计算:(1)b 3n -1c 2a 2n +1·a2n -1b3n -2;(2)(xy -x 2)÷x 2-2xy +y 2xy ·x -y x2;(3)(a 2-b 2ab )2÷(a -b a )2.解:(1)原式=b 3n -2·b ·c 2a 2n -1·a 2·a 2n -1b 3n -2=bc 2a2; (2)原式=-x (x -y )1·xy (x -y )2·x -yx 2=-y ;(3)原式=(a +b )2(a -b )2a 2b 2·a 2(a -b )2=a 2+2ab +b2b2. 本例题是本节课运算题目的拓展,对于(1)指数为字母,不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进一步让学生熟悉运算顺序,注意做题步骤.四、巩固练习教材第139页练习第1,2题. 五、课堂小结1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业教材第146页习题15.2第3题.分式的乘方运算这一课的教学先让学生回忆以前学过的分数的乘方的运算方法,然后采用类比的方法让学生得出分式的乘方法则.在讲解例题和练习时充分调动学生的积极性,使大家都参与进来,提高学习效率.15.2.2 分式的加减(1)1.使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算.2.通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式的通分,培养学生分式运算的能力.重点:让学生熟练地掌握同分母、异分母分式的加减法.难点:分式的分子是多项式的做减法时注意符号,去括号法则的应用.一、自学指导自学1:自学课本P139-140页“问题3、问题4、思考、例6”,掌握同分母、异分母分式加减的方法,完成填空.(7分钟)①计算:15+25,15-25,12+13,12-13.总结归纳:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减.a c +bc =a +b c ;a b +cd =ad bd +bc bd =ad +bc bd. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P141页练习题1,2. 2.计算:(1)2x -5x 2;(2)x 2+xy xy -x 2-xy xy ;(3)a -2a +1-2a -3a +1; (4)a +1a -1-a -1a +1; (5)x 2x -2-4x x -2+4x -2;。
人教版八年级上册数学《第十五章 小结与复习》
第十五章 分 式
小结与复习
人教版·八年级上 册
要点梳理
一、分式 1.分式的概念:
一般地,如果A、B都表示整式,且B中含有字母,那么称 A
B
为分式.其中A叫做分式的分子,B为分式的分母.
2.分式有意义的条件: 对于分式 :BA 当__B_≠_0___时分式有意义; 当__B__=_0__时无意义.
3.分式值为零的条件:
A. 90 90 3 x x1
C. 90 90 3 x x1
B. 90 903 x1 x
D. 90 903
x1 x
8. 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该
款铅笔,但这次每支的进价是第一次进价的 5 倍,购进数量比第一次
4
少了30支.求第一次每支铅笔的进价是多少元?
解:设第一次每支铅笔进价为x元,根据题意列方程,得
谢谢 大家
本课件是在Micorsoft PowerPoint的平台上制作的,可以在Windows环境下独立运行,集 文字、符号、图形、图像、动画、声音于一体,交互性强,信息量大,能多路刺激学生的视觉、 听觉等器官,使课堂教育更加直观、形象、生动,提高了学生学习的主动性与积极性,减轻了学 习负担,有力地促进了课堂教育的灵活与高效。
解分式方程的基本思想是“转化思想”,把分式方程转化为整 式方程求解.解分式方程一定注意要验根.
针对训练
6.解 方 程 : x x 2 21x2 1 64.
解:最简公分母为(x+2)(x﹣2), 去分母得(x﹣2)2﹣(x+2)(x﹣2)=16,
整理得﹣4x+8=16,解得x=﹣2, 经检验x=﹣2是增根,故原分式方程无解.
当_A_=_0_且___B_≠_0__时,分式
最新人教版八年级数学上册 第十五章《分式的基本性质》导学案
16.1.2 分式的基本性质学前温故1.分数的基本性质分数的分子和分母都乘(或除以)同一个______的数,分数的值不变.2.分数的通分把几个异分母的分数化为同分母的分数叫做分数的通分,最简公分母取各个分母的__________.3.最简分数分子、分母是互质的分数,即分子和分母的最大公因数是1,这样的分数叫做最简分数.4.分数的约分约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.约分的方法:一般用分子和分母的______(1除外)去除分数的分子和分母;通常要除到得出最简分数为止.约分时,如果能很快看出分子和分母的最大公约数,直接用它们的最大公约数去除比较简便.新课早知1.分式的基本性质分式的分子与分母同乘(或除以)一个__________的整式,分式的值__________.2.填空:(1)a b =( )ab ;(2)x x +y =x 2( ). 3.分式的约分利用分式的__________,约去分式的分子和分母的__________,不改变分式的值,这样的分式变形叫做分式的约分.4.计算(ab )2ab 2的结果为( ). A .b B .a C .1 D .1b5.最简分式分子与分母没有__________的分式,叫做最简分式.6.分式a a +b ,2xy x 2y ,a 2-b 2(a +b )2中最简分式有( ). A .0个 B .1个 C .2个 D .3个7.分式的通分利用分式的__________,使分子和分母同乘适当的整式,不改变分式的值,把几个分式化成相同分母的分式,这样的分式变形叫做分式的__________.8.最简公分母为通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作为公分母,它叫做__________.9.下列分式:34a 2b ,-56b 2c ,12ac 2的最简公分母是__________.答案:学前温故1.不等于0 2.最小公倍数 4.公约数新课早知1.不等于0 不变 2.(1)a 2 (2)x 2+xy3.基本性质 公因式 4.B 5.公因式 6.B7.基本性质 通分 8.最简公分母 9.12a 2b 2c 21.分式的约分【例1】 约分:(1)16-a 2a 2-8a +16;(2)12a 2(a +b )-16a (a 2-b 2). 分析:(1)如果分式的分子、分母都是单项式,就直接约去分子、分母的公因式,即分子、分母系数的最大公约数及相同字母的最低次幂;(2)如果分子、分母都是多项式,就先分解因式,找出公因式,再进行约分.解:(1)16-a 2a 2-8a +16=-(a +4)(a -4)(a -4)2=-a +4a -4. (2)12a 2(a +b )-16a (a 2-b 2)=-4a (a +b )·3a 4a (a +b )·4(a -b )=-3a 4(a -b ). 点拨:要牢记分子、分母都是乘积形式时,才能进行约分;约分要彻底,即约去公因式后为最简形式.2.分式的通分【例2】 通分:1-2x 3xy 2(x +3),1-x 18y -2x 2y. 分析:应先把第二个分式的分母因式分解,再找最简公分母,然后再通分.解:最简公分母是6xy 2(3+x )(3-x ).1-2x 3xy 2(x +3)=(1-2x )·2(3-x )3xy 2(x +3)·2(3-x )=2(1-2x )(3-x )6xy 2(x +3)(3-x ); 1-x 18y -2x 2y =(1-x )·3xy 2y (3+x )(3-x )·3xy =3xy (1-x )6xy 2(3+x )(3-x ). 点拨:找最简公分母的方法:(1)系数:找各分母系数的最小公倍数;(2)字母因式:找各分母中所有字母因式及其最高次幂;(3)多项式因式:先将多项式分解因式,再取各分母中所有多项式因式及其最高次幂.它们的乘积即是最简公分母.1.等式a a +1=a (b +1)(a +1)(b +1)成立的条件是( ). A .a ≠0且b ≠0 B .a ≠1且b ≠1C .a ≠-1且b ≠-1D .a ,b 为任意实数2.在①a b =a 2ab ;②a b =ab b 2;③a b =ac bc ;④a b =a (-1-m 2)b (-1-m 2)中,从左到右的变形正确的是( ). A .①② B .②④ C .③④ D .①②③④3.将下列各式约分:(1)-3ab 215a 2b ;(2)x 2-5x 25-x 2;(3)4-a 2-a 2+4a -4. 4.把下列各式通分:x +55x -20,5x 2-9x +20,x 5-x.答案:1.C2.B ①和③中a ,c 可能为0;②和④中b 和(-1-m 2)均不为0.3.解:(1)-3ab 215a 2b =-b ·3ab 5a ·3ab =-b 5a. (2)x 2-5x 25-x 2=x (x -5)-(x +5)(x -5)=-x x +5. (3)4-a 2-a 2+4a -4=-(a +2)(a -2)-(a -2)2=a +2a -2.4.解:最简公分母是5(x -4)(x -5). x +55x -20=(x +5)(x -5)5(x -4)(x -5)=x 2-255(x -4)(x -5); 5x 2-9x +20=5×5(x -4)(x -5)×5=255(x -4)(x -5); x 5-x =-x ·5(x -4)(x -5)·5(x -4)=-5x 2-20x 5(x -4)(x -5).。
2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.
第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。
学生:直尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。
人教版八年级上册数学学案:第十五章 分式单元小结
第十五章 分式单元小结教学目标知识与技能目标:1.能说出分式的定义; 2.会进行简单的分式运算.3.会解可化为一元一次方程的分式方程,并能解决相关的应用问题. 过程与方法目标:经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。
情感价值观目标:通过研究解决问题的过程,培养学生合作交流的意识。
教学重点:1.会进行简单的分式运算;2.会解可化为一元一次方程的分式方程,并能解决相关的应用问题。
教学难点:会解可化为一元一次方程的分式方程,并能解决相关的应用问题。
知识梳理及对应练习(一)分式定义1.知识要点:一般地,如果A 、B 表示两个整式,且B 中 ,那么式子叫做分式. 2.对应练习(1)在下列各式中,是分式的有 个. (2)若分式无意义,则满足的条件是 . (3)若分式的值为0,则= . (二)分式基本性质1.知识要点:(1) () 2.对应练习:(1)填空: (2)约分32,31,2,3,13,13x x x x a π+21-x x 242--x x x CB C A B A BC AC B A ÷÷==,0≠C )(b a aab a +=+22. (三)分式的运算1.知识要点(1) , ;(2) , . 2.对应练习:计算(1) (2)(3) (4)(四)分式方程1.知识要点:(1)解分式方程的基本思想是:把 转化为 .(2) 解分式方程特别注意: .2.对应练习:(1)解下列方程①②(2)应用题:两班植树,已知甲班每天比乙班多植5棵树,甲班植80棵所用时间与乙班植70棵时间相等,求甲乙两班每天各植树多少棵?三、综合练习1.将0.000000879用科学计数法表示为: . =+++2222b ab a ab a =⋅d c b a =÷d c b a =n ba )(=-n a cdb ac ab 4522223-÷411244222--⋅+-+-a a a a aa 1122++-+x x x x x x x x x x 1112122--+-÷--41243--=+-x x x 481222-=-+-x x x2.如果有意义,则满足 .3.= .4.若,则 , .5.把分式通分,先求出它们的最简公分母是 .(选做)6.已知,求代数式 的值.(选做)7.解关于x 的方程:(1) (2) ()4)12(--x x 3223)102()102(---⨯⨯⨯3521)(---+=÷b a b a b a n m n =m =n 342,13,11222++--++x x x x x x x 022=-a 11)1(222++--a a a a 1=-a x a1=+-b m x m1≠b。
人教版八年级上册数学学案:第十五章分式小结与复习1
1、分式的定义:。
2、分式的基本性质:;
3、分式的约分(公因式的确定方法)。
4、最简分式。
5、分式的通分。
6、最简公分母。
7、分式加减法法则:。(加减法的结果应化成)
8、分式乘除法则:。
9、分式混合运算的顺序:。
二、合作、探究、交流、展示
1、填空
(1)当x时,分式 有意义,当x时,分式 无意义。
课题:《分式》小结与复习(1)
课型
新授
编写人
审核人
授课时间
学习目标
1.使系统了解本章的知识体系及知识内容.
2.掌握通分、约分及分式的四则运算法则与它们之间的内在联系.
3.进一步熟悉掌握分式方程的解法及其应用.
学习重点
(1)熟练而准确地掌握分式四则运算.(2)熟练掌握分式方程的解法.
学习难点
(1)四则混合运算中的去括号及符号问题.(2)分式方程的验根问题.
(2)分式 当x______时分式的值为零。
(3) 的最简公分母是。
(4)若分式 的值为负数,则x的取值范围是__。
(5) ; ;;Βιβλιοθήκη 。(6)当 , 时,计算 。
(1)已知a+b=5, ab=3,则 _______。
2、选择题
(1)下列各式中分式有( )个 中,A、1个 B、2个 C、3个 D、4个
A、 或-1B、 或1C、-1D、1
3、计算:
(1) (2) (3)
4、已知 .试说明不论x在许可范围内取何值,y的值都不变.
三、当堂测评
1、约分:
① _______,② ______,③
2、如果 =2,则 =____________。
3、若把分式 中的x和y都扩大3倍,那么分式的值( )
八年级数学上册《第15章 分式》导学案(新版)新人教版
第15章 分式【学习目标】知识与技能:了解分式的概念以及分式与整式概念的区别与联系。
过程与方法:掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。
情感态度与价值观:以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。
【学习重点】 分式的概念和分式有意义的条件。
【学习难点】 分式的特点和分式有意义的条件.【自学展示】1、 什么是整式? ,整式中如有分母, 分母中 (含、不含)字母2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x ;a 1 ;xyx 2- ;3a ;5 .3、 阅读“引言”, “引言”中出现的式子是整式吗?4、 自主探究:完成p127的“思考”,通过探究发现,a s 、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。
5、 归纳:分式的意义: 。
代数式a 1 、x y x 2-、a s 、s V 、v +20100、v-2060都是 。
分数有意义的条件是 。
那么分式有意义的条件是 。
【合作学习】例1、在下列各式中,哪些是整式?哪些是分式? (1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m + (5)—5 (6)1222-+-x y xy x (7)72 (8)c b +54例2、p 128的“例1”填空:(1)当x 时,分式x32有意义 (2)当x 时,分式1-x x有意义(3)当b 时,分式b351-有意义(4)当x 、y 满足关系 时,分式yx yx -+有意义 例3、x 为何值时,下列分式有意义?(1)1-x x (2)15622++-x x x (3)242+-a a【质疑导学】例4、x 为何值时,下列分式的值为0?(1)11 x x (2)392+-x x (3)11--x x【学习检测】1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y )整式是 ,分式是 。
人教版八年级数学上册 第十五章分式小结与复习(共26张PPT)
⑶约分: 把一个分式的分子与分母的 公因式 约去, 叫做分式的约分.
⑷通分: 把几个异分母的分式化成 同分母的分式, 注 然意 后:再叫约分做分式.分的分式子的、通分分母. 是多项式的,应先分解因式,
-A ( -B )
-A A
=
=
-B ( B )
( -A ) =
B
-A (B )
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/82021/9/8Wednesday, September 08, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/9/82021/9/82021/9/89/8/2021 1:33:24 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/82021/9/82021/9/8Sep-218-Sep-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/82021/9/82021/9/8Wednesday, September 08, 2021
分式小结与复习
一、本章知识结构图
列式
实
分式
际
问 题 列方程
目标
类比分数
性质
分式的基本
性质
类比分数 运算
分式的运算
分式方程
去分母
目标
整式方程
解整 式方 程
实际问 题的解
分式方程的解
人教版八年级数学上册《十五章 分式 小结 构建知识体系》优课导学案_8
第十五章分式复习与小结一、教材分析分式的主要内容是与分数的有关内容对比着学习的,复习时应加强这种对比。
从比较高的层次上认识分数与分式及其有关内容的内在联系和区别,以提高这一部分内容的学习质量。
1.分式的概念和分式的基本性质是学习本章的基础,对于分式概念,主要是搞清楚分式与分数的区别以及分式及几个与分式有关的条件的问题.对于分式的基本性质,则主要是在分式变形和运算中能够正确灵活地运用.2.分式四则运算法则可以对比分数四则运算法则得出,这一点学生应深切体会.要使学生深刻认识到,具体的分式运算应注意分式基本性质与符号法则的运用。
二、课标要求了解分式和最简分式的概念;能利用分式的基本性质的约分和通分;能进行简单的分式的加、减、乘、除运算。
三、教学目标1.进一步巩固及加深对分式概念及分式的基本性质的理解和运用。
2. 进一步熟练掌握分式的四则运算法则及整数指数幂运算法则。
3. 进一步熟悉和掌握分式方程的解法及应用,体会其中蕴含的数学思想。
4.结合利用分式方程解决实际问题的实例,进一步体会方程是刻画实际问题数量关系的重要数学模型。
四、教学重、难点重点:分式的基本性质和分式的四则混合运算。
难点:分式的四则混合运算法则的运用。
五、教学过程设计(一)本章知识结构师生活动:教师引导学生齐读学习目标,并让学生结合课本目录回忆本章所学内容,然后教师利用思维导图展示本章的知识结构图。
设计意图:通过构建知识体系了解本章所学内容,让学生对知识系统化。
(二)典型例题分析例1 下列代数式中,哪些是分式?哪些是整式?2a 2+b,3y x + ,∏+2b a , 21b a +,8x -,()1212+x ,x x 2,()112+x m (知识点一:分式的概念)师生活动:先让学生思考后,回答问题,并由学生归纳本题所考察的知识点。
设计意图:复习巩固知识点一——分式的概念,并强调识别分式的几个注意点。
例2 (1)当x 为_____时,分式6213-+x x 有意义。
人教版八年级数学上册《十五章 分式 小结 构建知识体系》优课导学案_8
分式单元复习(1)----分式的运算授课人:授课地点:授课时间:教学目标:1. 掌握分式的概念和分式的基本性质,并能熟练运用分式的基本性质进行分式的变形以及约分、通分;2. 能准确地进行分式的乘除、加减以及混合运算。
3.巩固本章知识点的应用,并综合应用知识点解决问题。
在应用中提高数学能力。
教学重点: 分式的概念、性质及运算,解分式方程。
教学难点:综合应用知识点解决问题。
在应用中提高数学能力。
数学思想方法:1.本章突出运用了类比的数学思想方法,分式的基本性质、约分、通分以及分式的运算法则都是类比分数的基本性质、约分、通分以及分数的运算法则而引出的.2.转化思想就是将复杂的问题转化为简单问题,未知的问题转化为已知的问题.转化 本章很多知识点都体现了转化的数学思想,如,分式除法转化为分式乘法,异分母的分式加减运算转化为同分母的分式加减运算。
教学方法:探索交流,讲练结合教学过程:引入:今天,我们将对《分式》复习这,现在,让我们一起来回忆一下这一章主要有哪些知识点?(展示PPT :分式树):分式的主要内容分三块:首先是分式的有关概念:分式的定义,分式的基本性质,利用基本性质进行约分、通分;接下来是分式的运算:有乘除、加减、整数指数幂,最后是方程:包括分式方程的概念、解法和应用题。
接下来,我们将从分式的定义出发,展开复习分式概念提问:什么是分式?谁来举一个分式的例子?是怎么确定是分式?生答:分母里有字母,有分母,那首先要有分数线 ;它和我们学过的整式有什么区别?谁来举一个分式的例子?分式定义:如整式A 除以整式B 的形式:BA (并且B 中含有字母)的式子叫做分式,关键是:分母里必须含有字母,这是分式区别于整式的重要依据。
这里给大家准备了一些式子。
请大家辨析一下:下列各式中,哪些是整式?哪些是分式?xx y x b b a c x a 224,3,3,,1,3,51π-- 整式:,3,3,1,512πy x b x - 分式:xx b a c a 24,,3- 复习要点:51是分数,不是分式。
最新初中人教版八年级数学上册第15章小结与复习导学案
第15分式小结与复习【学习目标】:了解本章知识要点、巩固本章知识点的应用,并综合应用知识点解决问题。
学习重点:分式的概念、运算及分式方程的应用。
学习难点 :分式方程的应用。
学习过程 :一、知识点复习:1. 分式的概念(1)如果 A 、B 表示两个整式,且 B 中含有字母,那么式子AB 叫做分式。
(2)分式与整式的区别: 分式的分母中含有字母,整式的分母中不含有字母。
2.分式有意义的条件:分式的分母不能为 0,即AB 中, B ≠ 0 时,分式有意义。
3. 分式的值为0的条件:分子为0,且分母不为0,对于A B ,即00A B =⎧⎨≠⎩时,A B = 0 .4. 分式(数)的基本性质: 分式(数)的分子、分母都乘以(或除以)同一个不等于零的整式(数),分式(数)的值不变。
A A MB B M ⋅=⋅, A A M B B M ÷=÷( M 为 ≠ 0 的整式)5. 分式通分(1)通分的依据是分式的基本性质; (2)通分的关键是确定最简公分母;(3)通分后的各分式的分母相同;(4)通分后的各分式分别与原来的分式相等.6. 分式通分的步骤(1)确定最简公分母①取各分母系数的最小公倍数。
②凡出现的字母(或含字母的式子)为底的幂的因式都要取。
③相同字母(或含字母的式子)的幂的因式取指数最大的。
④当分母中有多项式时,要先将多项式分解因式。
(2)将各分式化成相同分母的分式。
7. 分式的约分(1)约分的依据:分式的基本性质 (2)约分后不改变分式的值。
(3)约分的结果:使分子、分母中没有公因式,即化为最简分式。
8. 分子的变号规则分式的分子、分母及分式本身的符号改变其中任意两个,分式的值不变。
用式子表示为:a a a b bb -==--;a a a a b b b b ---=-==-- 9. 分式的乘除法则乘法法则:分式乘以分式,用分子的积作积的分子,用分母的积作积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
最新人教版初中八年级数学上册第十五章《分式》精品教案(小结复习)
重点解析 1
解下列方程:
(1) x 3 - 2 x -1 2x - 2
(2)
x2
3
2x
-
x2
1 - 2x
0
解:(1)方程两边同时乘2(x-1),得2x=3-4(x-1),
整理得:6x=7,解得 x 7 . 6
检验:当 x 7 时,2(x-1)≠0, 6
所以原分式方程的解是 x 7 . 6
知识梳理
列分式方程解决实际问题的一般步骤 审:审清题意,找出题中的相等关系,分清题中的已知量、未知量; 设:设出恰当的未知数,注意单位和语言的完整性; 列:根据题中的相等关系,正确列出分式方程; 解:解所列分式方程; 验:既要检验所得的解是否为所列分式方程的解,又要检验所得的解是否符合 实际问题的要求; 答:写出答案.
本题源自《教材帮》
重点解析 3
班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有 90公里,队伍8:00从学校出发,苏老师因有事情,8:30从学校自驾小车以大巴1.5 倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地. 问: (1)大巴与小车的平均速度各是多少? (2)苏老师追上大巴的地点到基地的路程有多远?
根据题意,得:5 20 (1 20%) 2400 2400 2400 ,
y
10 - 2
解得:y=480.
经检验:y=480是原分式方程的解,且符合题意.
答:原计划安排的工人有480人.
课堂小结
1.同学们,今天你学到了什么呀? 和同桌说说有什么收获。
2.师生共同总结反思学习情况。
1.从课后习题中选取; 2.完成练习册本课时的习题.
重点解析 2
若分式方程: 3x - a x2 - 2x
人教版八年级上册数学第15章分式小结与复习
知识梳理1.形如A(A、B是,且B中含有,B≠0)的式子,叫B做分式.2.分式有、无意义的条件:当分母时,分式有意义;当分母时,分式无意义.3.分式值为零的条件:当分式的分子,分母时,分式的值为零.4.分式的基本性质是:分式的分子与分母都(或)同一个的整式,分式的值.5.分式的乘除法:分式乘分式,用分子的积作为积的,分母的积作为积的;分式除以分式,把除式的分子、分母后,与被除式.6.分式的乘方:分式乘方,把分子、分母.7.同分母分式的加减法法则:同分母的分式相加减,分母,把分子;异分母分式的加减法法则:异分母的分式相加减,先,变为同分母的分式,然后再.8.分母中含有的方程叫做分式方程.9.解分式方程的步骤:(1)分式方程两边都乘以各分式的最简公分母,约去分母,转化为方程;(2)解这个方程;(3)检验,把方程的解代入最简公分母,如果最简公分母的值 ,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,它是原方程的增根,应当舍去.10.我们规定:任何不等于零的数的零次幂都等于 ,即0a = (a ≠0).11.一般地,当n 是正整数时,n a -= (a ≠0).即任何不等于零的数的n -(n 是正整数)次幂,等于这个数的n 次幂的 .12.一般地,绝对值小于1的数可以表示成10n a ⨯的形式,其中110a ≤<,即a 是整数位数只有 位的数;n 是一个 整数.考点呈现考点1 分式值为0的条件例1 (2013年温州)若分式43+-x x 的值为0,则x 的值是( ) A .x =3 B .x =0 C .x =-3 D .x =-4解析:因为分式43+-x x 的值为0,所以x -3=0,x +4≠0,所以x =3.故选A .点评:分式的值为0的条件是分子为0,分母不为0,这两个条件缺一不可.考点2 分式的基本性质例2 (2013年淄博)下列运算中错误的是( )A.22)()(a b b a --=1 B.b a b a +--=-1 C.b a b a b a b a 321053.02.05.0-+=-+D.ab a b b a b a +-=+- 解析:2222)()()()(b a b a a b b a --=--=1,A 选项正确;ba b a b a b a b a b a ++-=++-=+--)(=-1,B 选项正确;ba b a b a b a b a b a 3210510)3.02.0(10)5.0(3.02.05.0-+=⨯-⨯+=-+,C 选项正确;ab a b a b a b b a b a +--=+--=+-)(,D 选项错误.故选D. 点评:解“判断下列运算(或说法)错误(或正确)”类型的选择题,除了采用逐一验证四个选项进行求解之外,还可以利用排除法选出符合题意的答案.考点3 分式的运算例3 (2013年凉山州)化简:)1(111+⎪⎭⎫ ⎝⎛+-m m 的结果为 . 解析:)1(111+⎪⎭⎫ ⎝⎛+-m m =)1(1111+⎪⎭⎫ ⎝⎛+-++m m m m =)1(1+•+m m m =m .故填m. 例4 (2013年泰安)化简分式⎪⎭⎫ ⎝⎛++-÷-1112122x x x 的结果是( )A .2B .12+xC .12-x D .-2 解析:⎪⎭⎫ ⎝⎛++-÷-1112122x x x =()()()()221111x x x x x x ⎡⎤-÷+⎢⎥---⎣⎦+1+1 =()()211x x x x ÷--+1+1=()211x x •--=2.故选A . 点评:分式的混合运算,要注意运算顺序:先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果要化成最简分式或整式. 考点4 分式的化简求值例5 (2013年重庆)先化简,再求值:4442122+--÷⎪⎭⎫ ⎝⎛---+x x x x x x x ,其中x 是不等式173>+x 的负整数解. 解:4442122+--÷⎪⎭⎫ ⎝⎛---+x x x x x x x 由173>+x ,解得2->x .又x 为负整数,所以1-=x .当1-=x 时,原式=3121=---. 点评:分式的化简求值,要根据所给式子的特点,按照分式化简的步骤化简,最后代值计算.考点5 科学记数法例6(2013年茂名)PM2.5是指大气中直径小于或等于2.5 μm (0.000 002 5 m )的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.将0.000 002 5用科学记数法表示为( )A .25×10-7B .2.5×10-6C .0.25×10-5D .2.5×106解析:0.000 002 5=2.5×10-6.故选B.点评:把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),称为科学记数法.当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非0数前0的个数(含整数位数上的0).考点6 解分式方程例7(2013年资阳)解方程24x x -+22x +=12x -.解:方程两边乘(x +2)(x -2),得x +2(x -2)=x +2. 解得x =3.检验:当x =3时,(x +2)(x -2)≠0.所以,原分式方程的解为x =3.点评:解分式方程的基本思想是“化分式方程为整式方程”,解分式方程后一定要注意检验.考点7 根据方程的解确定字母的值或取值范围例8 (2013年扬州)已知关于x 的方程2123=++x n x 的解是负数,则n 的取值范围为 .解析:化简方程2123=++x n x ,得x=n -2. 根据题意,得x<0且2x+1≠0,所以n -2<0且2(n -2)+1≠0,解得2<n 且23≠n .点评:解含有字母系数的分式方程时,通常先化为整式方程,把未知数用其他字母表示,进而求解.要注意分式方程增根的存在. 考点8 列分式方程解应用题例9 (2013年湘西)吉首城区某中学组织学生到距学校20 km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.解:设骑自行车学生的速度为x km/h ,则汽车的速度为2xkm/h. 根据题意,得2122020=-x x . 解得x =20.经检验,x =20是原方程的解,且符合题意.答:骑自行车学生的速度为20 km/h .点评:分析题意,弄清楚已知量与未知量之间的关系,得到等量关系式,进而引进未知数,列方程解决问题.误区点拨易错点1 分式的基本性质理解不深例1 若A ,B 为不等于0的整式,则下列各式成立的是( )A.E B E A B A ⋅⋅=(E 为整式)B.E B E A B A ++=(E 为整式)C.()()1122+⋅+⋅=x B x A B A D.()()2211+⋅+⋅=x B x A B A 错解:选A 或D.剖析:分式的基本性质是分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.所以B 选项明显不正确;A 选项与D 选项中E 与2)1+x (均可能为零,所以A ,D 选项错误;C 选项中112≥+x ,C 选项正确.正解:选C.易错点2 忽视分母不为0的条件例2 若方程08242=---x x x ,则=x . 错解:填±4.剖析:若分式的值为0,则分子为0且分母不为0,所以04=-x ,且0822≠--x x ,则4-=x .错解未考虑分式的分母不为0.正解:填-4.易错点3 轻易约分例3 x 取何值时,分式()()223x x x +++有意义? 错解:原式13x =+.由03≠+x ,得3-≠x .所以当3-≠x 时,分式()()223x x x +++有 意义.剖析:错解约去分母中的2+x ,但无法确定2+x 不为零,使得未知数x 的取值范围扩大,导致漏解.正解:由(x+2)(x+3)023x x ≠≠-≠-,得且.所以当32-≠-≠x x 且时,分式()()223x x x +++有意义. 易错点4 分式的运算顺序错误例4 计算()()222111x x x x x ÷+-+.错解:原式=121122-=+÷-x x x x x . 剖析:分式的乘除运算是同一级运算,应按照从左向右的顺序依次计算,不可因为计算简便而颠倒顺序,导致结果出现错误.正解:原式=()()()222212122421111x x x x x x x x x x +++++==---. 易错点5 分式的增根认识不清例5 若关于x 的方程0111=--+x ax 有增根,则a 的值为________. 错解:原方程两边乘(x-1),得ax+1-(x-1)=0.解得x=12--a . 因为原分式方程有增根,所以x-1≠0,即x≠1.所以112≠--a ,解得a≠-1. 剖析:分式方程的增根应是最简公分母分母为0的x 值,即x=1而不是x≠1.正解:原方程两边乘(x-1),得ax+1-(x-1)=0.解得x=12--a . 因为原分式方程有增根,所以x-1=0,即x=1.所以211a -=-,解得a=-1. 跟踪训练1.(2013年攀枝花)若分式211x x -+的值为0,则实数x 的值为______.2.(2013年永州)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为 平方公里.3.(2013年大连)化简:x +1-122++x x x =___________. 4.(2013年德阳)已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围是__________. 5.(2013年盘锦)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为____________.6.(2013年宁夏回族自治区)解方程1326-+=-x x x . 7.(2013年普洱)先化简,再求值:2222211a a a a a a a +++÷-+,其中a=2013.8.(2013年三明)兴发服装店老板用4500元购进一批某款式T 恤衫,由于深受顾客喜爱,很快售完.老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价-进价)分式小结与复习知识梳理:略.跟踪训练:1. 1 2. 4810-⨯ 3. 11+x 4. m>﹣6且m≠﹣4 5. 61255=-x x 6. 解:方程两边乘(x -2)(x+3),得)3)(2()2()3(6+---=+x x x x x . 解得x=34-.检验:当x=34-时,(x -2)(x+3)≠0. 所以,原分式方程的解为x=34-.7. 解:2222211a a a a a a a +++÷-+=222(1)(1)1a a a a a a +⋅-++=211a a a a -++ 当a=2013时,原式=201320131+=20132014. 8. 解:(1)设第一批T 恤衫每件进价x 元. 根据题意,得450049509x x =+. 解得90x =.经检验,90x =是原方程的解,且符合题意. 答:第一批T 恤衫每件进价是90元.(2)由(1)知,第二批购进T 恤衫49505099=(件). 设剩余的T 恤衫每件售价y 元,根据题意,得 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式小结与复习
【学习目标】:
了解本章知识要点、巩固本章知识点的应用,并综合应用知识点解决问题。
学习重点:分式的概念、运算及分式方程的应用。
学习难点 :分式方程的应用。
学习过程 :
一、知识点复习:
1. 分式的概念
(1)如果 A 、B 表示两个整式,且 B 中含有字母,那么式子A
B 叫做分式。
(2)分式与整式的区别: 分式的分母中含有字母,整式的分母中不含有字母。
2. 分式有意义的条件:
分式的分母不能为 0,即A
B 中, B ≠ 0 时,分式有意义。
3. 分式的值为0的条件:分子为0,且分母不为0,对于A B ,即00A B =⎧⎨≠⎩
时,A B = 0 . 4. 分式(数)的基本性质: 分式(数)的分子、分母都乘以(或除以)同一个不等于零的整式(数),分式(数)的值不变。
A A M B B M ⋅=⋅, A A M B B M ÷=÷( M 为 ≠ 0 的整式)
5. 分式通分
(1)通分的依据是分式的基本性质; (2)通分的关键是确定最简公分母;
(3)通分后的各分式的分母相同;
(4)通分后的各分式分别与原来的分式相等.
6. 分式通分的步骤
(1)确定最简公分母
①取各分母系数的最小公倍数。
②凡出现的字母(或含字母的式子)为底的幂的因式都要取。
③相同字母(或含字母的式子)的幂的因式取指数最大的。
④当分母中有多项式时,要先将多项式分解因式。
(2)将各分式化成相同分母的分式。
7. 分式的约分
(1)约分的依据:分式的基本性质 (2)约分后不改变分式的值。
(3)约分的结果:使分子、分母中没有公因式,即化为最简分式。
8. 分子的变号规则
分式的分子、分母及分式本身的符号改变其中任意两个,分式的值不变。
用式子表示为:a a a b
b b -==--;a a a a b b b b ---=-==--
9. 分式的乘除法则
乘法法则:分式乘以分式,用分子的积作积的分子,用分母的积作积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
a c
b d ⋅= a
c
b d ÷=
10. 分式的乘方
分式的乘方是把分子、分母分别乘方,即n
a b ⎛⎫ ⎪⎝⎭=
11. 分式的加减
(1)同分母分式相加减,分母不变,把分子相加减。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
a b
c c ±= a c b
d ±=
()()---±---=
12. 分式的混合运算原则
(1)先乘方,再乘除,再算加减,有括号,先算括号内的。
(2)同级运算,按运算顺序进行。
(3)运算过程中,要灵活运用交换律、结合律、分配律。
(4)结果化为最简分式或整式。
13. 整数指数幂(m,n 为整数)
(1) m n a a ⋅= (2)()n m a = (3)()n
ab = ,
(4)m n a a ÷=
(a ) (5)n
a b ⎛⎫ ⎪⎝⎭=
(6)零指数幂的性质: 0a = ( ),
负指数幂的性质:n a - = ( )
引入负整数指数幂后,正整数指数幂的运算法则对负整数指数幂一样适
14. 分式方程
定义:分母中含有未知数的方程叫分式方程。
整 式 方 程 , 如 3x +3 = 4 x -2
分 式 方 程 , 如1
2
123x x =+-
15.解分式方程方法
分式方程——————整式方程—————解出值——————得出方程的解
16. 列分式方程解应用题
(1)审——仔细审题,找出等量关系;
(2)设——合理设未知数;
(3)列——根据等量关系列出方程(组);
(4)解——解出方程(组);
(5)验答——检验写答案.
二、考点训练:
考点 1. 分式的概念和性质
例 1(1)已知分式1
1x x -+ 的值是零,那么 x 的值是( )A.-1 B.0 C.1 D.±1 (2)当 x________时,分式1
1x - 没有意义.
例 2 下列各式从左到右的变形正确的是( )
A 、0.20.2a b a b ++=22a b a b ++
B 、11x x x y x y +--=--
C 、a b a b a b a b +-=-+
D 、12
12x y x y -
+ =22x y x y -+
考点 2:分式的化简与计算 : 例 3 计算24111a a a a ++--的结果是________.
例 4 计算2224222a a a a a a ⎛⎫⋅- ⎪+--⎝⎭
例 5 化简11x x x
x -⎛⎫÷- ⎪⎝⎭ 考点 3:分式条件求值 :
例 6 先化简,再求值:22333x x x x x x ⎛⎫-÷ ⎪---⎝⎭,其中
例 7 先化简代数式:
22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.
考点 4:可化为一元一次方程的分式方程 :
例 8 解方程:2113
3x x x -=---
例 9 某市今年 1 月 1 日起调整居民用水价格,每立方米水费上涨 25%,小明家去年 12 月 份的水费是 18 元,而今年 5 月份的水费是 36 元.已知小明家今年 5 月份的用水量比去年 12 月份多 6 立方米,求该市今年居民用水的价格.。