专题二动量和能量

合集下载

动量与能量综合专题

动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。

当两个或多个物体相互作用时,它们的总动量保持不变。

这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。

在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。

2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。

3、方向:动量是矢量,具有方向性。

在计算动量的变化时,需要考虑动量的方向。

二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。

这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。

在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。

2、转化与转移:能量的转化和转移是不同的。

转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。

3、方向:能量的转化和转移是有方向的。

在计算能量的变化时,需要考虑能量的方向。

三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。

当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。

因此,在解决复杂问题时,需要综合考虑动量和能量的因素。

例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。

这些情况的发生不仅与物体的动量有关,还与物体的能量有关。

如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。

因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。

四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的

高考二轮总复习课件物理(适用于老高考旧教材)专题2能量与动量第1讲 动能定理机械能守恒定律功能关系的
受力和运动分析
(1)建立运动模型。
(2)抓住运动过程之间运动参量的联系。
(3)分阶段或全过程列式计算。
(4)对于选定的研究过程,只考虑初、末位置而不用考虑中间过程。
注意摩擦力做功特点
深化拓展
应用动能定理解题应注意的三个问题
(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比
动力学研究方法要简捷。
则重力的瞬时功率不为0,C错误;随着运动员在圆弧跳台上升高,速率逐渐
减小,所需要的向心力也在减小,向心力由台面的支持力与重力垂直接触面
向下的分力提供,由牛顿第二定律有FN-mgcos θ=m
大,v在减小,所以FN在减小,D正确。
2
,随着高度升高,θ在增

2.(命题角度1、2)(多选)一个质量为5 kg静止在水平地面上的物体,某时刻
能定理
1
Pt-W=2 m 2 ,则这一过程中小汽车克服阻力做的功为
D 错误。

W=Pt- 2 ,率启动
1
a-图像和
1
a-v 图像
1
F-图像问题
恒定加速度启动
1
F-v 图像
恒定功率启动
1
a- 图像
v
恒定加速度启动
1
F- 图像
v
①AB 段牵引力不变,做匀加速直线运动;
1
1
2
由动能定理得-mg·2r-W=2 2 − 2 1 2 ,联立解得小球克服阻力做的功
W=mgr,A 错误,B 正确;设再一次到达最低点时速度为 v3,假设空气阻力做
功不变,从最高点到最低点根据动能定理得
最低点,根据牛顿第二定律
1
mg·2r-W= 3 2

最新动量和能量专题幻灯片

最新动量和能量专题幻灯片

⑸图象描述
v vm0
vmt d vMt
0 t0
t
“子弹”穿出“木
块” v
vm0
v vm0
≤d mvm/M+m
0 t0
t
v “子弹”未穿出“木块”
vm0
0
t0
t mvm/M+m Δsm
(mvmo-MvM0)/M+m Δs
0
t
vM0
“子弹”迎击“木块” 未穿出
“子弹”与“木块” 间恒作用一对力
练习
例:如图所示,质量M的平板小车左端放着m 的铁块,它与车之间的动摩擦因数为μ.开始时 车与铁块同以v0的速度向右在光滑水平地面上 前进,并使车与墙发生正碰.设碰撞时间极短,碰 撞时无机械能损失,且车身足够长,使铁块始终 不能与墙相碰.求: 铁块在小车上滑行的总路程. (g=10m/s2)
△E=m3g(x1+x2)-m1g(x1+x2) ③ C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由能 量关系得
1 2 ( m 3 m 1 ) v 2 1 2 m 1 v 2 ( m 3 m 1 ) g ( x 1 x 2 ) m 1 g ( x 1 x 2 ) E ④
由③④式得 1 2(2m 1m 3)v2m 1g(x1x2)
(1)动量守恒定律: 适用条件——系统不受外力或所受外力之和为零 公式:m1v1+m2v2=m1v1′+m2v2 ′ 或 p=p ′ (2)机械能守恒定律: 适用条件——只有重力(或弹簧的弹力)做功 公式:Ek2+Ep2=Ek1+Ep1 或 ΔEp= -ΔEk
例:图示:质量为M的滑槽静止在光滑的水平面滑槽的
典型情景
规律种种 ⑴动力学规律:两物体的加速度大小与质量成反比. ⑵运动学规律:两个作匀变速运动物体的追及问题、相

2021高考物理统考二轮复习学案:专题复习篇 专题2 第讲 动量和能量的综合应用

2021高考物理统考二轮复习学案:专题复习篇 专题2 第讲 动量和能量的综合应用

动量和能量的综合应用[建体系·知关联][析考情·明策略]考情分析近几年高考对动量及动量守恒的考查多为简单的选择题形式;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。

素养呈现1。

动量、冲量、动量定理2。

动量守恒的条件及动量守恒定律3.动力学、能量和动量守恒定律的应用素养落实1。

掌握与动量相关的概念及规律2.灵活应用解决碰撞类问题的方法3。

熟悉“三大观点”在力学中的应用技巧考点1| 动量定理和动量守恒定律冲量和动量定理(1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。

(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.[典例1](2020·武汉二中阶段测试)运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。

已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1。

0×103kg/m3,则喷嘴处喷水的速度大约为( )A.2.7 m/s B.5.4 m/sC.7。

6 m/s D.10。

8 m/s[题眼点拨] ①“悬停在空中”表明水向上的冲击力等于运动员与装备的总重力。

②“水反转180°”水速度变化量大小为2v。

B [两个喷嘴的横截面积均为S=错误!πd2,根据平衡条件可知每个喷嘴对水的作用力为F=错误!mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,解得v=错误!≈5。

4 m/s,选项B正确.]动量和动量守恒定律(1)判断动量是否守恒时,要注意所选取的系统,注意区别系统内力与外力。

系统不受外力或所受合外力为零时,系统动量守恒。

2024年高考物理二轮复习专题二能量与动量、机械振动与机械波专题突破2板块模型的综合应用

2024年高考物理二轮复习专题二能量与动量、机械振动与机械波专题突破2板块模型的综合应用
A. 仅增大恒力F
B. 仅增大木板的质量M
C. 仅增大木块的质量m
D. 仅减小木块与木板间的动摩擦因数
考点二 板块模型中动量、能量的综合问题
板块模型中因滑块与滑板间的滑动摩擦力做功,产生摩擦热,所以常涉
及能量问题。若滑板在光滑水平面上,无水平外力作用时,滑板和滑块
组成的系统满足动量守恒,如涉及时间,可应用动量定理,所以该模型
M,平板车右端放一物块m,开始时M、m均静止。t=0时,平板车在外
力作用下开始沿水平面向右运动,其v-t图像如图乙所示,整个过程中
物块m恰好没有从平板车上滑下。已知物块与平板车间的动摩擦因数为
0.1,g取10m/s2,下列说法正确的是( C )
A. 0~4s内,物块m的加速度一直变大
B. 整个过程中,物块m相对平板车M滑动的时间为4s
(1) 在平台上运动的时间t。
解:(1) 在平台上,根据牛顿第二定
律,有F=mAa,根据匀变速直线运动
2

的位移公式,有L= at ,解得t= s。


(2) 刚滑上木板B时,地面对木板B的摩擦力f。
解:(2) 木块A刚滑上木板B时,A对
B的摩擦力大小为f1=μmAg=4N,假设
木板B滑动,地面对B的摩擦力为f2=μ
(mA+mB)g=6N,可知f1<f2,所以
木板B静止,由平衡条件得出f=f1=
4N,方向水平向左。
(3) 滑上木板B并与其右端碰撞后的最大动能Ekm。
解:(3) 对木块A,设其与木板B碰撞
前的速度为v1,根据动能定理,有FL-

μmAgL= mA ,碰撞为弹性碰撞,设

碰撞后A、B的速度分别为vA、vB,根据

力学三大观点的综合应用教学设计

力学三大观点的综合应用教学设计

专题二能量与动量单元教学设计一、单元分析(一)单元教材分析本专题内容在大二轮复习教材22页,分别3讲,3个微专题和1个动向。

按教材思路讲完基本知识点:功和功率、功能关系后再讲能量的相关定理、定律。

该专题分两大片,能量和动量,从这两方面展开旨在梳理学生的知识体系。

(二)单元知识结构(三)学情分析本章节的教学对为高三的学生,该阶段的学生已经具备了较高的物理学科素养,有较高的空间想象能力和逻辑推理能力,对各种研究物理问题的方法已经熟练掌握,但是在有限的时间内拿不准用力学观点或是用能量观点,还是用动量观点去解决问题,尤其是在理综考试的过程中,结果花费了时间又拿不到应得的分。

原因在于学生对力和运动的规律,动能定理、动量定理等没有深刻地理解。

二、本单元学习目标(一) 课程标准要求1.巩固动量和能量的三大规律,并会用他们去解决物理问题;2.熟悉物理情景分析的一般步骤,培养学生物理答题规范;3.深刻体会类比,迁移等物理思想,并能活学活用。

(二) 学习目标1.通过能量、动量观点学习将两种抽象的概念具体化;2.加深能量、动量观点中的守恒思维;3.会从力的瞬间作用找受力分析,力在空间上的积累,力在时间上的积累找对应的定理。

三、发展核心素养的编排途径引导学生对实验现象进行分类和归纳,提升学生对实验结果定性分析的能力,通过分析讨论找到动力学、动量、能量观点,发展了学生寻找物理量之间关联的能力。

四、单元课时规划单元名称:能量与动量五、单元评价(一)评价目标1.能通过审题写出能量和动量相关公式2.会分析传送带中的动力学和能量问题,会分析板块模型。

能利用力学三大观点处理多过程问题。

(二)评价形式卷子(小姐测评以及章节测评)以选择题、大题为主。

微专题3 力学三大观点的综合应用教学设计课题名称力学三大观点的综合应用授课教师一、学习目标: 知识目标:①能利用力学三大观点处理多过程问题;②能从实际问题中梳理力学三大观点的相关公式。

素养目标:①通过运动与力,做功与能量培养学生科学思维能力②通过做功和能量习题练习,培养学生能量守恒的守恒思维能力二、重点、难点:①教学重点:应用力学三大观点解决多过程问题②教学难点:应用力学三大观点解决多过程问题以及选用原则的梳理三、教学方法:讲授法、对比分析法四、学习方法:提前预习、总结归纳五、教学流程:复习回顾力学三大观点→例题训练→总结归纳六、学习过程:课前预习→课上细听、做好笔记→课堂练习→归纳总结→完成作业教学环节教师活动学生活动设计意图创设情境引发问题教师提问:1、力学三大观点是哪三大观点?试着举出对应的规律?2、我们遇到问题的时候该怎么选用这些规律呢?学生回答:有动力学、能量和动量这三大观点。

高考物理二轮复习教案专题二能量与动量功和功率功能关系

高考物理二轮复习教案专题二能量与动量功和功率功能关系

功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。

专题:动量和能量

专题:动量和能量
动量和能量
一、动量、动量变化、冲量
1.动量:p=mv. 方向:动量的方向与速度的方向相同.
2.动量的变化Δp=p′-p.方向与速度的改变量Δv的方向相同;
3.冲量I=Ft. 单位:N·s. 方向:冲量是矢量,其方向与力的方向相同.
冲量是动量变化的原因,是动量变化的原因量度。 通电导线在安培力的
4.动量与动能的关系:p= 2mEK
cd 棒的最大加速度 am=Fmm=B32mL22Ir0
解析
答案
(3)两棒达到稳定状态时,各自的速度大小.
答案
I0 6m
I0 3m
解析 当两棒中感应电动势大小相等时系统达到稳定状态,有2BLvab= BLvcd 由ab棒与cd棒中感应电流大小总是相等,可知安培力对ab棒与cd棒的冲量
大小关系为Iab=2Icd 对ab棒根据动量定理有I0-Iab=2mvab 对cd棒根据动量定理有Icd=mvcd 解得 vab=6Im0 ,vcd=3Im0 .
碰撞
• 1.碰撞遵循的三条原则:
• (1)动量守恒定律 • (2)机械能不增加Ek1+Ek2≥Ek1′+Ek2′或
p12 +p22≥p1′2+p2′2
2m1 2m2 2m1 2m2
(3)速度要合理:
①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体
速度大(或相等).
②相向碰撞:碰撞后两物体的运动方向不可能都不改变.
解析
Байду номын сангаас
答案
课堂训练1(2018·四川省攀枝花市一模)如图1所示,轻质弹簧固定在水平
地面上.现将弹簧压缩后,将一质量为m的小球静止放在弹簧上,释放后
小球被竖直弹起,小球离开弹簧时速度为v,则小球被弹起的过程中

2020高考物理二轮复习 专题二 能量与动量 第4讲 动量定理和动量守恒定律练习(含解析)

2020高考物理二轮复习 专题二 能量与动量 第4讲 动量定理和动量守恒定律练习(含解析)

动量定理和动量守恒定律一、单项选择题1.(2019·海口质检)如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向.碰撞时间均可忽略不计.已知m2=3m1,则A反弹后能达到的高度为( )A.h B。

2hC.3h D。

4h解析:选 D.所有的碰撞都是弹性碰撞,所以不考虑能量损失.设竖直向上为正方向,根据机械能守恒定律和动量守恒定律可得,(m1+m2)gh=错误!(m1+m2)v2,m2v-m1v=m1v1+m2v2,错误!(m1+m2)v2=错误!m1v错误!+错误!m2v错误!,错误!m1v错误!=m1gh1,将m2=3m1代入,联立可得h1=4h,选项D正确.2.(2019·高三惠州模拟)质量为1 kg的物体从距地面5 m 高处自由下落,落在正以5 m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂子的总质量为4 kg,地面光滑,则车后来的速度为(g=10 m/s2)() A.4 m/s B。

5 m/sC.6 m/s D.7 m/s解析:选 A.物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒.已知两者作用前,车在水平方向的速度v0=5 m/s,物体水平方向的速度v=0;设当物体与小车相对静止后,小车的速度为v′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:mv+Mv0=(M+m)v′,解得:v′=错误!=错误! m/s=4 m/s,故选项A正确,B、C、D错误.3.某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程人的动量变化量的大小为105 kg·m/sC.船最终速度的大小为0.95 m/sD.船的动量变化量的大小为70 kg·m/s解析:选B。

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第1讲功和能课件

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第1讲功和能课件
第一部分
专题突破方略
专题二 能量与动量 第1讲 功和能
真题速练·明考情 核心知识·固双基 命题热点·巧突破 应用创新·提素养
真题速练·明考情
1.(多选)(2022·广东高考)如图所示,载有防疫物资的无人驾驶小
车,在水平MN段以恒定功率200 W、速度5 m/s匀速行驶,在斜坡PQ段
以恒定功率570 W、速度2 m/s匀速行驶.已知小车总质量为50 kg,MN
③摩擦生热是指滑动摩擦生热,静摩擦不会生热.
2.几个重要的功能关系 (1)重力的功等于重力势能的减少量,即WG=-ΔEp. (2)弹力的功等于弹性势能的减少量,即W弹=-ΔEp. (3)合力的功等于动能的变化,即W=ΔEk. (4)重力和系统内弹簧弹力之外的其他力的功等于机械能的变化,即 W其他=ΔE. (5) 系 统 内 一 对 滑 动 摩 擦 力 做 的 功 是 系 统 内 能 改 变 的 量 度 , 即 Q =
v1=
P额=1 200 Tm 300
m/s
=4 m/s,此过程所用时间和上升高度分别为 t1=va11=45 s=0.8 s,h1=2va211
=2×42 5
m=1.6
m,重物以最大速度匀速时,有
vm=PT额=
P额 =1 200 mg 200
m/s
=6 m/s,重物最后以最大加速度做匀减速运动的时间和上升高度分别为
做匀加速上升,当功率达到额定功率时,保持功率不变直到重物达到最
大速度,接着做匀速运动,最后以最大加速度做匀减速上升至平台速度
刚好为零,重物在第一阶段做匀加速上升过程,根据牛顿第二定律可得
a1=
Tm-mg= m
300-20×10 20
m/s2=5
m/s2,

专题二 动量和能量

专题二 动量和能量
的始 终 .是 联 系各 部 分 知识 的主线 守 恒 思想 是 物 理 学 中 极 为 重 要 的思
内容最 丰富 的部 分 . 以两 大 定律 与 两 大 定理 为 核心 构 筑 了力 学 体 系 . 够 能 渗 透 到 中学 物 理 大 部 分 章 节 与 知 识
点 中。将 各 章节 知 识不 断 分 化 . 与 再

动 量 守恒

解题 方 法 总 结 归纳 讲 解
( ) 用 动 量 守 恒 定 律 解 Байду номын сангаас 问题 一 应
的基 本 思 路 和 一 般 方 法
会 形成 综 合 型考 查 问题 . 面考 查 知 全
识 掌 握 程 度 与 应 用 物 理 知识 解 决 问 题 的 能力 。这 是 历 年 高考 的 热点 , 其
- .
1 量恒律l2 l№ l 体统合力0, 内状变情 ②船动—箭s 定定m+2' — l 系受外为时 统部态化况 ③冲型 S ;= 动 vv V l =l m mt + — 物 系 人模:火S 反运—= £ M +
考 考 纲 解 读

合 到带 电 粒 子 的 运 动 及 电 磁 感 应 之
命 题方 式 多样 、 型 全 、 量 重 , 到 题 分 小 选 择 题 . 到 压 轴 题 . 可 能在 此 出 大 都 题 考查 内容涉 及 中学 物理 的各 个 板 块. 因此 综 合性 强 。主要 综 合考 查 动
1分 析题 意 , . 明确 研 究 对 象 。在
分 析 相 互 作 用 的物 体 总 动 量 是 否 守 恒 时 . 常 把这 些 被 研究 的物 体 总称 通
析 . 明 确在 哪 些 阶 段 . 些 物 体 发 要 哪 生 相 互作 用 . 而确 定 所研 究 的 系统 从

2022-2023年高考物理二轮复习 专题2能量与动量第2讲动量观点的应用课件

2022-2023年高考物理二轮复习 专题2能量与动量第2讲动量观点的应用课件

【解析】 由于地面光滑,所以物块和小车构成的系统动量守恒, 故 A 正确;由于物块和小车之间有摩擦力,所以系统机械能不守恒,故 B 错误;设物块与小车的共同速度为 v,以水平向右的方向为正方向, 根据动量守恒定律有 m2v0=(m1+m2)v,设物块与车面间的滑动摩擦力 为 f,则 f=μm2g,对物块应用动量定理有-μm2gt=m2v-m2v0,解得 t =μmm1+1vm0 2g,t=μmm1+1vm0 2g,代入数据得 t=0.24 s,C 正确;要使物 块恰好不从车面上滑出,须物块到车面最右端时与小车有共同的速度,
根据题意,木块 A 和墙壁碰撞后,速度变小,机械能有损失,B 错误; 水平轨道光滑,则 A 和 B 碰撞过程动量守恒 mAv2=(mA+mB)v,解得 v =3 m/s,故 C 正确;四分之一圆弧轨道足够高,则 A、B 不会脱离轨 道,它们运动到最高点时,速度变为零.从轨道最低点到它们一起运动 到最高点的过程中,只有重力做功,机械能守恒,即21(mA+mB)v2=(mA +mB)gh,解得 h=0.45 m,D 错误;故选 A、C.
【解析】 因安全气囊充气后,受力面积增大,故减小了司机单 位面积的受力大小,故A错误;有无安全气囊司机初动量和末动量均 相同,所以动量的改变量也相同,故B错误;因有安全气囊的存在, 司机和安全气囊接触后会有一部分动能转化为气体的内能,不能全部 转化成汽车的动能,故C错误;因为安全气囊充气后面积增大,司机 的受力面积也增大,在司机挤压气囊作用过程中由于气囊的缓冲故增 加了作用时间,故D正确.
专题二 能量与动量
第2讲 动量观点的应用
01 考情速览 · 明规律
02 核心知识 · 提素养
“物理观念”构建
1.动量定理 (1)公式:Ft=p′-p,除表明等号两边大小、方向的关系外,还 说明了两边的因果关系,即合外力的冲量是动量变化的原因. (2)意义:动量定理说明的是合外力的冲量与动量变化的关系,反 映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变 化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟 合外力的冲量方向无必然联系.

(新高考适用)2023版高考物理二轮总复习专题2 能量与动量 第2讲 动量 动量守恒定律

(新高考适用)2023版高考物理二轮总复习专题2 能量与动量 第2讲 动量 动量守恒定律

第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a ­t 图像如图(b)所示,S 1表示0到t 1时间内A的a ­t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a ­t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a ­t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty ­t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。

动能定理和动量定理专题

动能定理和动量定理专题

例1 如图2-1所示,单摆的质量为m、摆长为l,最大摆角为θ(θ<100),则在摆球从最高点第一次运动到平衡位置的过程中,求:(1)重力的冲量;(2)合外力的冲量?图2-1 例2 在一次抗洪抢险活动中,解放军某部动用直升飞机抢救落水人员,静止在空中的直升飞机上电动机通过悬绳将人从离飞机90m处的洪水中吊到机舱里.已知人的质量为80kg,吊绳的拉力不能超过1200N,电动机的最大输出功率为12kw,为尽快把人安全救起,操作人员采取的办法是:先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当人到达机舱时恰好达到最大速度.(g=10m/s2)求:(1)人刚到达机舱时的速度;(2)这一过程所用的时间.例3 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目.一个质量为60kg 的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小.(g=10m/s2)例4 有一宇宙飞船,以v=10km/s的速度进入分布均匀的宇宙微粒区,飞船每前进s =1km与n=1×104个微粒相碰.已知每个微粒的质量m=2×10-4g.假如微粒与飞船碰撞后附于飞船上,则要保持飞船速度不变,飞船的牵引力应增加多少?1.下列说法中正确的是 ( )A .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同B .一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反C .在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反D .在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反2.质量为m 的物体以初速度v 0水平抛出,经过时间t ,下降的高度为h ,速率变为v ,在这段时间内物体动量变化量的大小为 ( )A .m (v -v 0)B .mgtC .22v v mD .gh m 23.古有“守株待兔”的寓言。

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第2讲动量’量守恒定律课件

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题2能量与动量第2讲动量’量守恒定律课件

(D )
【解析】 设 t 时间内有体积为 V 的水打在钢板上,则这些水的质
量 m=ρV=ρSvt=14πd2ρvt,以这部分水为研究对象,它受到钢板的作用 力为 F,以水运动的方向为正方向,由动量定理得 Ft=0-mv,解得 F =-14πd2ρv2,水流速度 v=QS=π4dQ2,得 F=-4πρdQ22,根据牛顿第三定律, 钢板受到水的冲力 F′=4πρdQ22,故选 D.
1.(2022·辽宁押题卷)气垫鞋指的是鞋底上部和鞋底下部之间设置 有可形成气垫的储气腔的鞋子,通过气垫的缓冲减小地面对脚的冲击 力.某同学的体重为G,穿着平底布鞋时双脚竖直着地过程中与地面的 作用时间为t0.
受到地面的平均冲击力大小为2.4G.若脚着地前的速度保持不变,
该同学穿上某型号的气垫鞋时,双脚竖直着地过程中与地面的作用时间
(2)碰撞模型 ①可熟记一些特例:例如“一动一静”模型中,两物体发生弹性正 碰后的速度满足:v1′=mm11-+mm22v1,v2′=m12+m1m2v1. ②熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞 后交换速度;当 m1≫m2,且 v2=0 时,碰后质量大的速率不变,质量小 的速率为 2v1;当 m1≪m2,且 v2=0 时,碰后质量小的球原速率反弹.
3 . (2022·北 京 房 山 区 二 模 )2022 年 2 月 北 京 举 办 了 第 24 届 冬 季 奥 运 会,苏翊鸣夺得男子单板滑雪大跳台项目金牌,成为中国首个单板滑雪 奥运冠军.图甲是一观众用手机连拍功能拍摄苏翊鸣从起跳到落地的全 过程的合成图.图乙为首钢滑雪大跳台的赛道的示意图,分为助滑区、 起跳台、着陆坡和终点四个部分,运动员从一百多米的助滑跑道滑下, 腾空高度平均可达7 m,落地前的速度与着陆坡之间有一定的夹角.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二动量和能量【专题指导】动量守恒与能量守恒是近几年高考理科综合物理命题的重点和热点,也是考生的难点.动量守恒与能量守恒贯穿于整个高中物理的始终,是联系各部分知识的主线,守恒观点是物理学中极为重要的基本观点,是开启物理学大门的金钥匙,它不仅为解决力学问题开辟了两条重要途径,同时也为我们分析和解决物理问题提供了重要依据,它是进行方法教育和能力培养的重要素材.因此,两个守恒可谓高考物理的重中之重,常作为压轴题出现在物理试卷中,如05年、06年、07年各地高考均有大题.纵观近几年高考理科综合试题,对两个守恒定律的考查具有如下特点:①常以两个守恒定律综合运用的形式出现在计算题中,在同一物理模型(或主干知识)上重复命题,且注重物理情景的设置或设问角度的翻新。

这类试题渗透物理学重要的思想方法,思维含量高;密切联系生产、生活实际,具有较强的实践性和应用性;对物理过程(特别是学生易错的典型物理过程)和物理状态的分析要求高,能有效地鉴别学生的能力。

②突出运用数学知识分析和解决物理问题的能力的考查。

③经常出现两个守恒定律与牛顿运动定律、圆周运动、电磁学和近代物理等知识的综合运用.从考题逐渐趋于稳定的特点来看,我们认为:2008年两个守恒定律的综合仍是高考考查的重点.在第二轮专题复习中,在正确理解相关基本概念和基本规律的同时,还应通过强化训练掌握从能量守恒、动量守恒的角度分析问题的一般思维方法,从而提高分析综合能力.本专题的知识结构如下:一、从动量角度分析实际问题1、正确理解冲量、动量和动量的变化等概念。

2、应用动量定理解题的一般思路:(1)选取研究对象;(2)确定所研究的物理过程及其初、末状态;(3)分析研究对象在所经历的物理过程中的受力情况;(4)选定正方向,根据动量定理列出方程;(5)统一单位,列方程求解.3、动量定理的选择与应用(1)选择:当所研究的过程不涉及加速度和位移时,应优先选用动量定理. (2)应用:①求变力的冲量或变力的平均值;②处理多过程问题(可全程使用)。

4、动量守恒定律及其应用(1)对象:相互作用的多物体组成的系统。

由于一对内力的冲量之和总为零,因此,内力的冲量只能使动量在系统内发生等量的传递,而不能改变系统的总动量.(2)条件:系统不受外力或所受外力之和为零。

常见以下三种情形: ①系统不受外力或系统所受合外力为零; ②系统所受外力远小于内力,外力可以忽略; ③系统在某一方向上所受合外力为零,在该方向上动量守恒. (3)参考系:同一惯性参考系(通常选地面为参考系)。

(4)规律的特性:①矢量性;②同时性;③相对性;④普遍性. (5)应用: ①多体问题在动量守恒定律的应用中,经常会遇到多个物体发生相互作用(如跳、碰、抛、推等)的系统,这类问题称为多体问题。

处理多体问题,有时可以对系统全过程研究,列出动量守恒方程求解,有时要将系统内物体按相互作用的关系分成多个子系统,分过程建立动量守恒方程求解。

②临界问题多物体相互作用往往会出现物体开始反向运动、恰好不相撞、相距最近等临界状态,解决有关临界问题时,应注意利用极端法分析物体的临界状态,挖掘题目中隐含的临界条件,选取适当的系统和过程,运用动量守恒定律进行解答。

【例1】为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm ,查询得知,当时雨滴竖直下落速度约为12m/s 。

据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m 3)A .0.15PaB .0.54PaC .1.5PaD .5.4Pa【导学】解答此类连续相互作用问题,首先要注意研究对象的选取。

选取Δt 时间内与面积为S 的睡莲发生相互作用的雨滴作为研究对象,其质量为m hS ρ=,发生作用后速度变为零,根据动量定理,有F t mv hSv ρ∆==,则压强0.15Pa F hvp S tρ===∆。

【答案】A【例2】篮球运动是一项同学们喜欢体育活动.为了检测篮球的性能,某同学多次让一篮球从h 1=1.8m 处自由下落.测出篮球从开始下落至第一次反弹到最高点所用时间为t =1.3s ,该篮球第一次反弹从离开地面至最高点所用时间为0.5s ,篮球的质量m =0.6kg ,g =10m/s 2,求篮球对地的平均作用力(不计空气阻力).【导学】本题涉及下落、相互作用和反弹上升三个过程,由于涉及力和时间,应用动量定理求解较简捷.有两种解法:一是先由自由落体运动和竖直上抛运动公式求出篮球触地前后瞬时速度1v 23v gt =及下落时间1t =列方程1321()()()F mg t t t mv mv ---=--,求篮球对地的平均作用力;二是全过程应用动量定理列出方程13()0F t t t mgt ---=求解.【答案】39N【例3】结冰的湖面上有甲、乙两个小孩分别乘冰车在一条直线上相向滑行,速度大小均为v 1=2m/s ,甲与车、乙与车的质量均为M =50kg ,为了使两车不会相撞,甲将冰面上一质量为m =5kg 的静止冰块以v 2=6m/s (相对于冰面)的速率传给乙,乙接到冰块后又立即以同样的速率将冰块传给甲.如此反复,在甲、乙之间至少传递几次,才能保证两车不至相撞(设冰面阻力不计且开始时两车相距足够远)?【导学】不管甲、乙传递多少次冰块,在甲与冰块相互作用时,两者的总动量守恒;在乙与冰块相互作用时,两者的总动量也守恒.要使两车不至相撞的临界条件是甲、乙的速度大小相等、方向相同,即相对速度为零.甲第一次推冰块,冰块动量增量大小为mv 2,而后甲或乙每次接推冰块的过程中,冰块动量增量大小均为2mv 2,且方向与甲或乙相互作用前的动量方向相同,对甲与冰块系统、乙与冰块系统在各自推接n 1和n 2次的全过程中,分别由动量守恒定律列方程,并结合临界条件v 乙≥v 甲求解(n 1+n 2).【答案】4次二、从能量角度分析实际问题1、正确理解功、功率、机械能等概念。

2、应用动能定理解题的一般思路: (1)选取研究对象;(2)确定所研究的物理过程及其初、末状态;(3)分析研究对象在所经历的物理过程中的受力情况和做功情况; (4)根据动能定理列出方程求解。

3、动能定理的选择与应用(1)选择:当所研究的过程不涉及加速度和时间时,应优先选用动能定理. (2)应用:①求变力做功;②处理多过程问题(可全程使用)。

4、机械能守恒定律及其应用(1)条件:只有重力做功或弹簧弹力做功,即物体内只有动能和势能发生相互转化,机械能与其它形式能之间无转化.(2)表达式:1122k p k p E E E E +=+(选取参考平面),K P A B E E E E ∆=-∆∆=∆增减或或(不需选取参考平面)(3)机械能的改变与量度:W 其它=E 2-E 1(4)对系统应用机械能守恒定律时,要看系统内力做功的代数和是否为零,即系统内没有机械能与其它形式能的转化.5、能量守恒定律及其应用 (1)摩擦力做功的特点摩擦力总是阻碍物体间的相对运动或相对运动的趋势,不是阻碍物体的运动;而功是以地面为参考系来计量的,所以摩擦力做功可以为正功、负功,也可以不做功。

在相互摩擦的系统内,一对静摩擦力做功之和总等于零,静摩擦力做功起着传递机械能的作用,而不能使机械能转化为其他形式的能;一对滑动摩擦力做功之和总为负功,其绝对值等于滑动摩擦力大小与相对路程的乘积,即|W f +W f |=fs 相,它量度系统产生摩擦热的多少,即Q = fs 相.(2)应用能量守恒定律的解题思路①分析过程中有哪几种能量参与转化,哪些增加哪些减少;②建立能量守恒观点,列方程,即增加量=减少量;③列式时常利用功能关系,即用功的大小量度能量的改变。

【例4】如图2—1,卷扬机的绳索通过定滑轮用力F 拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动。

在移动过程中,下列说法正确的是A .F 对木箱做的功等于木箱增加的动能与木箱克服摩 擦力所做的功之和B .F 对木箱做的功等于木箱克服摩擦力和克服重力所 做的功之和C .木箱克服重力做的功等于木箱增加的重力势能D .F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和 【导学】本题要求正确运用功能关系分析解答相关问题。

根据动能定理,有F G f k W W W E --=∆,则F k G f f W E W W E W =∆++=∆+【答案】CD 【例5】滑块以速率v 1靠惯性沿固定斜面由底端向上运动,当它回到出发点时速率变为v 2,且v 2<v 1.若滑块向上运动的位置中点为A ,取斜面底端重力势能为零.关于动能和势能相等的位置,下列说法正确的是A .上升过程中在A 点的下方,下降过程中在A 点的上方B .上升过程中和下降过程中都在A 点的下方C .上升过程中和下降过程中都在A 点的上方D .上升过程中在A 点的上方,下降过程中在A 点的下方【导学】根据动能定理可知,滑块在上升过程中通过中点A 时的动能211111()22k k k A E E E mv ==,又中点A 处滑块的重力势能12PA pm E E =(E pm 是滑块在最高点处的重力势能).根据功能关系,上升过程中由于摩擦力做功要损失机械能,则E Pm <E k 1,即,pA kA E E <因此,上升过程中动能和势能相等的位置应在A 的上方.同理可知,下降过程中动能和势能相等的位置应在中点A 的下方. 【答案】D【例6】如图2—2所示,内壁光滑的半径为R 的圆形轨道,固定在竖直平面内.质量为m 1的小球静止在轨道最低点,另一质量为m 2的小球(两小球均可视为质点)从内壁上与圆心O 等高的位置由静止释放,到最低点时与m 1发生弹性碰撞.求:(1)小球m 2运动到最低点时的速度大小.(2)碰撞后,欲使m 1能沿内壁运动到最高点,则12m m 应满足什么条件?【导学】先由机械能守恒求出m 2运动到最低点时的速度大小。

由于在最低点处m 2与m 1发生弹性碰撞,即无机械能损失,对系统,应用动量守恒和机械能守恒可解得碰撞后m 1的速度表达式;再结合圆周运动最高点速度满足的临界条件和机械能守恒定律列出相关方程,联立m 1的速度表达式即可求出12m m 应满足的条件。

2—2—图2—1【答案】21 3.78m m ≥≈ 【例7】如图2—3所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为L 2,求A 从P 出发时的初速度v 0. 【导学】由于A 、B 发生完全非弹性碰撞,碰撞中有机械能损失,故应分过程列方程求解。

相关文档
最新文档