5.2.1 平行线(教案)

合集下载

数学人教版七年级下册平行线(定义、平行公理及推论)

数学人教版七年级下册平行线(定义、平行公理及推论)

5.2.1平行线教案教学目的:知识与能力理解在同一平面内两条直线的位置关系只有相交和平行两种.能借助直尺和三角板过直线外一点作已知直线的平行线.体会平行公理及其推论.数学思考通过对现实生活中平行线的认识,进一步建立空间观念,发展几何直觉.学生经历观察、实践、讨论、体会平行公理的过程,发展学生的抽象概括能力.解决问题让学生在探索平行公理的过程中,体会从数学的角度理解问题,形成解决问题的策略和方法.情感态度与价值观通过对平行线的认识,体验生活中处处有数学.通过师生的共同活动,促使学生在学习活动中学会与人交流,培养学生良好的情感和主动参与的意识.学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性,促进学生乐于探究.教学重点:平行线的画法和平行公理及推论,教学难点:平行线的定义教学过程设计:活动一.新课导入我们前面已经学过两条直线相交的情形:两条直线只有一个交点。

在日常生活中的许多实物都可以抽象成为相交线,那么大家想一下,两条直线除了相交的位置关系外,是否还存在其他的位置关系呢?(学生回答,还存在怎样的关系,让学生拿出两支笔摆一下,找出两直线位置关系并让学生画出所找的位置关系).新课学习活动一.平行线定义在同一平面内,不相交的两条直线叫平行线.结合图形讲解异面直线。

在空间中两条直线还有既不平行也不相交的情况,如图棱AB 与棱B’C’不相交显然它们不平行,象这样既不相交也不平行的两条直线叫异面直线.强调:平行线的定义是中加上“在同一平面内”.(学生讨论,举出日常生活中平行线的例子).活动二.平行线的表示:平行用“∥”表示,如图直线AB与CD是平行线,记作AB∥CD.读作AB平行于CD.活动三.在同一平面内,两条直线的位置关系只有相交,平行两种.练习:判断1.不相交的直线叫平行线.2.两条直线的关系只有相交,平行两种.3.在同一平面内,两条不同的直线的位置关系不相交就平行.4.在同一平面内的两条线段不相交,那么这两条线段平行。

【人教版数学七年级下册】《5.2.1 平行线》教学设计教学反思

【人教版数学七年级下册】《5.2.1 平行线》教学设计教学反思

5.2.1 平行线一、教学目标【知识与技能】1.了解两条直线的平行关系,掌握有关的符号表示.2.学会用三角尺、量角器画平行线.3.掌握平行公理及其推论,培养空间想象能力.【过程与方法】让学生经历观察、实践、讨论、体会平行公理的过程,发展学生的抽象概括能力.【情感态度与价值观】学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性,促进学生乐于探究.二、课型新授课三、课时1课时四、教学重难点【教学重点】平行公理及推论【教学难点】理解平行公理的推论课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.五、教学过程(一)导入新课(出示课件2-4)数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.(二)探索新知1.出示课件6-10,探究平行线的定义及表示教师问:如图,分别将木条a、b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线.转动a,直线a 从在c的左侧与直线b相交逐步变为在c的右侧与b相交.想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?师生一起解答:在木条转动过程中,存在一个直线a与直线b不相交的位置,这时我们说直线a与b互相平行.教师问:平行线在生活中是很常见的,你还能举出其他一些例子学生答:摩托车在平行高速上奔驰、平行铁轨的两边、跑道中的直道等,如下图:总结点拨:(出示课件11)平行线的概念在木条转动过程中,存在直线a与直线b不相交的情形,这时我们说直线a与b互相平行.记作“a∥b”.在同一平面内,不相交的两条直线叫做平行线.教师问:平行线的定义包含哪些意思呢?学生1答:“在同一平面内”是前提条件.学生2答:“不相交”就是说两条直线没有交点.学生3答:平行线指的是“两条直线”而不是两条射线或两条线教师强调:平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”而不是两条射线或两条线段.总结归纳:(出示课件12)平行线的表示法:我们通常用“//”表示平行.读作:“AB 平行于CD”读作:“a平行于b ”教师问:同一平面内两条直线的位置关系有哪些?学生1答:平行和相交.学生2答:相交和平行.学生3答:平行和垂直.教师归纳小结:(出示课件13)同一平面内两直线的位置关系:在同一平面内,不重合的两直线的位置关系只有平行与相交两种.考点1:平行线的识别出示课件14:下列说法正确的是( )A.两条不相交的直线一定相互平行B.在同一平面内,两条不平行的直线一定相交C.在同一平面内,两条不相交的线段一定平行D.在同一平面内,两条不相交的射线互相平行师生共同讨论解答如下:解:同一平面内,直线只有平行和相交两种位置关系,选项A没有说明在同一平面内,所以A错误;同一平面内,直线只有平行和相交两种位置关系,所以选项B正确,根据平行线的概念进行判断.线段不相交,延长后不一定不相交,所以选项C错误;射线不平行也可以不相交,选项D错误.故答案为B.答案:B.总结点拨:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.出示课件15,学生自主练习后口答,教师订正.2.出示课件16-17,探究平行线的画法教师问:如何画出平行线呢?师生一起解答:(出示课件16)“推平行线法”:一、放:把三角板或直尺放在直线所在的平面上,与直线相交.二、靠:把另一只三角板或直尺紧靠前一支三角板或直尺的边放上.三、推:推动后一只三角板或直尺到不与直线重合的位置.四、画:沿着后一只尺子边缘画一条直线即可.教师问:已知直线AB和直线外一点P,过点P画一条直线和已知直线AB平行,如何做呢?师生一起解答:(出示课件17)一、放:把三角板或直尺放在直线所在的平面上,与直线相交.二、靠:把另一只三角板或直尺紧靠前一支三角板或直尺的边放上.三、推:推动后一只三角板或直尺到点在直尺或三角板边缘的位置.四、画:沿着后一只尺子边缘画一条直线即可.考点2:按要求作出平行线如图,在△ ABC中,P是AC边上一点.过点P画AB的平行线.(出示课件18)学生独立思考后,师生共同解答.解:如图所示:PD就是所要画的直线.出示课件19,学生自主练习后口答,教师订正.3.出示课件20-21,探究平行公理及其推论教师问:经过点C能画出几条直线?学生答:无数条.教师问:与直线AB平行的直线有几条?学生答:无数条.教师问:经过点C能画出几条直线与直线AB平行?学生答:只有一条.教师问:过点D画一条直线与直线AB平行,与(3)中所画的直线平行吗?学生答:平行.教师问:你能对这些情况进行归纳总结吗?师生一起解答:(出示课件21)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.教师提示:(1)平行公理中强调“直线外一点”,若点在直线上,不可能有平行线;(2)“有且只有”强调这样的直线是存在的,也是唯一的.总结点拨:(出示课件22)平行公理的推论(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.几何语言:∵a//c , c//b,∴ a//b(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).考点3:平行公理及其推论的应用下列说法中,正确的是( )(1)过一点,有且只有一条直线与已知直线平行;(2)平行于同一条直线的两条直线互相平行;(3)一条直线的平行线有且只有一条;(4)若a∥b,b∥c,则a∥c.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)学生独立思考后,师生共同解答.解析:根据平行公理、平行线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,错误;(2) 平行于同一条直线的两条直线互相平行,正确;(3)过直线外一点与已知直线平行的直线有且只有一条,错误;(4)平行于同一条直线的两条直线互相平行,正确;正确的有2个.故答案为D.答案:D.师生共同归纳:对于平行线公理中,必须是过直线外一点可以作已知直线的平行线,但过直线上一点不能作已知直线的平行线.出示课件24,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件25-32)练习课件第25-32页题目,约用时20分钟.(四)课堂小结(出示课件33)(五)课前预习预习下节课(5.2.2第1课时)的相关内容.知道平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.七、课后作业1、教材第12页练习.2、七彩课堂第18-19页第1题.八、板书设计:1.知识梳理平行线⎩⎪⎨⎪⎧概念两条直线的位置关系:平行或相交性质⎩⎪⎨⎪⎧平行公理平行公理的推论2.考点讲解考点1 考点2 考点3九、教学反思:成功之处:这节课的主要内容是 “平行线的定义”,在这节课中我尽可能地把数学问题与实际生活紧密联系起来,让学生体会到数学从生活中来,又到生活中去,感受到数学就在身边,生活离不开数学。

人教版数学七年级下册学案 5.2.1《 平行线》 (含答案)

人教版数学七年级下册学案 5.2.1《 平行线》 (含答案)

5.2.1 平行线【学习目标】1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解平行线在实际生活中的应用,能举例加以说明.重点:平行线的概念与平行公理;难点:对平行公理的理解.【自主学习】问题1 同一平面内两条直线的位置关系平面内任意两条直线的位置关系除平行外,还有哪些呢?平行线:在同一平面内,_______________的两条直线叫做平行线。

直线a与b平行,记作“a∥b”。

在同一平面内,两条直线只有两种位置关系:_______或_______。

**对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.问题2 平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).归纳:(1)平行公理:经过_____一点,有且只有一条直线与这条直线_____。

(2)两条直线都与第三条直线平行(平行线是在同一平面内定义的),那么这两条直线_______. 即b∥a,c∥a,那么_______。

问题3 在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上。

(1)a与b没有共同点,则a与b_______。

(2)a与b有且只有一个共同点,则a与b_______。

在同一平面内,若两条直线相交,则公共点的个数是____;若两条直线平行,则公共点的个数是____。

【合作学习】1、若直线a∥b,b∥c,则a____c,理由是:_______________。

直线l1是l2的平行线,记作:_______,读作:_______________。

人教版数学七年级下册5.2第1课时导入设计:平行线

人教版数学七年级下册5.2第1课时导入设计:平行线

309教育资源库
309教育资源库 创设问题情境
1.复习提问:两条直线相交有几个交点? 相交的两条直线有什么特殊的位置关系?
学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?
2. 教师演示教具
顺时针转动木条b两圈,让学生思考:把a、b 想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化? 在这个过程中,有没有直线b与c木相交的位置?
3. 教师组织学生交流并形成共识.
转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a 的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.。

5.2.1平行线数学教案

5.2.1平行线数学教案

5.2.1平行线数学教案
标题:平行线数学教案
一、教案目标
1. 理解并掌握平行线的基本概念
2. 学会如何识别和判断平行线
3. 掌握平行线的相关性质和定理
4. 能够运用所学知识解决实际问题
二、教学内容与教学步骤
1. 引入新课:
通过实例引入,让学生观察生活中的平行线现象,引导学生思考什么是平行线。

2. 新课讲解:
(1) 定义平行线:在同一平面内,永不相交的两条直线叫做平行线。

(2) 平行线的表示法:用符号“∥”表示,例如:“AB∥CD”表示直线AB与直线CD平行。

(3) 平行线的性质:平行线间的距离处处相等;过直线外一点有且只有一条直线与已知直线平行。

(4) 平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

3. 实例解析:
选取一些具体的例子,让学生理解和应用平行线的概念和性质。

4. 练习与讨论:
设计一些题目,让学生自己尝试解答,然后进行集体讨论,教师给予必要的指导。

三、教学方法与策略
1. 激发兴趣:以生活中的实例引入,激发学生的探索兴趣。

2. 启发式教学:引导学生主动思考,培养他们的逻辑思维能力。

3. 实践操作:通过动手操作,加深对理论知识的理解。

四、教学评估
1. 过程评价:观察学生在课堂上的表现,如参与程度、回答问题的质量等。

2. 结果评价:通过练习题的完成情况,评估学生对知识点的掌握程度。

五、教学反思与改进
1. 反思教学过程,找出存在的问题。

2. 根据反馈调整教学方法和策略。

平行线教案5篇

平行线教案5篇

平行线教案5篇平行线教案篇1一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点·难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.平行线教案篇2平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∠b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠∠ef,cd∠ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )a.由∠1=∠6,得ab∠fg;b.由∠1+∠2=∠6+∠7,得ce∠eic.由∠1+∠2+∠3+∠5=180°,得ce∠fi;d.由∠5=∠4,得ab∠fg四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b 的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠cd.(第1题) (第2题)2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的是( )a.因为∠1=∠4,所以de∠abb.因为∠2=∠3,所以ab∠ecc.因为∠5=∠a,所以ab∠ded.因为∠ade+∠bed=180°,所以ad∠be2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )a.∠2=∠4b.∠1=∠4c.∠2=∠3d.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点b在ac上,bd∠be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.平行线教案篇3一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。

大荔县六中七年级数学下册第五章相交线与平行线5.2平行线及其判定5.2.1平行线教案新版新人教版2

大荔县六中七年级数学下册第五章相交线与平行线5.2平行线及其判定5.2.1平行线教案新版新人教版2

5.2 平行线及其判定平行线【知识与技能】1.掌握平行线的概念.2.理解平行公理及其推论.【过程与方法】1.通过实验,体验两条直线的平行关系,进而掌握平行线的概念.2.通过画图,体验过直线外一点画已知直线直线平行线的情形,从而总结出平行公理进而体验并理解平行公理的推论.【情感态度】经历实验、画图、观察归纳的过程,体会数学学习的方法与技巧.【教学重点】平行公理及其推论的理解.【教学难点】平行公理及其推论的归纳、理解与运用.一、情境导入,初步认识问题1 教具:如图,分别将木条a,b与木条c钉在一起,并将它们想象成在同一平面内两端成无限延伸的三条直线,将b,c不动,转动a,直线a从在c的左侧与直线b相交逐步变为在c的右侧与b相交,相象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?问题2 如图,已知直线a和它之外两点B、C,过B、C作直线b、c与直线a平行.过点B可作几条直线与直线a平行?过点C可作几条直线与直线a平行?直线b与c平行吗?【教学说明】对问题1,可由教师演示,也可制成多媒体课件进行放映,不难得出平行的定义.对问题2,可先由学生独立完成,然后再互相交流,最后将学生的成果进行归纳总结.二、思考探究,获取新知思考 1.在同一平面内,两条直线的位置关系有几种?2.平行公理与垂直公理非常类似,请问已知条件中的点的位置有什么不同之处,为什么?【归纳结论】1.平行线的定义:同一平面内,不相交的两条直线叫做平行线.2.平行公理及其推论:(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.3.在同一平面内,两条直线的位置关系只有两种:(1)平行;(2)相交.[注意:这里不考察重合的情况或将重合理解为同一条直线.]4.平行公理中,已知条件中的点必须在已知直线外,而垂直公理中,已知条件中的点可在直线外,也可在直线上,这是因为如果点在已知直线上,那么经过这一点不可能画已知直线的平行线,但可以画已知直线的垂线.5.在理解平行的定义时,必须注意以下两点:(1)必须在同一平面内;(2)必须是不相交的直线.三、运用新知,深化理解1.如图,是一个正三棱柱,请找出图中所有的平行线2.如果直线a1∥l,直线a2∥l,……,a n∥l(n为正整数)则a1,a2,……,a n的位置关系如何?【教学说明】本环节可让同学们分组完成,再进行交流.【答案】略.四、师生互动,课堂小结平行公理及其推论.1.布置作业:从教材“习题5.2”中选取.2.完成练习册中本课时的练习.本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.第2课时三角形的三边关系【知识与技能】掌握三角形三条边的关系,并能运用三边关系解决生活中的实际问题.【过程与方法】通过观察、操作、想象、推理、交流等活动,开展空间观念、推理能力和有条理表达的能力.【情感态度】学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣. 【教学重点】掌握三角形三条边的关系。

2024秋七年级数学上册第五章相交线与平行线5.2平行线1平行线说课稿(新版)华东师大版

2024秋七年级数学上册第五章相交线与平行线5.2平行线1平行线说课稿(新版)华东师大版
板书设计
①平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
②平行线的性质:
a.平行线互相平行,不会相交。
b.平行线之间的距离相等。
c.平行线上的对应角相等。
d.平行线上的内错角相等。
e.平行线上的同位角相等。
③平行线的判定方法:
a.同位角相等,两直线平行。
b.内错角相等,两直线平行。
c.外角和相等,两直线平行。
4.学生作业和练习:学生的作业和练习是评估他们对平行线知识的掌握程度的重要依据。通过批改学生的作业和练习,可以了解他们对平行线性质、判定方法和应用的理解和掌握程度,以及他们在实际问题中的应用能力。
5.教师评价与反馈:教师对学生进行评价和反馈是提高学生学习效果的重要环节。教师应及时给予学生积极的反馈和鼓励,以提高他们的学习兴趣和自信心。同时,教师也应指出学生的不足之处,并提出改进的建议和指导,以帮助学生提高学习效果。
最后,我注意到在课堂讨论环节,有些学生表现出较强的积极主动性,但也有一些学生较为沉默。为了激发所有学生的学习兴趣,我计划在未来的教学中,设计一些更具互动性和趣味性的活动,如数学游戏、角色扮演等,让每个学生都能参与到课堂中来,享受学习的乐趣。
教学评价与反馈
1.课堂表现:通过观察学生在课堂上的表现,可以发现他们对平行线概念的理解和掌握程度。重点关注学生的参与度、提问和回答问题的能力,以及他们在实践活动中的表现。
3.学生可能遇到的困难和挑战:在本节课中,学生可能对平行线的概念和性质感到困惑,特别是对于如何判断两条直线是否平行。此外,学生可能对平行线的判定方法难以理解,特别是当涉及到斜率的概念时。在应用方面,学生可能不知道如何将所学的平行线知识应用到实际问题中,解决生活中的问题。因此,在教学过程中,需要关注这些学生的需求,通过提供适当的辅导和示例,帮助他们克服这些困难。同时,要鼓励学生积极参与课堂讨论和实践活动,以提高他们的理解和应用能力。

七年级数学下册《5.2.1平行线》教案-人教新课标版

七年级数学下册《5.2.1平行线》教案-人教新课标版

课题 5.2.1平行线课时本学期第课时日期课型新授主备人复备人审核人学习目标重点难点重点:平行线的概念与平行公理;难点:对平行公理的理解.关键:学生积极参与画图等动手操作的数学活动中,通过小组交流,•获取数学信息是学好本节课知识的关键.教学流程师生活动时间一、复习提问:相交线是如何定义的?二、新课引入平面内两条直线的位置关系除相交外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、新授:(一)平行线的概念、记法、画法1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.(二)平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.四、知识应用:1.在同一平面内,两条直线可能的位置关系是.2.在同一平面内,三条直线的交点个数可能学生思考并回答相交线的意义;教师演示课件,学生观察并思考平面内两条直线的位置关系。

学生活动:独立思考,动手画图,小组讨论交流,总结出问题的答案。

教师活动:用教具演示并总结同一平面内两条直线的位置关系.课件演示师生共同解决用课件演示,2分钟5分钟10分钟是.3.下列说法正确的是()A.经过一点有且只有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行4.若∠α与∠β是同旁内角,且∠α=50°,则∠β的度数是()A.50° B.130° C.50°或130°D.不能确定5.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1 ∠3.五、课堂达标练习:课本13页练习(1)(2)五、课堂小结:我知道了什么?我学会了什么?我发现了什么?学生独立总结本节内容,叙述本节的概念和结论.六、作业:课本第18页习题5.2第11、题.师生共同解决15分钟10分钟3分钟板书设计5.2.1 平行线平行线的定义、记法同一平面内两条直线的位置关系平行公理。

人教版数学七年级下册5-2-1 平行线

人教版数学七年级下册5-2-1  平行线

5.2.1 平行线教学设计课题 5.2.1 平行线单元第五单元学科初中数学年级七下学习目标1.了解平行线的概念,能说出平行公理以及平行公理的推论;2.能叙述平行线的概念,通过观察实际模型,直观感知并记住基本事实(即平行公理);3.会用符号语言表示平行公理及其推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;4.通过观察、操作、思考,培养学生学习数学的兴趣.重点了解平行线的概念,能叙述平行公理以及平行公理的推论;难点会用符号语言表示平行公理及其推论;会用三角尺和直尺过已知直线外一点画这条直线的平行线。

教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】在同一平面内,两条直线有怎样的位置关系呢?预设答案:在同一平面内,两条直线的位置关系有相交和不相交两种.追问:你能举出一些生活中两直线不相交的例子吗?教师通过层层提问,引出本节课将要学习的内容. 学生思考并回答学生举例通过现实生活背景,让学生初步感受相交与不相交直线的特殊位置关系,为引出新课的学习埋下伏笔.讲授新课【合作探究】请同学们自主阅读教材11页思考,观看动画,回答问题.阅读思考环节,并观看动画,回答问题学生通过观察、思考,直观了解两直线平行的位置关系-平行,并旋转过程中,直线a与直线b有没有不相交的位置呢?答:存在这时,我们就说直线a与直线b平行.记作:a//b归纳:在同一平面内,两条直线有相交和平行两种位置关系.教师通过动画演示,让学生感受同一平面内两条直线的位置关系,不重合的两条直线位置关系:相交和平行.【总结归纳】在同一平面内,不相交的两条直线叫做平行线.平行线的定义包含三层含义:①“在同一平面内”,是前提条件.②“不相交”,就是没有交点.③平行线指的是“两条直线”,而不是两条射线或线段.【小试牛刀】判断下列说法是否正确:(1)两条不相交的直线叫平行线. ×(2)没有公共点的两条直线是平行线. ×(3)在同一平面内,不相交的两条线段是平行线. ×解析:(1)、(2)忽略了“在同一平面内”这个前提.(3)没有弄清两条线段的平行是指它们所在的直线平行.教师设置抢答环节,学生主动回答问题,巩固对平行线概念的理解.【合作探究】转动木条a的过程中,有几个位置使得直线a与直线b平行?答:有且只有一个通过教师引导,归纳平行线的概念学生思考并抢答问题学生观看动画,并思考举手回答与学生一起归纳总结得到两直线位置关系只有平行和相交.深入理解平行线概念,培养学生抽象概括能力.巩固平行线的概念.引导学生探究同一平面内两直线的平行的情形只有一种.教师演示动画,学生观察、思考,作答.如何过直线外一点,画已知直线的平行线呢?能画几条?教师提出问题,引出过直线外一点,画已知直线平行线的画法.如图,过点B画直线a的平行线,能画出几条?答:有且只有一条让学生分组动手操作,尝试画出过点B的平行线,教师巡视检查,各小组完成情况,对于有困难的学生进行提示,最终讲师在黑板演示画图过程,并总结归纳画平行线的步骤.总结过已知直线外一点画直线的平行线的步骤:①“一重合”:三角板的一边与已知直线重合;②“二靠紧”:把直尺靠紧三角板的另一边;③“三移动”:沿直尺移动三角板,使三角板与直线重合的边过已知点;④“四画线”:沿三角板过已知点的边画直线如图,再过点C画直线a的平行线,能画出几条?答:有且只有一条平行公理:经过直线外一点,有且只有一条直线与这条直线平行.让学生动手操作画过点C的平行线,通过画过点C 与过点B的平行线,让学生感受平行公理,最后教师给出平行公理的文字语言.直线b与直线c平行吗?教师引导让学生观察出直线b、c的平行关系,从而引出平行公理的推论如果两条直线都与第三条直线平行,那么这两条直先分小组操作,并交流派代表发言或展示动手操作,思考回答问题与老师一起总结学生经历动手操作、观察、思考,总结出画平行线的方法.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣.通过动手操作感受平行公理,并得出公理,并将文字语言转化为数学语言即符号语言.线也互相平行.几何语言:如果b//a,c//a,那么b//c.【典型例题】例1:如图,CD∥AB,CE∥AB,试说明C、D、E三点共线.解:因为CD∥AB,CE∥AB所以CD∥CE∥ABCD和CE在同一条直线上.(平行公理)C、D、E三点共线【教学建议】教师适当引导,学生自主完成.【课堂练习】1.在同一平面内,两条直线的位置关系是()A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交答案:B2.经过一点A画已知直线a的平行线,能画()A.0条B.1条C.2条D.0条或1条答案:D如图所示,AD∥BC,E为AB的中点,(1)过点E作EF∥BC,交CD于点F;(2)EF和AD平行吗?说明理由;(3)用测量法比较DF和CF的大小.解:(1)如图.(2)平行.因为AD∥BC,EF∥BC,所以EF∥AD(平行公理的推论)(3)DF=CF【教学建议】教师给出练习,随时观察学生完成情况并给与指导,根据学生完成情况适当分析讲解.思考并积极回答.自主完成练习通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线.2.平行公理及其推论:(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.3.例题讲解。

平行线(定义、平行公理及推论)

平行线(定义、平行公理及推论)

5.2.1 平行线的定义一、教学目标1、理解平行线的概念,了解平行线的基本性质,会用三角尺或直尺过直线外一点画这条直线的平行线。

2、经历画图操作、交流归纳等活动的过程,进一步发展空间3、在互动过程中,增进同学们的情感参与,激发学生的学习兴趣。

二、教学重难点1、教学重点:探究并理解平行线的概念以及基本性质。

2、教学难点:理解平行线的基本性质,会用三角尺或直尺过直线外一点画这条直线的平行线。

三、教学准备1、教师准备:ppt,激光笔,三角尺,直尺,课本。

2、学生准备:三角尺,直尺,课本,练习本,草稿本。

四、教学过程(一)欣赏图片,创设问题情境,导入新课让学生观察一组图片,找出图片中哪些地方有平行的形象?(设计意图:让学生通过观察图片,直观的感受平行的形象)(二)师生互动,学习新知【1】平行线的定义1、问题1:通过我们刚才观察的几个图形,同学们可以用自己的语言描述一下:“什么叫做平行线吗?(设计意图:让学生通过自己语言总结,锻炼了学生语言表达能力和归纳能力)预设学生回答:不相交的两条直线是平行线。

2、教师提问:不相交的两条直线一定是平行线吗? 预设生回答:不一定,用实物演示异面直线的情形。

教师提问:那应该怎么定义平行线呢? 预设生回答:加上“在同一个平面内”。

3、师生共同进一步概括平行线的定义(给重点处加标记)。

平行线的定义:在同一平面内不相交的两条直线叫做平行线。

教师提问:平行线应该具备哪些条件:预设学生回答:(1)在同一个平面内。

(2)不相交。

(3)两条直线 4、(1)学生举例生活中存在的平行线。

(2)既然生活中有那么多的平行线现象,那么平行到底给我们什么感受呢?(3)如果铁轨,扶梯,双杠不平行会怎样? 5、符号表示平行通常使用平行符号“∥”表示两条直线AB 与CD 平行,记作“AB ∥CD ”,读作“AB 平行于CD ”如果两条直线记为21,l l 的话,记作“1l ∥2l ”,读作“1l 平行于2l ”。

人教版七年级数学下册5.2.1《平行线》教学设计

人教版七年级数学下册5.2.1《平行线》教学设计

人教版七年级数学下册5.2.1《平行线》教学设计一. 教材分析人教版七年级数学下册5.2.1《平行线》是学生在学习了直线、射线、线段的基础上,进一步研究两条直线之间的关系。

本节课的主要内容是让学生掌握平行线的定义、性质及判定方法,能运用平行线的知识解决一些实际问题。

教材通过丰富的图片和实例,引导学生探究、发现平行线的性质,培养学生的观察能力、操作能力和推理能力。

二. 学情分析七年级的学生已经具备了一定的几何基础知识,对直线、射线、线段有一定的了解。

但学生在学习过程中,可能对平行线的概念和性质理解不深,容易与相交线混淆。

因此,在教学过程中,教师需要通过大量的实例和操作,让学生直观地感受平行线,加深对平行线概念和性质的理解。

三. 教学目标1.知识与技能:掌握平行线的定义、性质及判定方法,能运用平行线的知识解决一些实际问题。

2.过程与方法:通过观察、操作、推理等过程,培养学生的观察能力、操作能力和推理能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学与生活的联系。

四. 教学重难点1.重点:平行线的定义、性质及判定方法。

2.难点:平行线的判定方法及在实际问题中的应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察、操作,激发学生的学习兴趣。

2.合作学习法:分组讨论、合作探究,培养学生的团队协作能力。

3.引导发现法:教师引导学生发现问题、解决问题,培养学生的推理能力。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、平行线模型。

2.学具:学生用书、练习册、彩笔、剪刀、胶水。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的平行线现象,如教室里的墙壁、书桌、黑板等,引导学生观察并提问:“你们能找出这些图片中的平行线吗?”让学生直观地感受平行线,激发学生的学习兴趣。

2.呈现(10分钟)教师简要介绍平行线的定义,引导学生通过观察、操作,发现平行线的性质。

5.2.1平行线

5.2.1平行线

cba 课题:5.2.1平行线备课日期:11.15 上课日期 课型: 新授 主备人 宋以美 一 学习目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.学习重点:探索和掌握平行公理及其推论.学习难点:对平行线本质属性的理解,用几何语言描述图形的性质. 二 预习检测:1、两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?2、平行线的定义3、 平行线的表示方法:直线a 与b 互相平行,记作;( )4、 在同一平面内,两条直线有( )种位置关系,分别是( ) 三、 探究研学1 用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗? 对照垂线的性质1说出画图所得的结论. 平行公理: 2.平行公理推论.符号语言表达平行公理推论: 如果b ∥a,c ∥a,那么( ) 五 归纳总结 六 练习反馈.一填空1 在同一平面内,两条直线有 种位置关系,它们是 ; 2.直线m 与n 在同一平面内不相交,则它们的位置关系是 ;3.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.4.平行用符号“ ”表示,直线AB 与CD 平行,可以记作“ ”, 读作: ;5.若直线a ∥b ,b ∥c ,则 ∥ ,其理由是 ;6.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.7.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________ .8.经过直线 一点, 一条直线与这条直线平行; 二 选择1.在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交;C.垂直或平行D.平行、垂直或相交 2.下列说法正确的是( )A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个4.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD;④若a ∥b,b ∥c,则a 与c 不相交. A.1个 B.2个 C.3个 D.4个5、下列说法错误的是( )A 平面上没有公共交点的两直线平行B 平面上不平行的两直线一定相交。

小学数学什么是平行线的教案

小学数学什么是平行线的教案

小学数学什么是平行线的教案篇一:认识平行线教案认识平行线的教案[教学目标]:1、结合生活情景,感知平面上两条直线的平行关系,认识平行线。

2、通过自主探索和合作交流,学会用合适的方法创造一组平行线,能借助工具画出已知直线的平行线。

3、经历从现实空间中抽象出平行线的过程,培养空间观念。

在数学活动中感受到数学知识在生活中的真实存在,增强对数学的兴趣,培养独立思考的习惯,和应用数学的意识。

[教学重点]:感知平面上两条直线的平行关系,认识平行线。

[教学难点]:学生通过自主探索和合作交流,学会用合适的方法创造一组平行线,能借助工具画出已知直线的平行线。

[教具、学具准备]:直尺、三角板、铅笔、方格纸、小棒两根[教学过程]:一、课前游戏,激趣引入谈话:“现在老师手里有两根小棒,假如我将它随意地仍到课桌上,在脑子里想象一下两根小棒在桌的位置是怎样的?”(1)小实验,让学生画出两根小棒的位置谈话:“为了验证你想法到底是不是正确。

我们就来做个小实验。

拿出自己准备好的两根小棒将它们随意地扔在课桌上,将你的实验结果画在自己的练习本上,给你们三分钟时间看谁画的最多。

”(2)让学生记录下活动中形成的图形,然后投影展示(3)有选择的选取其中的几种预先设计在电脑里,让学生把下面的四种情况分分类,让学生可以用自己的语言来解释为什么这样分类,第一次初步感觉相交和不相交。

(4)如果把这两条线段想象成直线,会出现什么样的情况,先在脑子里面想象一下,然后再说一说.(5)电脑演示延长的过程:(6)观察后第二次分类,说说为什么与刚才的分类不同。

(学生的回答中提炼相交与不相交的概念。

)二、结合生活、展开教学1、出示情景图,让学生观察后思考:这些画面在哪里见到过,找一找相交的直线和不相交的直线。

2、提炼概念:像刚才我们认识的生活中这样的在同一平面内,永远不会相交的两条直线叫做平行线,也可以说这两条直线互相平行。

多媒体出示:“在同一平面内,不相交的两条直线叫平行线,也可以说这两条直线互相平行。

2022年人教版《平行线》公开课教案

2022年人教版《平行线》公开课教案

5.2.1 平行线教学过程设计一、创设情境,探究平行线的概念 活动1观察,分别将木条a 、b 、c 钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动直线a ,直线a 从在直线c 的下侧与直线b 相交逐步变为在上侧与b 相交,想象一下在这个过程中,有没有直线a 与直线b 不相交的位置?学生活动设计:充分发挥学生的想象能力,把三个木条想象成三条直线,想象在转动过程中不相交的情况,进而描述两直线平行的定义.教师活动设计:在学生想象、描述的根底上引导学生进行归纳.在同一平面内,假设直线a 和b 不相交,那么就称直线a 和b 平行,记作a //b . 活动2你能举出生活中平行的例子吗?学生活动设计:学生进行想象,在生活中可以看做平行的生活实例,可能举出以下例子: 滑雪板、正方体中的一些棱、运动跑道,等等.教师活动设计:本环节主要关注学生的举例,从举例中稳固学生对平行线的认识和理解. 二、分组探究,探索平行公理和推论,培养学生的探究能力、合作、交流能力. 活动3 (1) 在活动木条a 的过程中,有几个位置使得a 与b 平行; (2) 如图,经过点B 画直线a 的平行线,你能有几种方法?可以画几条?经过点C 呢?aBC〔3〕经过上述问题的解决,你能得到什么结论? 学生活动设计:学生自主探索,动手操作,观察猜测,对于问题〔1〕,可以发现在木条在转动的过程中,只有一个位置使得a 与b 平行;对于问题〔2〕,可以考虑用小学中学过的画平行线的方法——使用三角板和直尺,如以下图:对于问题〔3〕,经过画图操作,观察归纳,可以发现一个根本领实〔平行公理〕: 经过直线外一点,有且只有一条直线与直线平行. 教师活动设计:教师在本环节主要关注学生: (1) 学生参与讨论的程度; (2) 学生遇到问题时,对待问题的态度; (3) 学生进行总结归纳时,语言的准确性和简洁性.主要培养学生的动手能力、观察能力、合情推理的能力与探究能力、合作、交流能力等. 活动4 问题:如图,假设a //b ,b //c ,你能得到a //c 吗?说明你的理由,从中你能得到什么?cb a学生活动设计:学生独立思考,完成结论的探索和理由的说明,然后进行交流,在交流中发现问题,解决问题.教师活动设计:引导学生用几何语言进行说明,适时引入反证法〔仅仅介绍,让学生认识到用这样的方法可以说明道理,而不要求会用这样的方法〕.假设a 与c 不平行,那么可以设a 与c 相交于点O ,又a //b ,b //c ,于是过O 点有两条直线a 和c 都与b 平行,于是和平行公理矛盾,所以假设不正确,因此a 和c 一定平行.在此环节主要培养学生的逻辑推理能力.三、拓展创新、应用提高,培养学生的应用意识,解决问题的能力. 活动5 问题探究问题1:如以以下图,AD ∥BC ,在AB 上取一点M ,过M 画MN ∥BC 交CD 于N ,并说明MN 与AD 的位置关系,为什么?CB学生活动设计: 学生动手操作,观察猜测,得出平行的结论,然后对平行的原因进行交流,发现AD //BC ,MN //DC ,根据平行于同一直线的两直线平行,可以得到AD //MN .教师活动设计:主要关注学生说理过程中语言的准确性,假设学生感觉到困难可以适当提醒.〔解答〕略.问题2:在同一平面内有4条直线,问可以把这个平面分成几局部?学生活动设计:分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.学生经过探究可以发现: (1) 当4条直线两两平行时,可以把平面分成5局部;dcb a(2) 当4条直线中只有三条两两平行时,可以把平面分成8局部;dcb a (3) 当4条直线仅有两条互相平行时,可以把整个平面分成9局部或10局部;daa(4) 当4条直线中其中两条平行,另两条也平行时,可以把平面分成9局部;dcba(5)当4条直线任意两条都不平行时,可以把平面分成8或10或11局部;dcbadcbadcba教师活动设计:本环节主要考察学生探究问题的能力,同时培养学生的合作与交流意识,在探究的过程中教师可以适当引导学生按一定的条件分类,比方按平行线的条数分或按交点的个数分类,让学生养成有序考虑问题的习惯.〔解答〕略四、小结与作业.小结:1.平行线的定义;2.平行公理以及推论;3.平行公理及推论的应用.作业:4.探究同一平面内n条直线最多可以把平面分成几局部;5.习题5.2第6、7、9题.3.乘、除混合运算1.能熟练地运用有理数的运算法那么进行有理数的加、减、乘、除混合运算;(重点) 2.能运用有理数的运算律简化运算;(难点)3.能利用有理数的加、减、乘、除混合运算解决简单的实际问题.(难点)一、情境导入1.在小学我们已经学习过加、减、乘、除四那么运算,其运算顺序是先算________,再算________,如果有括号,先算__________里面的.2.观察式子3×(2+1)÷⎝ ⎛⎭⎪⎫5-12,里面有哪几种运算,应该按什么运算顺序来计算? 二、合作探究探究点一:有理数乘、除混合运算计算:(1)-2.5÷58×⎝ ⎛⎭⎪⎫-14;(2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314×⎝ ⎛⎭⎪⎫-112. 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法那么进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×⎝ ⎛⎭⎪⎫-14=52×85×14=1;(2)原式=⎝ ⎛⎭⎪⎫-47×⎝ ⎛⎭⎪⎫-143×⎝ ⎛⎭⎪⎫-32=-⎝ ⎛47×⎭⎪⎫143×32=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算. 探究点二:有理数的加、减、乘、除混合运算及乘法的运算律 【类型一】 有理数加、减、乘、除混合运算计算:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13; (2)⎝ ⎛⎭⎪⎫-316-113+114×(-12). 解析:(1)先计算括号内的,再按“先乘除,后加减〞的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.解:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝ ⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038;(2)⎝ ⎛⎭⎪⎫-316-113+114×(-12)=⎝⎛-3-16⎭⎪⎫-1-13+1+14×(-12)=⎝⎛⎭⎪⎫-3-14×(-12)=-3×(-12)-14×12=3×12-14×12=36-3=33.方法总结:在进行有理数的混合运算时,应先观察算式的特点,假设能应用运算律进行简化运算,就先简化运算.【类型二】 有理数乘法的运算律 计算:(1)⎝ ⎛⎭⎪⎫-56+38×(-24); (2)(-7)×⎝ ⎛⎭⎪⎫-43×514.解析:第(1)题括号外面的因数-24是括号内每个分数的倍数,相乘可以约去分母,使运算简便.利用乘法分配律进行简便运算.第(2)题-7可以与514的分母约分,因此可利用乘法的交换律把它们先结合运算.解:(1)⎝ ⎛⎭⎪⎫-56+38×(-24)=⎝ ⎛⎭⎪⎫-56×(-24)+38×(-24)=20+(-9)=11; (2)(-7)×⎝ ⎛⎭⎪⎫-43×514=(-7)×514×⎝ ⎛⎭⎪⎫-43=⎝ ⎛⎭⎪⎫-52×⎝ ⎛⎭⎪⎫-43=103.方法总结:当一道题按照常规运算顺序去运算较复杂,而利用运算律改变运算顺序却能使运算变得简单些,这时可用运算律进行简化运算.【类型三】 有理数混合运算的应用海拔高度每升高1000m ,气温下降6℃.某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:此题的考点是有理数的混合运算,熟练运用运算法那么是解题的关键. 三、板书设计1.有理数加减乘除混合运算的顺序:先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右依次进行. 2.利用运算律简化运算 3.有理数混合运算的应用这节课主要讲授了有理数的加减乘除混合运算.运算顺序“先乘除后加减〞学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.。

5.2 平行线及其判定 人教版数学七年级下册大单元教学设计

5.2 平行线及其判定 人教版数学七年级下册大单元教学设计

5.2 平行线及其判定(单元教学设计)一、【单元目标】通过情景导入,归纳总结出图形出现的规律,从而得到平行线的概念;从平行线的关系可以发现存在同位角、内错角、同旁内角,我们就可以推导出平行线的判定方法;通过这种循序渐进的教育模式,提高学生的参与度,促进对知识点的理解,并且加强学生对数学学习的兴趣;(1)选择特点鲜明的图片,让学生从中归纳出平行线的概念,再由平行线的情况发现“三线八角”,就可以得到平行线的判定方法;学生通过完成相关的例题,加强对概念的理解和应用,同时对复杂的平行线判定方法有一个直观的感受;(2)通过小组合作探究,让学生参与教学过程,加深对基础概念的理解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过观察图片,提高学生的观察事物的能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】平行线及其判定1、平行线的概念2、平行线判定的方法同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行3、平行线判定方法的综合运用三、【学情分析】1.认知基础本节内容是本章的重点内容之一,是考试的常考点;这一节内容让我们学会了对平行线的证明,加强对证明方法的理解;“三线八角”证明平行线关系,也是我们学好几何证明的基础;2.认知障碍学生在理解同位角、内错角、同旁内角证明平行线关系时易产生混乱,导致做题的依据不充分,对于复杂的平行线判定问题,往往会出现束手无策的情况,这里需要加强对角的关联性计算,同时要灵活运用“三线八角”证明是否是平行线;四、【教学设计思路/过程】课时安排:约2课时教学重点:平行线的概念;掌握同位角相等、两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;教学难点:平行线判定方法的综合运用;五、【教学问题诊断分析】5.2.1平行线的概念问题1:(情境导入)数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?【破解方法】学会观察周边的事物,总结图形中出现的规律,再形成基础概念;通过具体图片,帮助学生掌握两条线之间的位置关系,培养学生的洞察能力和总结能力,促进学生思维的发展。

5.2.1平行线的定义和判定 - 副本

5.2.1平行线的定义和判定 - 副本

师生互动一、导入新课欣赏生活中平行线的图片,再请同学门观察黑板相对的两条边以及横格本中两条横线,若把他们向两方延长,看成直线,他们是相交直线吗?学生在轻松的音乐中欣赏图片并思考问题,为学习本课做了铺垫。

二、探究学习1.【探究一】问题:如图,分别将木条a,b与c钉在一起,把它们想象成三条直线,转动a,直线a与b之间的位置关系,有几种可能性?(1)归纳平行线的定义:同一平面内,不相交的两条直线叫做平行线.(2)平行线的表示:a∥b(3)同一平面两直线的位置关系:相交或平行,两者必居其一.以小组为单位,学生动手操作,通过观察a与b的位置关系,体会并想象a 与b除了相交外,还有不相交的情况,进而得出平行线的定义.3、=50) A.50°根据同位角的意义以及平推三角尺画出平行线活动,你能说说如何判定两条直线平行吗?试试看!(两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两条直线平行.)问题3:结合图形用符号语言:(∵∠1=∠2∴AB∥CD.)学生讲出是为画∠PHF,使所画的角与∠BGF相等.教师指出既然两个角相等与两条直线平行能联系起来, 那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法?学生根据教师的问题以及动手画图的活动,先独立思考,后组内交流讨论,最后展示成果,师生共同得出平行线的判定方法一;1.观察课本13页图 5.2-7,写出木工用角尺画平行线的道理是 .2.如图,∠2=∠4,你能得到a∥c吗?3.如第2题图,.∠1+∠4=180°,你能得到a∥c吗?方法总结:根据2,3题,你能得出什么结论?二、探究学习学生利用两直线平行,同位角相等,进行简单应用,特别第2,3题既应用了判定1,进行了巩固练习,又得出了平行线的判定方法2,3.让生初步感受定理是需要利用已学的定理来推理得出的。

所以此环节仍然体现了学生自主探究的过程。

人教版七年级下册数学教案设计:5.2.1 平行线

人教版七年级下册数学教案设计:5.2.1 平行线

人教版七年级下册第五章相交线与平行线5.2.1《平行线》课堂实录一、教学目标1、掌握它的表示方法和画法.2、探索并了解平行线的有关性质二、教学重点和难点平行线的定义、画法以及平行线的性质;三、教学过程(一)创设情境,导入新课师:上课生:起立,老师好!师:同学们好!生:坐下。

师:请每人拿出两只笔表示直线,这两条直线之间有哪些位置关系呢?请把你得到的结论用几何图形画出来.生:实践操作,指一名学生上台演示。

师:这三种位置关系如果用两条直线的交点个数来表示,分别是几个交点?生:一个,没有、无数多个师:对两条直线相交的情况,以及三条直线相交的情况都已进行过研究,下面就要开始研究两条直线没有交点的情况,这样的两条直线叫做平行线,板书课题。

生:读本节课寄语:给我最大快乐的,不是已懂的知识,而是不断的学习.----高斯师:展示图片:看一看,它们有什么共同之处?生:观察图片,畅所欲言。

设计意图:通过观察图片,激发学生的学习兴趣,通过实践初步体会两条直线的交点个数情况.(二)实践探究,解读新课1.平行线的定义.师:什么叫做平行线?生:在同一个平面内,不相交的两条直线叫做平行线.师:不相交的两条直线就是平行线吗?生:分组讨论,并用实例加以说明。

师:强调:对重合的两条直线只看作一条,因此得到以下结论:在同一平面内,两条直线的位置关系只有相交和平行两种.生:完成随堂练习师:两直线平行需满足的条件有哪些?生:两直线平行需满足3个条件:在同一平面内、不相交、直线。

2.生活中充满了“平行”师:展示图片,请大家想一想,在实际生活中平行线的实例.生:找一找,图中有哪些平行线?生:找一找,教室里有哪些平行线?师:请同学们想一想:笔直铁路的铁轨如果不平行,又会出现什么情况?生:笔直铁路的铁轨如果不平行,火车回脱轨,后果不堪设想。

师:你认为滑雪运动的关键是什么?生:分组讨论,点名回答:我认为滑雪运动的关键是两只雪橇互相平行.师:请欣赏下列图片,美在哪里?生:讨论回答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 平行线及其判定
5.2.1 平行线
【知识与技能】
1.掌握平行线的概念.
2.理解平行公理及其推论.
【过程与方法】
1.通过实验,体验两条直线的平行关系,进而掌握平行线的概念.
2.通过画图,体验过直线外一点画已知直线直线平行线的情形,从而总结出平行公理进而体验并理解平行公理的推论.
【情感态度】
经历实验、画图、观察归纳的过程,体会数学学习的方法与技巧.
【教学重点】平行公理及其推论的理解.
【教学难点】
平行公理及其推论的归纳、理解与运用.
一、情境导入,初步认识
问题1 教具:如图,分别将木条a,b与木条c钉在一起,并将它们想象成在同一平面内两端成无限延伸的三条直线,将b,c不动,转动a,直线a从在c的左侧与直线b相交逐步变为在c的右侧与b相交,相象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?
问题2 如图,已知直线a和它之外两点B、C,过B、
C作直线b、c与直线a平行.过点B可作几条直线与直线a
平行?过点C可作几条直线与直线a平行?直线b与c平
行吗?
【教学说明】对问题1,可由教师演示,也可制成多媒体课件进行放映,不
难得出平行的定义.
对问题2,可先由学生独立完成,然后再互相交流,最后将学生的成果进行归纳总结.
二、思考探究,获取新知
思考 1.在同一平面内,两条直线的位置关系有几种?
2.平行公理与垂直公理非常类似,请问已知条件中的点的位置有什么不同之处,为什么?
【归纳结论】1.平行线的定义:同一平面内,不相交的两条直线叫做平行线.
2.平行公理及其推论:(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
3.在同一平面内,两条直线的位置关系只有两种:(1)平行;(2)相交.[注意:这里不考察重合的情况或将重合理解为同一条直线.]
4.平行公理中,已知条件中的点必须在已知直线外,而垂直公理中,已知条件中的点可在直线外,也可在直线上,这是因为如果点在已知直线上,那么经过这一点不可能画已知直线的平行线,但可以画已知直线的垂线.
5.在理解平行的定义时,必须注意以下两点:(1)必须在同一平面内;(2)必须是不相交的直线.
三、运用新知,深化理解
1.如图,是一个正三棱柱,请找出图中所有的平行线
2.如果直线a1∥l,直线a2∥l,……,a n∥l(n为正整数)则
a1,a2,……,a n的位置关系如何?
【教学说明】本环节可让同学们分组完成,再进行交流.
【答案】略.
四、师生互动,课堂小结
平行公理及其推论.
1.布置作业:从教材“习题5.2”中选取.
2.完成练习册中本课时的练习.
本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.。

相关文档
最新文档