【高中数学课件】椭圆的简单几何性质1 ppt课件

合集下载

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)

高中数学课件 2.2.2椭圆的简单几何性质(1)

高中数学课件    2.2.2椭圆的简单几何性质(1)

x y 2 1(a b 0) a2 b
B2 O y
2
2
x2 y 2 2 1(a b 0) 2 b a y
A2 F2 B2 x
A1 F1 B1
F2 A2 x
B1 F1
O
范围 顶点坐标 焦点坐标 对称性 半轴长 离心率 a、b、c的关系
|x|≤ a,|y|≤ b
(a,0)、(-a,0)、 (0,b)、(0,-b) (c,0)、(-c,0)
o c
B1 (0,-b)
根据前面所学有关知识画出下列图形
x y 1 (1) 25 16
y
4 B2 3 2 1
2 2
x2 y2 1 (2) 25 4
y
4ห้องสมุดไป่ตู้3 B 2 2 1
A1
A2 x
A1
A2 x
-5 -4 -3 -2 -1 -1 -2 -3 -4
123 4 5
B1
-5 -4 -3 -2 -1 -1 1 2 3 4 5 -2 -3 B1 -4
P(x,y)
O P2(-x,-y)
X
2、对称性:
从图形上看,椭圆关于x轴、y轴、原点对称。 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称; (3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中 y 心对称。
B2
A1
b F1
a F2
A2
o c
B1
3、椭圆的顶点 2 2 x y 2 1(a b 0) 2 a b
令 x=0,得 y=?,说明椭圆与 y轴的交点? 令 y=0,得 x=?说明椭圆与 x轴的交点? *顶点:椭圆与它的对称轴 的四个交点,叫做椭圆的 顶点。

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件
探究 离心率对椭圆形状的影响
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e

1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,

消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1

2
a
b
2
2
x
y
2 2 1

b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0

2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭

椭圆的简单几何性质(第1课时)(30张PPT)高中数学人教A版选择性必修第一册

椭圆的简单几何性质(第1课时)(30张PPT)高中数学人教A版选择性必修第一册
椭圆的简单几何性质
例3.已知F₁,F₂ 是椭圆的两个焦点,过F₁且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF₂是正三角形,求该椭圆的离心率.解:不妨设椭圆的焦点在x轴上,因为ABLF₁F₂, 且△ABF₂ 为正三角形,所以在Rt△AF₁F₂中,∠AF₂F₁=30°,令|AF₁ I=x, 则|AF₂ I=2x, 所以|F₁F₂ I= √ |AF₂ I²-|AF₁ I²= √3x=2c,再由椭圆的定义,可知|AF₁ I+|AF₂ I=2a=3x,所)
椭圆的简单几何性质
03性质应用P A R T 0 N
于是a=5,b=4,c= √25-16=3.因此,椭圆的长轴和短轴的长分别是2a=10, 和2b=8,离心率两个焦点坐标分别是F₁ (-3,0)和F₂ (3,0),四个顶点坐标分别是A₁ (-5,0),A₂ (5,0),B₁ (0,-4),B₁ (0,4).
·
·
椭圆的简单几何性质
椭圆的简单几何性质 方法总结利用性质求椭圆的标准方程的方法:(1)确定标准方程的形式.(2)由a,b,c,e 的关系列出方程.(3)利用待定系数法求出椭圆方程,焦点不明确时要分类讨论.
练习:求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0).(2)离心率 焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为由题意得
椭圆的简单几何性质
一个焦点F(c,O), 则直线l 的方程 ,即bx+cy-bc=0.
解 , 即 故选B.
由题意知
练习:若椭圆 的离心率 则 k 的值等于 解:分两种情况进行讨论:当焦点在x 轴 上 时 ,a²=k+8,b²=9, 得 c²=k—1,又 少 解得k=4.当焦点在y 轴 上 时 ,a²=9,b²=k+8, 得 c²=1—k,

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

研究直线与椭圆的位置关系的思路方法
1.研究直线与椭圆的位置关系,可联立直线与椭圆的方程,消元后用 判别式讨论. 2.求直线被椭圆截得的弦长,一般利用弦长公式,对于与坐标轴平行 的直线,直接求交点 坐标即可求解. 3.有关弦长的最值问题,可以运用二次函数性质、一元二次方程的判 别式、基本不等式等来求解.
m
4
4.已知椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1 ,F2
,A
15 2
,
1 2
在椭圆
B C 上,且 AF1 AF2 ,则椭圆 C 的长轴长为( )
A. 5
B. 2 5
C. 5 或 3
D.2 5 或2 3
解析:由 AF1
AF2 ,得
OA
1 2
F1F2
,所以c
3.1.2 椭圆的简单几何性质
学习目标
01 掌握椭圆的范围、对称点、顶点、离心率等简单性质 02 能 利 用 椭 圆 的 简 单 性 质 求 椭 圆 方 程 03 能 用 椭 圆 的 简 单 性 质 分 析 解 决 有 关 问 题 04 理 解 数 形 结 合 思 想
学习重点
椭圆的几何性质
学习重点
y2 b2
1 (a
b
0) 的长半轴长为
a,半焦距为
c.利
y
用信息技术,保持长半轴长 a 不变,改变椭圆的半焦距
c,可以发现,c 越接近 a,椭圆越扁平.类似地,保持 c
O
x
不变,改变 a 的大小,则 a 越接近 c,椭圆越扁平;而
当 a,c 扩大或缩小相同倍数时,椭圆的形状不变.
这样,利用c和a这两个量,可以刻画椭圆的扁平程度.

椭圆的简单几何性质课件

椭圆的简单几何性质课件

∴椭圆的长轴长 2a=m2 ,短轴长 2b=m1 ,
焦点坐标为-2m3,0,2m3,0,
顶点坐标为m1 ,0,-m1 ,0,0,-21m,0,21m.
3
离心率
e=ac=21m=
3 2.
m
小结 已知椭圆的方程讨论其性质时,应先将方程化成标 准形式,不确定的要分类讨论,找准 a 与 b,才能正确地写 出焦点坐标、顶点坐标等.
直线 PF1 的方程为 x=-c, 代入方程xa22+by22=1,得 y=±ba2,∴P-c,ba2.
又 PF2∥AB,∴△PF1F2∽△AOB.
∴||FP1FF12||=||AOOB||,∴2ba2c=ba,∴b=2c. ∴b2=4c2,∴a2-c2=4c2,∴ac22=15.
∴e2=15,即
e=
55,所以椭圆的离心率为
5 5.
小结 求椭圆离心率的方法: ①直接求出 a 和 c,再求 e=ac,也可利用 e=
1-ba22求解.
②若 a 和 c 不能直接求出,则看是否可利用条件得到 a 和 c 的齐次等式关系,然后整理成ac的形式,并将其视为整体,
就变成了关于离心率 e 的方程,进而求解.
探究点三 求椭圆的离心率
例 3 如图所示,椭圆的中心在原点,焦点 F1,F2 在 x 轴上,A,B 是椭圆的顶点,P 是椭圆上一点,且 PF1⊥x 轴,PF2∥AB, 求此椭圆的离心率. 解 设椭圆的方程为xa22+by22=1 (a>b>0).
如题图所示,则有 F1(-c,0),F2(c,0),A(0,b),B(a,0),
探究点二 由椭圆的几何性质求方程
例2
椭圆过点(3,0),离心率
e=
6,求椭圆的标准方程. 3

椭圆的简单几何性质:课件一(15张PPT).ppt

椭圆的简单几何性质:课件一(15张PPT).ppt
是长轴顶点, 是短轴顶点 解:(1)P是长轴顶点,Q是短轴顶点 是长轴顶点 轴上. 故a=3,b=2,焦点在 轴上. , ,焦点在x轴上 x2 y2 即椭圆的方程为 + =1 9 4 (2)a=10,离心率 /a=0.6 离心率c/
x2 y2 + =1 故c=6,b=8.若焦点在x轴上,则 64 , .若焦点在 轴上, 100 轴上 x2 y2 =1 若焦点在y轴上 轴上, 若焦点在 轴上,则 + 64 100
对称轴:x轴、y轴 对称轴: 轴 轴 对称中心: 对称中心:原点
(±a,0) (0,±b) (0,±a) (±b,0) ± ± ± ±
c e = ,0 < e < 1 a
求椭圆16x2+25y2=400的长轴和短轴的 求椭圆 的长轴和短轴的 离心率、焦点和顶点的坐标. 长、离心率、焦点和顶点的坐标.
2
2
比较下列每组中椭圆的形状, 比较下列每组中椭圆的形状, 哪一个更圆,为什么? 哪一个更圆,为什么?
x2 y2 2 2 (1)9x + y = 36, + = 1; 16 12 1 第一个椭圆的离心率 = 2 2 第二个椭圆的离心率 = e2 e1
e1>e2,所以第二个椭圆比较圆. 所以第二个椭圆比较圆.
求下列椭圆的焦点坐标: 求下列椭圆的焦点坐标:
x y 2 2 (1) + = 1; (2)2 x + y = 8. 100 36
(1)a=10,b=6,c=8, 焦点在 轴, , , , 焦点在x轴 (1) 焦点(-8 焦点 ,0),(8,0); , ;
x2 y2 (2)先化为标准方程 (2)先化为标准方程 + =1 4 8 a= 22 ,b=4,c=2, 焦点在y轴 , , 焦点在 轴, 焦点(0 焦点 ,-2),(0,2). , .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的简单几何性质
教材分析 教学引入 新课讲解 巩固练习
小结
教学目的:
1、掌握椭圆的几何性质,掌握椭圆中a,b,c,e的几何 意义,以及a,b,c,e相互关系。 2、理解坐标法中根据曲线的方程研究曲线的几何性 质的一般方法
重点:
椭圆的几何性质
难点:
如何彻数形结合思想,运用曲线方程研究几何性质
返回
返回
四、课堂练习:
第102页 练习1、2、3、4
五、作业:
习题8.2
第1题(2) 第3题(2)
根据前面所学有关知识画出下列图形
(1) x2 y2 1 25 16
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
(2) x2 y2 1 25 4
y
4
3 2
B2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2 -3
B1
- 1
F2 A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
A1 F1 1
F2 A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2 -3
B1
-4
思考:观察上面两个图,并说出椭圆有什么特征?
3、离心率 思考:请同学们再观察图中扁圆变化情况
返回
动画
三、小结
方程 几何性质
范围
对称
x2 a2
y2 b2
1
-a≤x≤a, -b≤y≤b
x轴,y轴,原点
y2 x2 1 a2 b2
-b≤x≤b, -a≤y≤a
x轴,y轴,原点
顶点
A1(-a,0)A2(a,0) B1(0,-b) B2(0,b)
A1(0,-a )A2(0,a) B1(-b,0) B2(b,0)
相关文档
最新文档