21.2 解一元二次方程(第1课时)2
21.2 解一元二次方程(第1课时)
情感与态度目标:通过本节课,继续体会由未知向已知转化的思想方法,渗透配方法是解决某些代数问题的一个很重要的方法
四、教学重点
理解配方法及用配方法解一元二次方程.
五、教学难点
1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法.(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.
课题
21.2解一元二次方程(第1课时)
课时
1
主备人:张红亮
一、教材内容分析
二、学情分析
三、教学目标(知识与技能,过程与方法,情感态度与价值观)
知识与技能目标:1.正确理解并会运用配方法将形如x2+px+q=0方程变形为(x+m)2=n(n≥0)类型.2.会用配方法解形如ax2+bx+c=0(a≠0)中的数字系数的一元二次方程.3.了解新、旧知识的内在联系及彼此的作用.
达标测评
练习:解下列方程:
(1)(1-x)2-18=0;(2)(2-x)2=4;
(2)解方程x2-4x-2=0.
解方程:2x2+3=5x.
小组评价与总结
这节课你有什么收获?
九、作业:1.教科书第6页 练习;第9页 练习.
2.思考:利用本节课的知识,试解关于x的方程x 2 + px + q = 0.
十、课后反思
问题3解方程:(x + 3)= 5.
问题4怎样解方程x 2 + 6x + 4 = 0
21-2 解一元二次方程 课件(共33张PPT)
小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2
21.2 解一元二次方程(直接开平方法)(教学设计)
章节名称21.2 解一元二次方程(直接开平方法)编号课型新授课备课人上课时间年月日教学目标知识与技能:1)利用开平方法解形如x2=p(p≥0)的方程。
2)利用开平方法解形如(mx+n)2=p(p≥0)的方程。
过程与方法:回顾平方根的知识,通过对实际生活中的问题列出一元二次方程,通过整理并求解的过程,让学生初步掌握利用直接开平方解一元二次方程(形如:x2=p(p≥0)的方法,再通过数学转换的方法,将一个一元二次方程(形如:(mx+n)2=p(p≥0))“降次”为两个一元一次方程,这样就可以通过解一元一次方程来求一元二次方程的解。
情感态度与价值观:1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意识。
教学重点运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程。
教学难点通过平方根的意义解形如x2=p(p≥0)的方程,将知识迁移到根据平方根的意义解形如(mx+n)2=p(p ≥0)的一元二次方程。
板书设计21.2 解一元一次方程(直接开平方法)一般地,对于方程x2=p,1)当p>0时,根据平方根的意义,方程有两个不相等的实数根p2xpx1-==,;2)当p=0时,根据平方根的意义,方程有两个相等的实数根x1=x2=0;3)当p<0时,因为对于任意实数x,都有x2≥0,所以方程无实数根。
教学过程教学环节教生活动设计意图导入新课【课前回顾】师:求下列各数的平方根 1)169 2)8125生:1)±135[多媒体展示][课前回顾]对于方程x2=p,1)当p= 4时,求方程的解?2)当p= 0时, 求方程的解?3)当p=-4时, 方程有解吗?为什么?师:尝试求解方程?生:1)x1=2, x2=﹣22)x1=x2=03)无解,当p<0时,因为对于任意实数x,都有x2≥0,所以方程无解【情景导入】[多媒体展示][情景引入]一桶油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?师:列出方程,观察方程的样式,解方程求出棱长?生:设正方体的棱长为 x dm,则一个正方体的表面积为 6x2 dm2,则列出方程为:10×6x2=1500 ,化简整理,得x2=25,据平方根的意义,得x=±5,即x1=5, x2=﹣5。
人教版九年级数学上册21.2.1解一元二次方程(第1课时)一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册
21.2.1解一元二次方程(第1课时)教学设计
一、教材分析
1、地位作用:本节为一元二次方程解法的起始课。
一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。
首先“直接开平方法解一元二次方程”是配方法解一元二次方程的基础;其次,求解二次函数与x轴交点等问题中都必须应用一元二次方程的解法;同时这一节的教材编写中还突出体现了“换元、转化、类比”等重要的数学思想方法。
因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
2、教学目标:①了解形如x2=a (a≥0)和(mx+n)2=p(p≥0)的一元二次方程的解法——直接开平方法;
②会用直接开平方法解一元二次方程;
③了解转化、降次思想在解方程中的运用。
3、教学重、难点
教学重点:①解形如x2=a和(mx+n)2=p(p≥0)的方程;
②通过本节课的学习体会换元和转化思想。
教学难点:①解形如(mx+n)2=p(p≥0)的方程。
突破重难点的方法:直接开平方法适用一元二次方程类型的探究,通过根据平方根的意义解形如x2=a (a≥0),知识迁移到根据平方根的意义解形如(mx+n)2=p(p≥0)的方程,做好合适的铺垫,引导学生发现运用直接开平方法解一元二次方程的求解途径,引导学生运用换元、转化思想探求一元二次方程如何用直接开平方法来解,提高探究能力。
二、教学准备:多媒体课件、导学案、
三、教学过程。
21.2.1 解一元二次方程---配方法 课时练习(2课时、无答案)人教版数学九年级上册
-2,原式有最大值,是-2.
完成下列问题:
(1)求代数式 2²−4 + 1的最小值.
(2)解决实际问题:在紧靠围墙的空地上,用长为 100 米的木栅栏围成一个长方形花圃(如
图),设花圃中垂直于围墙的一边的长度为 x 米,完成下列任务.
(
3 2
(
3 2
1
2
4
. −
. −
)
2
+
)−
1
(
(
. +
1
2
4
)−
. +
4
3 2Biblioteka 3 2)2
+
)
1
4
2.用配方法解方程 ²−6 + 5 = 0,配方后所得的方程是
.( + 3)² = −4
.(−3)² = −4
.( + 3)² = 4
.(−3)² = 4
(
)
3.用配方法解一元二次方程 ² + 2 = 3时,将其化为( ( + )² = 的形式,则.m,n 的值分别
(1)(4 + 1)2−
16
9
= 0.
(2)4(2−1)²−25( + 1)² = 0.
.
)
能力提升全练
1
8.用直接开平方法解一元二次方程 (−1)2 = 9,步骤如下:
4
①(x-1)²=36;②x-1=±6;③x=±7;④即.x₁=7,x₂=-7.其中开始出错的步骤是
A.①
B.②
C.③
(
x²+2x=
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程配方法(第1课时)教案
21.2解一元二次方程21.2.1配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根...x2.2.求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.;⑵思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm.教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1)x 2=4;(2)x 2=0;(3)x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2,x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程x 2=p,(I)(1)当p>0时,根据平方根的意义,方程(I)有两个不等的实数根1x =-,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1=x 2=0;(3)当p<0时,因为任何实数x,都有x 2≥0,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.例1利用直接开平方法解下列方程:(出示课件8)(1)x 2=6;(2)x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =±12,∴==-x x (2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30,x 2=-30.出示课件9:解下列方程:(1)2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x 系数化为1,得2 4.=x ∴=±x即122,2;==-x x (2)移项,得298.=x 系数化为1,得28.9=x 122222,.33∴==-x x 教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=±33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--,或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2解下列方程:(1)(x+1)2=2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4=0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3)12(3-2x)2-3=0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴x 1=54x 2=74.出示课件14,学生自主思考并解答.例3解下列方程:(出示课件15)(1)2445x x -+=;(2)29614x x ++=.师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=-方程的两根为12=+x 22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 21.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1.一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是()A.x 2=-2,解方程,得B.(x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)=±3,x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5,x 1=1;x 2=-43.填空:(1)方程x 2=0.25的根是______________.(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________.4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y①113+=y②113=-+y③3 1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5⑵x 1=3,x 2=-3⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+225,22 5.∴-=+-=--x x x x 方程的两根为17,=-x 21.=-x (四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。
21.2.2 公式法(第一课时[根的判别式])
系数含有 字母的方 程
2
∵ k
2
0,4k 0,即 0,
2
方程有两个实数根.
3、(2010· 荆门)如果方程 ax +2x+1=0 有两个不等的实根, 则实数 a 的取值范围是( ) A.a<1 B.a<1 且 a≠0 C.a≤1 D.a≤1 且 a≠0
2
【解析】∵方程有两个不等的实数根,∴b -4ac>0,即 2 -4a>0,
例2:按要求完成下列表格:
方程
2 y2 2 4 y 2( x 2 1) x 0 2 x 2 3x 1 0
Δ的值
0 0
有两个相等 的实数根
15 0
没有实数根
17 0
有两个不相 等的实数根
相信你肯定行!
练习1 不解方程,判别下列方程的根的情况:
x
1
x
2
b 2a
即 因为a≠0,所以4a2 >0
2
b b 4ac x 2a 4a 2 式子b2 4ac的值有以下三种情况:
2
2
b 4ac (3) b 4ac 0, 这时 0 2 4a
2
b 而x取任何实数都不可能使 ( x ) 2a
反之也成立。
1.已知关于 的方程
x
x (2k 1) x k 1 0
2 2
有两个不相等的实数根,试确定的取值。 2.求证:关于 x 的方程 k x 2kx (k 1) 0 有实数根。
2 2 2
2 2
∴a<1.又∵a≠0,∴a<1 且 a≠0.
【答案】B
谁决定了一元二次方程根的情况?
九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版
∴ x3 5 或 x3- 5 .
∴ x1= 5-3 ,x2 = - 5-3 .
解一元二次方程的基本思路是:
把一个一元二次方程“ 降次 ”,转化 为两个一元一次方程.
由应用直接开平方法解形如:
x2=p(p≥0),那么x=± p
由应用直接开平方法解形如:
(mx+n)2=p(p≥0),则mx+n=____p_ .
问题:一桶油漆可刷的面积为1500 dm2 , 李林用这桶油漆恰好刷完10个同样的正方体 形状的盒子的全部外表面,你能算出盒子的 棱长吗?
提示
可以根据正方体表面积 S=6a2求解. 同时要注意 所得的结果要符合实际
意义.
解:设正方体的棱长为x dm,则一个正方 体的表面积为__6_x_2_dm2 .根据一桶油漆可 刷面积列出方程 1_0_×_6_x_2_=_1_5_0_0____.
解下列方程:
(1)9x2 5 3;
解:移项,得 9x2 8.
系数化为1,得 x2 8 .
9
直接开平方,得
x
8. 9
x1
22 3
,x2
22 3
.
注意:二次根 式必须化为最 简二次根式。
(2)9x2 5 1.
解:先移项,得 9x2 4. 系数化为1,得 x2 4 0 9
1
x1
, 3
x2
1.
整理,得_x_2_=_2_5 , 根据平方根的意义得x=___±_5__. 即x1=___5___,x2=__-_5___. 因为_棱__长__不_能__为__负__值__,所以正方体的棱长 是_5_d_m__.
21.2.3因式分解法解一元二次方程(第1课时)
(6)另一解法 : ( x 4) 2 (5 2 x) 2 x 4 (5 2 x) x 4 5 2 x或x 4 5 2 x 3x 9或x 1 即x1 3,x2 1.
2.把小圆形场地的半径增加5m得到大圆形场地, 场地面积增加了一倍,求小圆形场地的半径.
解: 原方程化为 ( x 5)( x 2) 3 6 由x 5 3,得x 8; 由x 2 6,得x 4.
(
)
原方程的解为x1 8或x2 4.
1.解下列方程: 2 (1) x x 0,
(2) x 2 3 x 0,
2
提公因式: x( x 1) 0, 所以有 x 0或x 1 0 即x1 0,x2 1.
提公因式: x( x 2 3 ) 0, 所以有 x 0或x 2 3 0, 即x1 0,x2 2 3.
(3)3 x 2 6 x 3, 移项,得: 3 x 6 x 3 0,
2
2 x 112 x 11 0
2 x 11 0 另一解法 :或2 x 11 0
3
提公因式法
公式法
用因式分解法解一元二次方程的步骤 1o方程右边化为 零 。 2o将方程左边分解成两个 一次因式 的 乘积。 3o至少 有一个 因式为零,得到两个 一元一次方程。 4o两个 一元一次方程的解 就是原方程 的解。
快速回答:下列各方程的根分别是 多少?
(1) x( x 2) 0
①
方程①的右边为0,左边可因式分解,得 除配方法或公式法以 x 10 4.9 x 0. 外,能否找到更简单 的方法解方程① 于是得
x 0 或 10 4.9 x 0,
21.2.2一元二次方程 公式法(课时一)
21.2.2公式法教案
课时安排
第一课时
课时目标
1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
2.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.
3.经历推导求根公式的过程,加强推理技训练,进一步发展逻辑思维能力。体验类比、转化、降次的数学思想方法。
∴ ≥0
直接开平方,得:x+ =± ,即x=
∴x1= ,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(2)本节课运用了哪些数学思想?
学生总结,教师补充
板书设计
21.2.2公式法(第1课时)
一、复习引入
二、探索新知练习
四、应用拓展
用配方法解下列方程求根公式
(1)6x2-7x+1=0例1.
(2)4x2-3x=52
课后反思
探索新知
问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面
1.回答第9页探究中问题,理解有配方法得出求根公式的方法和步骤;
课本步骤详细,学生自学能很好地培养学生自学意识和能力。
教学环节
3.记住求根公式,理解例2解题的方法和步骤。
人教版九上数学 21.2解一元二次方程(第1课时) 教案
21.1 解一元二次方程(1)【教学目标】知识与技能:1.会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.过程与方法:在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
情感态度价值观:体会由未知向已知转化的思想方法.【教学重难点】重点:用直接开平方法和配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x十m)2=n(n 0)的形式.【教学过程】一、复习引入【问题】1.求出下列各式中x的值,并说说你的理由.(1)x2=9 (2)x2=5 (3)x2=a(a>0).说明:复习平方根的意义,解形如x2=n的方程,为继续学习引入作好铺垫.2.什么是完全平方式?3. 填上适当的数,使下列各式成立.(1)x2+ 6x+ =(x+3)2(2) x2+8x+ =(x+ )2(3)a2+2ab+ =(a+ )2 (4)a2-2ab+=(a- )2二、探索新知【问题】一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?分析:学生独立分析题意,发现若设正方体的棱长为x dm ,则一个正方体的表面积为6x 2 dm 2,根据一桶油漆可以刷的面积,列出方程:10×6x 2=1500整理,得x 2=25x=±5x 1=5,x 2=-5棱长不能为负数,所以盒子的棱长为5 dm说明:在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.归纳:一般地,对于方程2x p =(1)当P >0时,方程有两个不等的实数根(2)当P=0时,方程有两个相等的实数根(3)当P <0时,方程没有实数根【探究】你认为怎样解方程2(3)5x +=?学生独立分析问题,发现和【问题】中的方程形式类似,可以利用平方根的定义,直接开平方得到35x +=±,于是得到13x =-23x =-归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程. 说明:在学生讨论方程的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.【探究】怎样解方程2640x x ++=?归纳:1.通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;2.配方的目的是为了降次,把一元二次方程转化为两个一元一次方程说明:引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.【例题讲解】例:解下列方程(1)x 2-8x + 1 = 0; (2)2213x x +=; (3)23640x x -+=.学生首先独立思考,自主探索,然后交流配方时的规律.经过分析得到(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=; (3)按照(2)的方式进行处理.总结:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式20ax bx c ++=; (2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.说明:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理等),通过解几个具体的方程,归纳作配方法解题的一般过程.归纳:一般地,对于方程2()x n p +=(1)当P >0时,方程有两个不等的实数根,1x n =-+2x n =-(2)当P=0时,方程有两个相等的实数根12x x n ==-(3)当P <0时,方程没有实数根三、巩固练习教材9页第1、2题.说明:检查学生对基础知识的掌握情况,进一步掌握配方法四、小结作业小结:1. 要熟练直接开平方法和配方法的技巧,来解一元二次方程,2.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。
九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次
1.方程x2-64=0解是( D)
A.x=8
B.x=-8
C.x=4
D.x1=8 ,x2=-8
2.方程3x2+9=0根为( D)
A.3
B.-3
C.±3
D.无实数根
3.(滨州)以下方程中,一定有实数解是( B)
A.x2+1=0
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( -a)2=a
4.方程(x+1)2=9解是( C)
∵一元二次方程(x-3)2=1两个解恰好分别是等腰△ABC底边长和腰长, ∴①当底边长和腰长分别为4和2时,4=2+2,此时不能组成三角形; ②当底边长和腰长分别是2和4时,4+4>2,此时能组成三角形, ∴△ABC周长为:2+4+4=10.
第8页
12.当m为何值时,方程
是关于x一元二次方程?
第9页
13.已知:x2+4x+y2-6y+13=0,求xx- 2+2yy2的值. 【解】 已知:x2+4x+y2-6y+13=0, 变形得:(x2+4x+4)+(y2-6y+9)=0, 即(x+2)2+(y-3)2=0, 所以x=-2,y=3.
第10页
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
1.利用直接开平方法解一元二次方程,其依据是__平__方__根__意义,即:假 如x2=p(p>0),则x1=____,x2=_____.
2.形如(ax+m)2=n(n>0)一元二次方程,也可利用直接开平方法求
解,即:先利用平方根意义把原方程转化为两个_____一__元__一__次__方ax程+m=
A.x=1或x=-1
B.x=3或Байду номын сангаас=-3
C.x1=2或x2=-4
21.2解一元二次方程-因式分解法2
7.2( x 3) xx 3;
2
8.(x 1) 3x 1 2 0;
2
9.x 12x 27 0;
2
10.2( x 3) x 9.
2 2
因式分解法解题框架图
解:原方程可变形为: =0
( 一次因式A )( 一次因式B )=0
一次因式A
=0或 一次因式B =0
∴ x 1= A解 , x 2= B解
1.x2 (5 2 ) x 5 2 0
2 x 2. ( 3 5) x 15 0
3.x 2 (3 2 ) x 18 0;
2 ( 4 x 2 ) x(2x 1) 4.
5.3x( x 2) 5( x 2);
用分解因式法解下列方程
6.(3x 1) 5 0;
2 2
回味无穷
1.当一元二次方程的一边是0,而另一边易于分解成两个一次因 式的乘积时,我们就可以用分解因式的方法求解.这种用分解 因式解一元二次方程的方法称为分解因式法.
2.分解因式法的条件是方程左边易于分解,而右边等于零,关键 是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积 等于零,那么至少有一个因式等于零.”
至少有一个一次因式为零得到两个一元一次方程 x-2=0或x+4=0
∴ x1=2 ,x2=-4 两个一元一次方程的解就是原方程的解
快速回答:下列各方程的根分别是多少?
AB=0A=0或B=0
(1) x( x 2) 0
(2)( y 2)( y 3) 0
(3)(3x 2)( 2 x 1) 0
解:设这个数为x,根据题意,得 2x2=7x. 2x2-7x=0, x(2x-7) =0, ∴x=0,或2x-7=0.
21.2 降次——解一元二次方程(1)
x1 3,
x2 1
x2 3
x2 3
=
x1 x2 0
= −
无解
归纳小结
思考:方程 = (P为常数)的解有几种情况,
当p>0时,方程x2=p有两个不等的实数根 = , = −
当p=0时,方程x2=p有两个相等的实数根 x1=x2=0.
变式4: (2 − 1)2 = 9
解: 直接开平方,得
2 x 1 3,
2 x 1 3,
2 x 1 3,
x1 2 ,x2 1
变式练习
变式5:
3(2 − 1)2 = 9
解: 系数化1得
(2 − 1)2 = 3
①
实质上是把一个一元二次方程“降
2 x 1 3,
A.8
B.8或-2
C.-2
D.28
3.若代数式2x2+3与2x2-4的值互为相反数,则x=
± .
课堂小结
直
接
开
平
方
法
概念
利用平方根的定义求方程的根的方法
步骤
关键要把方程化成 x2=p或(mx+n)2=p .
基本思路
一 元
两个一
降次
二 次
元一次
方 程 直接开平方法 方程
2 x 1 3,
2 x 1 3,
1 3
1 3
x1
,x2
2
2
上面的解法中 ,由方程①得到②,
②
次”,转化为两个一元一次方程,
这样就把方程①转化为我们会解的
方程了.同时运用了整体的思想。
归纳小结
直接开平方法三步骤:
21.2 解一元二次方程 同步练习2 含答案
21.2专题训练 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值 6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少?解:(1)∵x2+4x+9=(x+m)2+n=x2+2mx+m2+n,∴2m=4,m2+n=9,∴m=2,n=5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形。
九年级数学 第21章 一元二次方程 21.2 解一元二次方程 21.2.2公式法1
解方程
3x2 1 x10 22
2x222x10
x2x60
x2 3x 1 0 4
3x26x20
4x2 6x0 x24x84x11
x(2x4)58x
12/10/2021
小结
用公式法解一元二次方程的一般步骤:
由配方法解一般的一元二 次方程 ax2+bx+c=0 (a≠0)若 b2-4ac≥0 得
1、把方程化成一般形式, 并写出a,b,c的值。
2a
4 256 4 16 .
w3.计算: b2-4ac 的值;
25
10
w4.代入:把有关数
28
值代入公式计算;
56
x ;x 1
2
5 12/10/2021
2.
w5.定根:写出原方 程的根.
跟踪练习 用公式法解下列方程: 1.2x2 +5x-3=0 2.(x-2)(3x-5)=0
3.4x2-3x+1=0
12/10/2021
例题1
求根公式 : X=
(a≠0, b2-4ac≥0)
(口答)填空:用公式法解方程
2x2+x-6=0 解:a= 2 ,b= 1 ,c = -6.
b2-4ac= 12-4×2×(-6) = 49.
1 49 1 7
x=
= 22 = 4 .
即 x1= -2 , x2= 3 . 2
2、求出b2-4ac的值。
求根公式 : X=
3、代入求根公式 :
12/10/2021
X=
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
独立
知识的升华
作业
祝你成功!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上面,我们把方程 x2 2x 5
变形为
( x 1)2 6
它的左边是一个含有未知数的完全平方式, 右边是一个非负常数.这样,就能应用直接 开平方的方法求解.这种解一元二次方程的
方法叫做配方法.
随堂练习
解下列方程:
(1) 4x2 4x 1 0; x 1 2
2
(2)x2 2 5x 5 0. x1 x2 5
例1 解下列方程:
(1) x2 4x 3 (2) x2 3x 1 0
解:配((方21)),配移得方项x2,,得4得xxx2 233x41x1.3232
0
1
3 2
2
.
即x2
即4x x
4
3 2
2
1.
所5以.所(以xx23)21. 5
4
22
所以x 2 1或x 2 1.
所以x1所以3或x x2
(1) x2 8x ___4_2_ (x __4___)2 (2) x2 10x __5_2__ (x __5___)2
(3) x 2(_±__1_0_)__x 25= (__x_±_5__)2
参照第(1)题,推想一下第(2) 题及第(3)题的解法
(1) (x 1)2 6
(2) x2 2x 1 6
21.2 解一元二次方程
(第1课时)
复习练习: 1、选择合理的方法解下列方程
(1) 2x2 4
(2) x 12 6 (3) x 22 1 0
2、请说出完全平方公式
x a2 x2 2ax ___a_2__
x a2 x2 2ax ___a_2__
3、根据完全平方公式填Biblioteka (格式如题(1))拓展练 习
x 用配方法证明:代数式 2 8x 20
的值是正数
小结:
配方法也是一元二次方程常见的解法
ax2 bx c 0(a 0)
1、 a a
1 1
分两类进
2. 配方法的运用
321.
5 2
.
即x1
3 2
5 ,x1
3 2
5.
拓展练习
解下列方程:
(1) 4x2 8x 4 0
x1 x2 1
想想怎 样解?
(2) 1 x2 x 3 0 2
x 1 7
请归纳配方法解一元二次方程的步骤
1、若二次项系数不是1,把二次项系数化为1(方程两 边都除以二次项系数); 2、把常数项移到方程右边; 3、在方程的两边各加上一次项系数的一半的平方, 使左边成为完全平方; 4、如果方程的右边整理后是非负数,用直接开平方 法解之,如果右边是个负数,则指出原方程无实根。