2015-2016学年江苏省淮安市洪泽县八年级(下)期末数学试卷(解析版)

合集下载

【最新】2015-2016学年苏科版八年级数学下册期末测试题及答案

【最新】2015-2016学年苏科版八年级数学下册期末测试题及答案

AE 对称, HF ⊥ FG 于点 F ,并 交 GE 的延长线于点 H ,连接 CE . ( 1)求⊙ O 的半径和∠ AEC 的度数;
( 2)求证: HE=EG ;
( 3)若点 F 在 运动过程中的 某一 时刻, HG 恰好与⊙ O 相切,求出此时点 F 的坐
标.
y
C
E
G
H
y
C E
B
FO
Ax
B
O
AO= 4 x ,AD=AC-DC=AC-BC=2 ( 3 分),所以 (4 x) 2
x2
4, x
3 ( 6 分) .
2
23(. 本题满分 10 分)设 窗框的宽为
xm,则窗框的高为
6
3x
6
m( 2 分),所以
3x x
1.5
2
2
( 6 分),解得 x 1 ,所以 6 3x 1.5 ( 9 分),答:略( 10 分) . 2
有一个相同的根,求此时 m 的值.
22.(本题满分 10 分)如图,在 R t△ ABC 中,∠ ABC=9 0° . ( 1)利用直尺和圆规按下列要求作图: (保留作图痕迹,不写作法) A
①作∠ BCA 的角平分线,交 AB 于点 O;
②以 O 为圆心, OB 为半径作圆.
( 2)在( 1)所作的图中, ① AC 与⊙ O 的位置关系是 ▲ (直接写出答案) ;
2015-2016 学年第二学期期末学业质量测试
八年级数学试卷
一、选择题( 本大题共有 6 小题,每小题 3 分,共 18 分 )
1.下列各式中,与 2 是同类二次根式的是( ▲ )
A. 3
B. 5
C. 8
D. 14

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

江苏省淮安市淮安区八年级下学期末数学试卷解析版

江苏省淮安市淮安区八年级下学期末数学试卷解析版

江苏省淮安市淮安区八年级(下)期末数学试卷、选择题(本大题共 8小题•每小题3分,共计24分,在每小题所给的四个选项中,恰 有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.( 3分)下列调查中,最适宜采用全面调查方式(普查)的是()A •对益阳市小学生每天学习所用时间的调查B •对全国中学生心理健康现状的调查C •对某班学生进行 6月5日是“世界环境日”知晓情况的调查D •对益阳市初中学生课外阅读量的调查A .四个角都是直角B •两组对边分别相等C . 4A •任意掷一枚硬币,落地后正面朝上C •分别从写有2、4、5数字的三张卡片中随机抽出一张,卡片上的数字一定能被D .哥哥的年龄比弟弟大 6.( 3分)下列式子中,一 -定是 二次根式的是( )A •-二B •…CD . x7.( 3分)如果反比例函数 y =丄丄的图象经过点(-1,- 2),则k 的值是()C .- 32. (3分)正方形具有而菱形不具有的性质是(3.C ・对角线平分对角 (3分)下列各式,x+2y■ I I' '.i-b ,2a 2-b D •内角和为360°2 2 2xv,,….中,分式共有( m 7 个.4. (3分)在平行四边形 ABCD 中,对角线 AC 与 BD 交于点 O ,/ DAC = 40 ,/ CBDC . 70°D . 75°5. (3分)下列事件中是必然事件的是(B •李阿姨申请了北京市小客车购买指标, 在申请后的第一次“摇号”时就中签2整除=25°,则/ COD 等于(&( 3分)甲地到乙地之间的铁路长 210千米,动车运行后的平均速度是原来火车的时,则下列方程正确的是()1- 1.6 =x1.5K、填空题(本大题共 8小题.每小题3分,共计24分。

不需写出解答过程,请把正确答案 直接填在答题卡相应的位置上)9.( 3 分)化简:-x-■./ .■ = _______11. ( 3分)已知小明家5月份总支出共计 5000元,各项支出所占百分比如图所示,那么用于教育的支出是 ________ 元.12. ( 3 分)计算:(7+2)( 7-2)= ______________ .2 g13. ( 3分)化简 - 一的结果是 ______________ .ID-3 11,-3TT|—14.( 3分)已知反比例函数 y=—的图象在第二、四象限,贝Um 的取值范围是 _______ .15. ( 3分)如图,在矩形 ABCD 中,AB = 4, BC = 6,点E 为BC 的中点,将△ ABE 沿AE折叠,使点B 落在矩形内点F 处,连接CF ,贝U CF 的长为 ___________16. ( 3分)如图,在直角坐标系中,直线 y = kx ( 2 0)与双曲线y=[.相交于A 、B 两点, 过A 作AM 丄x 轴,过B 作BN 丄y 轴,则图中阴影部分的面积为1.6倍,这样由甲地到乙地的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/小21'?—1.5 =戈10 1+1.6 =x1.5K21'J+1.5 =10.( 3分)当 _______ 时,分式2x+3有意义.£>H三、解答题(本大题共10小题,共计72分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)17. (6分)计算:-亠上—•了a+3 a -918. (6分)计算:19. (8分)解方程:2/+1 _x-120. (6分)某地区八年级期末将对学生进行身体素质统一测试(满分为了率先了解学生的身体素质情况,在八年级学生中随机抽取了部分学生进行模拟测试,试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有______ 人,并补全条形统计图;(2)若该校八年级共有2000名学生,根据此次模拟成绩估计该校八年级身体素质测试将有多少名学生可以获得满分.并将测试成绩绘制成下面两幅统计图.(1厂-X5+2x2~x(2)100分)•某校为㈡)4「〒-•—+2 -(1)321. ( 6分)抛掷一枚均匀的骰子(各面上的点数分别为(1) 朝上的点数有哪些结果?他们发生的可能性一样吗?(2) 朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3 )朝上的点数大于 4与朝上的点数不大于 4,这两个事件的发生可能性大小相等吗? 如果不相等,那么哪一个可能性大一些?22. ( 8分)已知,如图,在 Rt △ ABC 中,/ ACB = 90°, D 、E 分别是AB 、AC 的中点,F 是BC 延长线上的一点,且 EF // DC . (1) 求证:四边形 CDEF 是平行四边形; (2) 若 EF = 2cm ,求 AB 的长.23. ( 6分)已知函数y 与x+1成反比例,且当x =- 2时,y =- 3. (1 )求y 与x 的函数关系式;(2 )当x =,时,求y 的值. 24. ( 8分)列方程解应用题:某校初二全体同学到距学校30公里的农场参观.同学们乘坐大巴车前往,李老师因学校有事晚出发了 5分钟,开私家车前往,结果和同学们同时到达了农场,已知李老师开的 私家车的速度是大巴车速度的1.2倍.求大巴车和李老师开的私家车的速度分别是多少?25. ( 8分)反比例函数 y =:的图象与一次函数 y = kx+b 的图象交于点 A (2,1)、B (1, n )两点.(1)求反比例函数的解析式; (2 )求一次函数的解析式; (3 )求厶AOB 的面积.26. ( 10分)已知,四边形 ABCD 是正方形,/ MAN = 45°,它的两边 AM 、AN 分别交1 - 6点)1次,落地后:CB、DC边于点M、N,连接MN,作AH丄MN,垂足为点H .(1)则/ BAM+ / DAN = _________ ;(2)如图,猜想AH与AB有什么数量关系?并证明;(3)若AB = 5, BM = 2,求DN 的长.江苏省淮安市淮安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8 小题.每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(3 分)下列调查中,最适宜采用全面调查方式(普查)的是()A .对益阳市小学生每天学习所用时间的调查B •对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D •对益阳市初中学生课外阅读量的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对益阳市小学生每天学习所用时间的调查,调查范围广适合抽样调查,故 A 不符合题意;B、对全国中学生心理健康现状的调查,调查范围广适合抽样调查,故B不符合题意;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查适合普查,故C符合题意;D、对益阳市初中学生课外阅读量的调查,调查范围广适合抽样调查,故D不符合题意;故选:C •【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)正方形具有而菱形不具有的性质是()A •四个角都是直角B •两组对边分别相等C •对角线平分对角D •内角和为360°【分析】依据正方形的性质和菱形的性质进行判断即可.【解答】解:正方形的四个角都是直角,菱形的四个角不一定都是直角.故选:A •【点评】 本题主要考查的是正方形的性质、菱形的性质,熟练掌握相关性质是解题的关 键.C . 4•••/ ADB = / CBD = 25°,•••/ COD = / DAO + / ADO = 40° +25 ° = 65°, 故选:B .【点评】 本题考查平行四边形的性质、三角形的外角的性质等知识,解题的关键是灵活 运用所学知识解决问题,属于中考常考题型. 5.( 3分)下列事件中是必然事件的是( )A .任意掷一枚硬币,落地后正面朝上B .李阿姨申请了北京市小客车购买指标,在申请后的第一次“摇号”时就中签C .分别从写有2、4、5数字的三张卡片中随机抽出一张,卡片上的数字一定能被2整除D .哥哥的年龄比弟弟大【分析】根据各个选项中的事件可以判断哪个是必然事件,从而可以解答本题. 【解答】解:任意掷一枚硬币,落地后正面朝上是随机事件,故选项A 不符合题意,李阿姨申请了北京市小客车购买指标,在申请后的第一次“摇号”时就中签是随机事件, 故选项B 不符合题意,分别从写有2、4、5数字的三张卡片中随机抽出一张,卡片上的数字一定能被2整除是3. (3 分)25 犷b 2a 2-b 2■. I.,二1中,分式共有()个.【分析】 根据分式的定义即可求出答案. 【解答】 解:;是分式, 故选:B .【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型. 4. (3分)在平行四边形 ABCD 中,对角线 AC 与BD 交于点O ,/ DAC = 40°,/ CBDC . 70°D . 75°【解答】 ••• AD // DAO+ / ADO ,只要求出/ ADO 即可;解:•••四边形ABCD 是平行四边形, BC, )根据/ COD = / 【分随机事件,故选项C不符合题意,哥哥的年龄比弟弟大是必然事件,故选项D符合题意,故选:D.【点评】本题考查随机事件,解答本题的关键是明确题意,可以判断各个选项中的事件.6. (3分)下列式子中,一 -定是二次根式的是()C.【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、- 一,是二次根式,符合题意;B、:-是三次根式,不合题意;2Y-3C、「1是分式,故此选项错误;D、x是单项式,故此选项错误.故选:A.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.7. (3分)如果反比例函数y =丄丄的图象经过点(-1,- 2),则k的值是()xA . 2B . - 2C . - 3D . 3【分析】根据反比例函数图象上点的坐标特征,将(- 1,- 2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】解:根据题意,得k—1-2 = ,即2= k- 1,-1解得,k= 3 .故选:D .【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.& (3分)甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的 1.6时,则下列方程正确的是( )【分析】根据:原来火车行驶 210千米所需时间-1.5 =动车行驶210千米所需时间,列 方程即可.【解答】解:设原来火车的平均速度为 x 千米/小时,则动车运行的平均速度为 1.6x 千米/小时,根据题意,得:1.5= x 1.故选:A .【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未 知数,找出合适的等量关系,列出方程.、填空题(本大题共 8小题.每小题3分,共计24分。

苏科版 2015--2016学年度第二学期初二数学期末试卷及答案

苏科版 2015--2016学年度第二学期初二数学期末试卷及答案

B. “抛一枚硬币正面朝上的 概率是 0.5”表示每抛硬币 2 次就有 1 次出现正面朝上 C. “彩票中奖的概率是 1%”表示买 100 张彩票一定会中奖 D. “抛一枚正方体骰 子朝上面的数为奇数的概率是 0.5”表示如果这个骰子抛很多很 多次,那么平均每 2 次就有 1 次出现朝上面的数为奇数 9. 如图, AB=4, 射线 BM 和 AB 互相垂直, 点 D 是 AB 上的一个动点,
k 14.点(2,3)关于 y 轴的对称点在反比例函数 y= 图像上,则 k=___________. x A G B D
(第 16 题)
D M A C
D
C E B
C
y
B
A C O D
(第 18 题)
B
(第பைடு நூலகம்17 题)
x
15. 已知菱形的周长为 40cm, 两 条对角线之比为 3∶4, 则菱形的面积为___________ cm2 . 16.如图,△ABC 中,如果 AB=AC,AD⊥BC 于点 D,M 为 AC 中点,AD 与 BM 交于点 G,那么 S△GDM:S△GAB 的值为___________. 17.如图.边长为 1 的两个正方形互相重合,按住其中一个不动,将另一个绕顶点 A 顺时针 旋转 45 ° ,则这两个正方形重叠部分的面积是 . k 18.如图,A 是反比例函数 y= 图像上一点,C 是线段 OA 上一点,且 OC:OA=1:3 x 作 CD⊥x 轴, 垂足为点 D, 延长 DC 交反比例函数图像于点 B, S△ABC=8, 则 k 的___________. 三、解答题(本大题共 8 题,共 64 分. ) 19.(本题满分 8 分) 化简: (1) (2 12-3 1 )× 6; 3 (2) x 1 - . x2-4 2x-4

2015~2016学年苏科版初二数学第二学期期末测试卷 有答案

2015~2016学年苏科版初二数学第二学期期末测试卷 有答案

2015~2016学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B C D 6.下列等式一定成立的是……………………………………………………………( )A =B =;C 3±;D .;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上; C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数ky x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 . 14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = . 16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1) (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221a b a b a b⎛⎫-÷⎪--⎝⎭,其中1a ,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1ky x=和一次函数2y ax b =+的图象相交于点A 和点D ,且点A 的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y ax b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线y=3x-4经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=(x >0)也恰好经过点A . (1)求k 的值;(2)如图2,过O 点作OD ⊥AC 于D 点,求22CD AD -的值;(3)如图3,点P 为x 轴上一动点.在(1)中的双曲线上是否存在一点Q ,使得△PAQ 是以点A 为直角顶点的等腰三角形.若存在,求出点P 、点Q 的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD 是平行四边形,AC 为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M 为AC 的中点,动点E 从点C 出发以每秒1个单位的速度运动到点B 停止,连接EM 并延长交AD 于点F ,设点E 的运动时间为t 秒. (1)求四边形ABCD 的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12. 712;13. 12k <;14.2;15.2;16.3;17.16;18. 3y x=; 三、解答题:19.(13;(2)1x -; 20.(1)3x =-;(2)2x =;21. a b +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形.23.(1)C (8,3),24y x=;(2)4m =;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2).将点A (2,2)代入反比例函数的解析式为ky x=,求得k=4.则反比例函数的解析式为4y x =.(2)点A 的坐标为(2,2),在Rt △AMO 中,222AO AM MO =+=4+4=8. ∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4.在Rt △COD 中,222OC OD CD =+(1);在Rt △AOD 中,222AO AD OD =+(2); (1)-(2),得2222CD AD OC OA -=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ ,∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4y x=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222ME +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况:当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。

【好卷】最新苏教版2015-2016学年八年级下数学期末考试试卷(有答案)

【好卷】最新苏教版2015-2016学年八年级下数学期末考试试卷(有答案)

2015-2016学年第二学期期终教学质量调研测试初二 数学(试卷满分130分,考试时间120分钟)一. 选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.用放大镜观察一个三角形时,不变的是量是A.各条边的长度B.各个角的度数C.三角形的面积D.三角形的周长2.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点A.(1,2)B.(2,1)C.(-1,-2)D.(-2,1) 3.下列计算正确的是A.2= B.0-= C.4= D. 3=-4.下列各分式不能再化简的是A. 22x - B. 11m m -- C. 2xy y xy - D. 22a b a b -- 5.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B << B .()()()P B P C P A << C .()()()P C P B P A << D .()()()P B P A P C <<6.如图,点P 在直线外,以点P 为圆心,大于点P 到直线的举例为半径画圆弧,交直线于点A 、B ;保持半径不变,分别以点A 、B 为圆心画弧,两弧交于点Q ,则PQ ⊥.上述尺规作图的依据是 A .平行四边形的对边互相平行B .垂直平分线上的点到线段两个端点的举例相等C .矩形的领边互相垂直D .菱形的对角线互相垂直7.若1,1()A x y ,2,2()B x y 是函数1y x=-图像上的两个点,且12x x <,则12y y 与的大小关系是A .12y >yB .12y =yC .12y <yD .不能确定8. 如图,点小明在做选择题“如图,四边形ABCD 中, ∠A=45°,∠B=∠D=90°,AD=2,CD=1,则BC 的长为 多少”时遇到了困难.小明通过测量发现,试题给出的 图形中,AD=3cm,BC ≈1.05cm,且各角度符合条件,因 此小明猜想下列选项中最可能正确的是A .2B 1CD 19.如图,已知一次函数的图像与两坐标轴分别交于A 、B ,点C在x 轴上,AC=4,第一象限内有一个点P ,且PC ⊥x 轴于点C ,若以点P 、A 、C 为顶点的三角形与△OAB 相似,则点P 的坐标为 A .(4,8) B .(4,8)或(4,2) C .(6,8) D .(6,8)和(6,-2)10.如图,直线l 为正比例函数y 3x =的图像,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ,过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ……;按此作法继续下去,则点n B 的坐标是A .4,4)n nB .-1-14,4)n nC .-14,4)n nD .14,4)n n -二.填空题(本大题共8小题,每小题3分,共24分)11.函数y =x 的取值范围是____________ 12. 如图,将一个正方形地面等分成9块,其中标有1、2、3、4四 个小方格是空地,另外五个小方格是草坪。

江苏省淮安市洪泽区2024届八年级数学第二学期期末检测试题含解析

江苏省淮安市洪泽区2024届八年级数学第二学期期末检测试题含解析

江苏省淮安市洪泽区2024届八年级数学第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.若关于x 的一元二次方程2420kx x --+=有两个不相等的实数根,则k 的取值范围是( )A .2k >-B .2k <-C .2k <且0k ≠D .2k >-且0k ≠2.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A .甲B .乙C .丙D .丁3.已知数据x 1,x 2,x 3的平均数是5,则数据3x 1+2,3x 2+2,3x 3+2的平均数是( )A .5B .7C .15D .17 4.如果把分式2xy x y -中的x 和y 都扩大为原来的2倍,那么分式的值( ) A .不变 B .缩小2倍 C .扩大2倍 D .扩大4倍5.如图,点A 、B 、C 在一次函数y =3x +m 的图象上,它们的横坐标依次为﹣2,﹣1,1,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .92B .3C .3(m +1)D .92(m +1) 6.在平行四边形ABCD 中,70A ∠=,则B ∠的度数为( )A .110°B .100°C .70°D .20°7.一个六边形ABCDEF 纸片上剪去一个角∠BGD 后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=( )A .60°B .70°C .80°D .90°8.如图,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动.在运动过程中,点B 到原点的最大距离是( )A .6B .26C .25D .22+29.如图,在△ABC 中,AB =AC =10,BC =12,点D 是BC 上一点,DE ∥AC ,DF ∥AB ,则△BED 与△DFC 的周长的和为( )A .34B .32C .22D .2010.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5二、填空题(每小题3分,共24分)11.在实数范围内分解因式:3x 2﹣6=_____.12.当x=______时,分式3x x 1-的值是1. 13.四边形ABCD 中,90A B ∠=∠=,3AB =,6AD =,5CD =,则BC =______.14.已知一元二次方程2x 2﹣5x+1=0的两根为m ,n ,则m 2+n 2=_____.15.如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B ,AD=,则BC= .16.已知,x y 为实数,且22994y x x =---+,则x y -=______.17.一次函数1y kx =+的图像经过点P ,且y 的值随x 值的増大而增大,请你写出一个符合所有条件的点P 的坐标__________.18.若1233x m x x --=--有增根,则m=______ 三、解答题(共66分)19.(10分)如果P 是正方形ABCD 内的一点,且满足∠APB +∠DPC =180°,那么称点P 是正方形 ABCD 的“对补点”.(1)如图1,正方形ABCD 的对角线AC ,BD 交于点M ,求证:点M 是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A (1,1),C (3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.20.(6分)将一矩形纸片OABC 放在直角坐标系中,O 为原点,点C 在x 轴上,点A 在y 轴上,9,15OA OC ==. (1)如图1,在OA 上取一点E ,将EOC ∆沿EC 折叠,使O 点落在AB 边上的D 点处,求直线EC 的解析式; (2)如图2,在,OA OC 边上选取适当的点,M N ,将MON ∆沿MN 折叠,使O 点落在AB 边上的点D 处,过D 作D G CO '⊥于点G ,交MN 于T 点,连接OT ,判断四边形OTD M '的形状,并说明理由;(3)、在(2)的条件下,若点T 坐标56,2⎛⎫ ⎪⎝⎭,点P 在MN 直线上,问坐标轴上是否存在点Q ,使以,,,M D Q P '为顶点的四边形是平行四边形,若存在,请直接写出点Q 坐标;若不存在,请说明理由.21.(6分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.22.(8分)已知直线364y x=-+与x轴,y轴分别交于点,A B,将OBA∠对折,使点O的对称点E落在直线AB上,折痕交x轴于点C.(1)求点C的坐标;(2)若已知第四象限内的点1125,216D⎛⎫-⎪⎝⎭,在直线BC上是否存在点P,使得四边形OPAD为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设经过点1125,216D⎛⎫-⎪⎝⎭且与x轴垂直的直线与直线BC的交点为,F Q为线段BF上一点,求QA QO-的取值范围.23.(8分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.24.(8分)在甲村至乙村的公路上有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距,如图所示为了安全起见,爆破点C周围半径离为300米,与公路上的另一停靠站B的距离为400米,且CA CB250米范围内不得进入,问在进行爆破时,公路AB段是否因为有危险而需要暂时封锁?请说明理由.25.(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B 两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.26.(10分)如图,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.(1)求∠A的度数;(2)求EF和AE的长.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据一元二次方程2420kx x --+=有两个不相等的实数根,可得>0∆ 进而计算k 的范围即可.【题目详解】解:根据一元二次方程2420kx x --+=有两个不相等的实数根可得168()0k ∆=-->计算可得2k >-又根据要使方程为一元二次方程,则必须0k ≠所以可得:2k >-且0k ≠故选D.【题目点拨】本题主要考查根与系数的关系,根据一元二次方程有两个不相等的实根可得,>0∆ ;有两个相等的实根则0∆= ,在实数范围内无根,则∆<0 .2、A【解题分析】试题分析:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴=<<,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.考点:1.方差;2.算术平均数.3、D【解题分析】试题分析:先根据算术平均数的定义求出x1+x2+x3的值,进而可得出结论.解:∵x1,x2,x3的平均数是5,∴x1+x2+x3=15,∴===1.故选D.考点:算术平均数.4、C【解题分析】直接利用分式的性质化简得出答案.【题目详解】解:把分式2xyx y-中的x和y都扩大为原来的2倍,则原式可变为:22222x yx y⋅⋅+=4xyx y+,故分式的值扩大2倍.故选:C.【题目点拨】此题主要考查了分式的基本性质,正确化简分式是解题关键.5、A【解题分析】利用A、B、C以及直线与y轴交点这4个点的坐标来分别计算阴影部分的面积,可将m看做一个常量.【题目详解】解:将A、B、C的横坐标代入到一次函数中;解得A(﹣2,m﹣6),B(﹣1,m﹣3),C(1,m+3).由一次函数的性质可知,三个阴影部分三角形全等,底边长为2﹣1=1,高为(m﹣3)﹣(m﹣6)=3,可求得阴影部分面积为:S=1913322⨯⨯⨯=,故选:A.【题目点拨】本题考查的是一次函数图象上点的坐标特点,图中阴影是由3个全等直角三角形组成,解题过程中只要计算其中任意一个即可.同时,还可把未知量m当成一个常量来看.6、A【解题分析】根据平行四边形邻角互补进行求解即可.【题目详解】因为四边形ABCD是平行四边形,所以∠B=180°-∠A=110°,故选A.【题目点拨】本题考查了平行四边形的性质,注意掌握平行四边形的邻角互补,对角相等.7、B【解题分析】∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°-430°=290°,∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,故选B.8、D【解题分析】试题分析:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=12AC=2,∵=OD=12AC=2,∴点B到原点O的最大距离为,故选D.考点:1.二次函数的应用;2.两点间的距离;3.勾股定理的应用.9、B【解题分析】首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.【题目详解】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AC,∴∠C=∠EDB,又∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴DF+DE=AE+BE,∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,故选:B.【题目点拨】本题主要考查了平行四边形的判定与性质,等腰三角形的判定,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.10、A【解题分析】根据众数及中位数的定义,结合所给数据即可作出判断.【题目详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.【题目点拨】本题考查(1)、众数;(2)、中位数.二、填空题(每小题3分,共24分)11、3()(x )【解题分析】先提取公因式3,然后把22,再利用平方差公式继续分解因式即可.【题目详解】3x 2-6,=3(x 2-2),=3(x 22),=3()(.故答案为:3()(.【题目点拨】本题考查了实数范围内分解因式,注意把22的形式继续进行因式分解. 12、1【解题分析】直接利用分式的值为零则分子为零进而得出答案.【题目详解】 ∵分式3x x 1-的值是1, ∴x=1.故答案为:1.【题目点拨】此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键. 13、2【解题分析】画出图形,作CE⊥AD,根据矩形性质和勾股定理求出DE ,再求BC.【题目详解】已知,如图所示,作CE⊥AD,则AEC ∠=90,因为,90A B ∠=∠=,所以,A B ∠=∠=AEC ∠=90,所以,四边形ABCE 是矩形,所以,AE=BC,CE=AB=3,在Rt △CDE 中, DE=2222534CD CE -=-=,所以,BC=AE=AE-DE=6-4=2.故答案为2【题目点拨】本题考核知识点:矩形的判定,勾股定理. 解题关键点:构造直角三角形.14、214【解题分析】先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可.【题目详解】由根与系数的关系得:m+n=52,mn=12, ∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214, 故答案为:214. 【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211+x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 15、1+【解题分析】分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD 长,进而可得BC 长.详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,∴∠B=∠BAD,∵∠C=90°,=1,.1.点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.16、1-或7-.【解题分析】根据二次根式有意义的条件可求出x 、y 的值,代入即可得出结论.【题目详解】∵290x -且290x -≥,∴3x =±,∴4y =,∴1x y -=-或7-.故答案为:1-或7-.【题目点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.17、(1,2)(答案不唯一).【解题分析】由于y 的值随x 值的增大而增大,根据一次函数的增减性得出k >0,可令k=1,那么y=x+1,然后写出点P 的坐标即可.【题目详解】解:由题意可知,k >0即可,可令k=1,那么一次函数y=kx+1即为y=x+1,当x=1时,y=2,所以点P 的坐标可以是(1,2).故答案为(1,2)(答案不唯一).【题目点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,得出k>0是解题的关键.18、-1【解题分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【题目详解】方程两边都乘(x-3),得x-1(x-3)=1-m,∵方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得m=-1.故答案是:-1.【题目点拨】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题(共66分)19、(1)证明见解析;(2)对补点如:N(52,52).证明见解析【解题分析】试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.试题解析:(1)∵四边形ABCD是正方形,∴AC⊥BD.∴∠DMC=∠AMB=90°.即∠DMC+∠AMB=180°.∴点M是正方形ABCD的对补点.(2)对补点如:N(52,52).说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可.证明(方法一):连接AC ,BD由(1)得此时对角线的交点为(2,2).设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.则点N(52,52)是直线AC上除对角线交点外的一点,且在正方形ABCD内.连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD的对补点.证明(方法二):连接AC ,BD,由(1)得此时对角线的交点为(2,2).设点N是线段AC上的一点(端点A,C及对角线交点除外),连接AC ,DN ,BN ,∵ 四边形ABCD 是正方形,∴ DC =BC ,∠DCN =∠BCN .又∵ CN =CN ,∴ △DCN ≌△BCN .∴ ∠CND =∠CNB .∵ ∠CNB +∠ANB =180°, ∴ ∠CND +∠ANB =180°. ∴ 点N 是正方形ABCD 除对角线交点外的对补点.设直线AC 的解析式为:y =kx +b ,把点A (1,1),C (3,3)分别代入,可求得直线AC 的解析式为:y =x .在1<x <3范围内,任取一点均为该正方形的对补点,如N (52,52). 20、(1)153y x =-+;(2)四边形OTD M '为菱形,理由详见解析;(3)以M D Q P '、、、为顶点的四边形是平行四边形时,点Q 坐标()0,0或()0,13或39,02⎛⎫⎪⎝⎭ 【解题分析】(1)根据题意求得点E 的坐标,再代入5y kx =+,把()15,0代入得到13k =-,即可解答 (2)先由折叠的性质得出NM ,D ONM D M MO ''∠=∠=,由平行线的性质得出,D TN GTN D MN D TM ∠=∠∠∠'='' ,//MO D T '即四边形OTD M '为菱形.(3)M D Q P '、、、为顶点的四边形是平行四边形时,点Q 坐标()0,0或()0,13或39,02⎛⎫⎪⎝⎭. 【题目详解】解:(1)如图1中, 9,15OA OC ==,DEC ∆是由OEC ∆翻折得到,15CD OC ∴==,在Rt DBC ∆中,12DB =,3AD ∴=,设OE ED x ==,在Rt ADE ∆中,()22293x x =-+,解得5x =,()0,5E ∴,设直线EC 的解析式为5y kx =+,把()15,0代入得到13k =-, ∴直线EC 的解析式为153y x =-+. (2)如图2中,四边形OTD M '为菱形,理由:D MN ∆'是由OMN ∆翻折得到,MD /N 90MON ︒∴∠=∠=,NM ,D ONM D M MO ''∠=∠=.90,90D MN MON D MN D NM GTN ONM ︒∴∠=∠=∠+∠=∠+∠'='',D MN GTN '∴∠=∠,而,D TN GTN D MN D TM ∠=∠∴=∠''∠'D T D M OM ''∴==.//,MO D T '∴四边形OTD M '为菱形.(3)以M D Q P '、、、为顶点的四边形是平行四边形时,点Q 坐标()0,0或()0,13或39,02⎛⎫ ⎪⎝⎭.【题目点拨】本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.21、(1)证明见解析;(2)△ACE 是直角三角形,理由见解析.【解题分析】分析:(1)根据四边形ABCD 和四边形BPEF 是正方形,证明△APE ≌△CFE ;(2)分别判断△ABC ,△APE 是等腰直角三角形得∠CAE =90°. 详解:(1)∵四边形ABCD 和四边形BPEF 是正方形,∴AB =BC ,BP =BF ,∴AP =CF ,在△APE 和△CFE 中,AP =CF ,∠P =∠F ,PE =EF ,∴△APE ≌△CFE ,∴EA =EC ;(2)∵P 为AB 的中点,∴PA =PB ,又PB =PE ,∴PA =PE ,∴∠PAE =45°,又∠DAC =45°,∴∠CAE =90°,即△ACE 是直角三角形.点睛:本题考查了正方形的性质,正方形的四边相等且平行,四角相等,每一条对角线平分一组对角,注意到等腰直角的底角等于45°. 22、(1)C (3,0);(2)不存在;(3)0≤|QA−QO|≤1.【解题分析】(1)由勾股定理得:CA 2=CE 2+AE 2,即(8−a )2=a 2+12,即可求解;(2)当四边形OPAD 为平行四边形时,根据OA 的中点即为PD 的中点即可求解;(3)当点Q 为AO 的垂直平分线与直线BC 的交点时,QO =QA ,则|QA−QO|=0,当点Q 在点B 处时,|QA−QO|有最大值,即可求解.【题目详解】解:(1)连接CE ,则CE ⊥AB , 364y x =-+与x 轴,y 轴分别相交于点A ,B , 则点A 、B 的坐标分别为:(8,0)、(0,6),则AB =10,设:OC =a ,则CE =a ,BE =OB =6,AE =10−6=1,CA =8−a ,由勾股定理得:CA 2=CE 2+AE 2,即(8−a )2=a 2+12,解得a =3,故点C (3,0);(2)不存在,理由:将点B、C的坐标代入一次函数表达式y=kx+b并解得:直线BC的表达式为:y=−2x+6,设点P(m,n),当四边形OPAD为平行四边形时,OA的中点即为PD的中点,即:m+112=8,n−2516=0,解得:m=52,n=2516,当x=52时,y=−2x+6=1,故点P不在直线BC上,即在直线BC上不存在点P,使得四边形OPAD为平行四边形;(3)当x=112时,y=−2x+6=−5,故点F(112,−5),当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA−QO|=0,当点Q在点B处时,|QA−QO|有最大值,此时:点A(8,0)、点O(0,0)、点Q(0,6),则AQ=10,QO=6,|QA−QO|=1,故|QA−QO|的取值范围为:0≤|QA−QO|≤1.【题目点拨】本题考查的是一次函数综合运用,涉及到中垂线和平行四边形性质、勾股定理得运用等,其中(3),求解|QA−QO|的取值范围,需要在线段BF取特殊值来验证求解.23、见解析【解题分析】试题分析:(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.试题解析:(1)∵AE∥BC,∴∠AEF=∠DBF,∠EAF=∠FDB,∵点F 是AD 的中点,∴AF=DF ,∴△AFE ≌△DFB ,∴ AE=CD ,∵AD 是△ABC 的中线,∴DC=AD ,∴AE=DC ,又∵AE ∥BC ,∴四边形 ADCE 是平行四边形;(2)∵BE 平分∠AEC ,∴∠AEB=∠CEB ,∵AE ∥BC ,∴∠AEB=∠EBC ,∴∠CEB=∠EBC ,∴EC=BC ,∵由(1)可知,AD=EC ,BD=DC=AE ,∴AD=BC ,又∵AF=DF ,∴AF=DF=BD=DC=AE ,即图中等于AE 的线段有4条,分别是:AF 、DF 、BD 、DC.24、公路AB 段需要暂时封锁.理由见解析.【解题分析】如图,本题需要判断点C 到AB 的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C 作CD ⊥AB 于D ,然后根据勾股定理在直角三角形ABC 中即可求出AB 的长度,然后利用三角形的公式即可求出CD ,然后和250米比较大小即可判断需要暂时封锁.【题目详解】公路AB 段需要暂时封锁.理由如下:如图,过点C 作CD AB ⊥于点D .因为400BC =米,300AC =米,90ACB ∠=︒,所以由勾股定理知222AB BC AC =+,即500AB =米.因为1122ABCS AB CD BC AC=⋅=⋅,所以400300240500BC ACCDAB⋅⨯===(米).由于240米<250米,故有危险,因此公路AB段需要暂时封锁.【题目点拨】本题考查运用勾股定理,掌握勾股定理的运用是解题的关键.25、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【解题分析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【题目详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A 地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B 地区;方案三:派往A 地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B 地区;(3)派往A 地区30台乙型联合收割机,20台甲型联合收割机全部派往B 地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y 随x 的增大而增大,∴当x=30时,y 取得最大值,此时y=80000,∴派往A 地区30台乙型联合收割机,20台甲型联合收割机全部派往B 地区,使该公司50台收割机每天获得租金最高.【题目点拨】本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.26、(1)30°(2)EF=2cm ,cm【解题分析】(1)由“直角三角形的两个锐角互余”的性质来求∠A 的度数;(2)由“30度角所对的直角边等于斜边的一半”求得BC=12 AB=4cm ,再利用中位线的性质即可解答 【题目详解】(1)∵在Rt △ABC 中,∠C=90°,∠B=60°∴∠A=90°-∠B=30° 即∠A 的度数是30°. (2)∵在Rt △ABC 中,∠C=90°,∠A=30°,AB=8cm∴BC=12AB=4cm∴==∴AE=12∵E 、F 分别为边AC 、AB 的中点∴EF 是△ABC 的中位线∴EF=12BC=2cm. 【题目点拨】此题考查三角形中位线定理,含30度角的直角三角形,解题关键在于利用勾股定理进行计算。

【最新】2016苏科版八年级数学下册期末测试卷及答案

【最新】2016苏科版八年级数学下册期末测试卷及答案

18.( 本题满分 8 分)解下列方程:
( 1) 2x 1 2 ;
x2
2x
( 2) x 4 2 4x 13 .
19.( 本题满分 8 分)在一个暗箱里放有 a 个除颜色外都完全相同的红、白、蓝三种球,其 中红球有 4 个,白球有 10 个,每次将球搅拌均匀后, 任意摸出一个球记下颜色再放回
暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在
八年级数学试卷 共 9 页 第 3 页
初中生课外阅读情况调查统计表
种类
频数 频率
卡通画
a
0.45
时文杂志 武侠小说
b
0.16
100
c
文学名著
d
e
( 1)这次随机调查了
▲ 名学
生,统计表中 d= ▲
,请补
全统计图;
( 2)假如以此统计表绘出扇形统
计图,则 武侠小说对应的圆心角是
▲;
( 3)试估计该校 1500 名学生中有多少名同学最喜欢文学名著类书籍?
八年级数学试卷 共 9 页 第 4 页
24.( 本题满分 10 分)某商店进了一批服装,每件成本为
50 元,如果按每件 60 元出售,
可销售 800 件;如果每件提价 5 元出售,其销售量就将减少 100 件.如果商店销售这
批服装要获利润 12000 元,那么这种服装售价应定为多少元?该商店应进这种服装多
(第 20 题图)
21.( 本题满分 10 分) 4 月 23 日是 “世界读书日 ”今,年世界读书日的主题是 “阅读,让我们 的世界更丰富 ”某.校随机调查了部分学生,就 “你最喜欢的图书类别 ”(只选一项)对 学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计图表.请根据 统计图表提供的信息解答下列问题:

2015-2016学年苏科版八年级数学下册期末测试卷及答案(精选两套)

2015-2016学年苏科版八年级数学下册期末测试卷及答案(精选两套)

2015/2016学年度第二学期期末质量检测八年级数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是 A .500名学生 B .所抽取的50名学生对“世界读书日”的知晓情况 C .50名学生 D .每一名学生对“世界读书日”的知晓情况 2.下列安全标志图中,是中心对称图形的是ABC D3.下列计算正确的是 A=B=C.3=D .632=⋅4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球是白球的概率是A .12 B .13 C .14D .235.分式31x -有意义,则x 的取值范围是A .x=1B .x≠1C .x=-1D .x≠-1 6.若反比例函数的图象过点(2,1),则这个函数的图象一定过点A.(2,-1)B.(1,-2)C.(-2,1)D.(-2,-1)7.如图,平行四边形ABCD 中,下列说法一定正确的是 A .AC =BD B .AC ⊥BD C .AB =CDD .AB =BC8.如图,在矩形ABCD 中,点E 、F 分别在边AB ,BC 上,且AE =31AB .将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q .对于下列结论:①EF =2BE ,②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是 A .①② B .②③ C .①③ D .①④二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上)第8题图ABC DEFQP (B ) ACBD第7题图图3第17题图第18题图9,则x 的取值范围是 ▲ .10.若菱形两条对角线的长分别为6和8,则这个菱形的面积为 ▲ . 11.若关于x 的分式方程311=---xm x x 有增根,则这个增根是 ▲ . 12.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 ▲ .13.计算=-+)23)(23( ▲ . 14.已知114a b -=,则2227a ab ba b ab---+的值等于 ▲ . 15.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.则纸箱中蓝色球有 ▲ 个. 16.如图,矩形ABCD 中,4=AB ,6=BC ,P 是CD 边上的中点,E 是BC 边上的一动点,M ,N分别是AE 、PE 的中点,则随着点E 的运动,线段MN 长的取值或取值范围为 ▲ .17.直线kx y =)0(>k 与双曲线xy 2=交于),(11y x A 、),(22y x B 两点,则122174y x y x -的值是 ▲ . 18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB 的长为 ▲ .三、解答题(本大题共有9小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分5分)计算:|3|)21(2282-+-⨯- 20.(本题满分5分)解方程:01113=--+x x 21.(本题满分6分) 化简并求值:aa a a a +-÷--22421,其中23-=a22.(本题满分6分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.A BC请根据图中的信息,解决下列问题: (1)求条形统计图中a 的值;(2)求扇形统计图中18﹣23岁部分所占的百分比;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数. 23.(本题满分8分)已知,如图,CE 是ABC ∆的角平分线,点D 、F 分别在AC 、BC 上,且DE ∥BC ,DF ∥AB .求证:CD BF =24.(本题满分10分)甲、乙两台机器加工相同的零件,甲机器加工160个零件所用的时间与乙机器加工120个零件所用的时间相等.已知甲、乙两台机器每小时共加工35个零件,求甲、乙两台机器每小时各加工多少个零件?25.(本题满分12分)如图,一次函数b ax y +=的图象与反比例函数y = – 3x的图像交于),3(n B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称.(1)求A 、B 两点的坐标以及一次函数的函数关系式; (2)求ABC ∆的面积.(3)在 x 轴上是否存在点P ,使得PB PA -求出点P 的坐标,若不存在,请说明理由.26.(本题满分12分)(1)如图1,E 、F 是正方形ABCD 的边AB 及DC 延长线上的点,则BG 与BC 的数量关系是 ▲ .(2)如图2,D 、E 是等腰ABC ∆的边AB 及AC 延长线上的点,且CE BD =,连接DE 交BC 于点F ,BC DG ⊥交BC 于点G ,试判断GF 与BC 的数量关系,并说明理由;(3)如图3,已知矩形ABCD 的一条边4=AD ,将矩形ABCD 沿过A 的直线折叠,使得顶点B 落在CD 边上的P 点处。

最新苏科版2015-2016学年八年级册第二学期期末测试题及答案

最新苏科版2015-2016学年八年级册第二学期期末测试题及答案

2015~2016学年度第二学期期末 八年级数学 (满分:100分 考试时间:100分钟) 一、选择题(每小题2分,共12分,每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入下表相应的括号内) 1.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法: ①这50000名学生的数学考试成绩的全体是总体;②每个考生是个体;③1000名考生是总体的一个样本;④样本容量是1000. 其中说法正确的有 【 】 A. 4个 B. 3个 C. 2个 D.1个 2.若1a ≤,则()31a -化简后为 【 】 A ()11a a -- B.()11a a -- C.()11a a -- D.()11a a -- 3.下列事件中必然事件有 【 】 ①当x 是非负实数时,x ≥0 ; ②打开数学课本时刚好翻到第12页; ③13个人中至少有2人的生日是同一个月; ④在一个只装有白球和绿球的袋中摸球,摸出黑球. A .1个 B .2个 C .3个 D .4个 4.若0414=----x x x m 有增根,则m 的值是 【 】 A.-2 B.2 C.3 D.-3 5.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件: ①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC . 其中一定能判定这个四边形是平行四边形的条件有【 】 A .4组 B .3组 C .2组 D .1组 6.已知点)3,()2,()2,(321x R x Q x P 、、-三点都在反比例函数x a y 12+=的图象上,则下列关系正确的是 【 】 A .231x x x << B .321x x x << C .123x x x << D .132x x x << 二、填空题(每题2分,共20分,请将正确答案填写在相应的横线上) 7.若分式51-x 有意义,则x 的取值范围是__________________. 8.计算(508)2-÷的结果是 . 9. 一个反比例函数y=k x (k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是学校班级 姓名考试号----------------------------------------------密---------------------------------封----------------------------------线---------------------------------------------------.10.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B ,C ,D 随机坐到其他三个座位上,则学生B 坐在2号座位的概率是 .11.如图,在△ABC 中,∠CAB=70º,在同一平面内,将△ABC 绕点A 逆时针旋转50º到 △C B A ''的位置,则∠B CA '= _________度.12.在四边形ABCD 中,AB=CD ,要使四边形ABCD 是中心对称图形,只需添加一个条件, 这个条件可以是 .(只要填写一种情况)13.如图正方形ABCD 中,点E 在边DC 上,DE =2,EC =1 ,把线段AE 绕点A 旋转,使点E 落在直线..BC 上的点F 处,则F 、C 两点的距离为 .14.函数1(0)y x x =≥ , xy 92=(0)x >的图象如图所示,则结论: ① 两函数图象的交点 A 的坐标为(3 ,3 ); ② 当x >3时,y 2>y 1 ; ③ 当 x=1时, BC = 8; ④当 x 逐 渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.其中正确结论的序号是 .15.已知a 、b 为有理数,m 、n 分别表示77-的整数部分和小数部分,且24amn bn +=,则2a b += .第10题图 第11题图第13题图第16题图9x 第14题图16.如图,双曲线)0(3>=x xy 经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .三、解答题(本大题8小题,共68分.把解答过程写在试卷相对应的位置上.解答时应写出必要的计算过程,推演步骤或文字说明)17.计算: (每小题4分,共8分) (1)1(4875)13-⨯;(2)21452025150+-+-.18.(本题8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个. 从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3. (1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.19.(每小题4分,共8分)(1)已知212===242x A B C x x x --+,,.将他们组合成(A -B )÷C 或 A -B ÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x=3.(2)解分式方程:.163104245--+=--x x x x20.(本小题7分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:数据段 频数 频率 30﹣40 10 0.05 40﹣50 36 c 50﹣60 a 0.39 60﹣70 b d 70﹣80 20 0.10 总计 200 1 (1) 表中a 、b 、c 、d 分别为:a= ; b= ; c= ; d= . (2) 补全频数分布直方图; (3) 如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆? 21.(本小题8分)若0>a ,M=21++a a ,N=32++a a , ⑴当3=a 时,计算M 与N 的值; ⑵猜想M 与N 的大小关系,并证明你的猜想.学校 班级 姓名考试号----------------------------------------------密---------------------------------封----------------------------------线---------------------------------------------------22.(本小题9分)如图,将□A BCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF;⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.ADB CFE23.(本小题10分)已知反比例函数y 1=xk 的图象与一次函数y 2=ax+b 的图象交于 点A (1,4)和点B (m ,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y 1>y 2成立的自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.24.(本小题10分)以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH .(1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,① 求证:HE =HG ;② 四边形EFGH 是什么四边形?并说明理由.A B CDHE FG(第24题图2)E BFG DH A C (第24题图3)(第24题图1) A B C D H E F G八年级数学参考答案一、选择题 CDBC BA二、填空题7.x ≠5 8.3 9.y=x 2 10. 31 11.20 12.不唯一,可以是:AB ∥CD 或AD=BC ,∠B+∠C=180°,∠A+∠D=180°等13.1或5 14.①③④ 15. 4 16. 3三、解答题17. (1)原式=4(4353)3-⨯ ……………………2分 2343-=⨯-= ……………………4分 (2)原式=2253545525+-+-……………………2分 =5542211+ ……………………4分 18.(1)由已知得纸箱中蓝色球的个数为:50)3.02.01(100=--⨯(个)……………3分(2)设小明放入红球x 个, 根据题意得:5.010020=++xx , ……………………5分 解得:x=60(个). ……………………6分 经检验:x=60是所列方程的根 ……………………7分 答:略 ……………………8分19.(1)选一:(A -B )÷C = (21224x x ---)÷ 2x x + ……………1分 = 2(2)(2)x x x x x +⨯+- = 12x - ……………3分 当x = 3 时,原式=132- = 1 . ……………4分 选二:A – B ÷C =12x --224x -÷2x x + ……………1分 = 12x --2(2)(2)x x +-×2x x + =12x --2(2)x x -=2(2)x x x -- =1x……………3分 当x = 3 时,原式 = 13……………4分 (2)x=2,检验得增根 (3+1分) ……………4分20.(1)78, 56, 0.18, 0.28 ……………(每格0.5分,共2分)(2)略(2分); ……………2分(3)76辆(3分) ……………3分21.(1)当a=3时,M=54,N=65 ; ……………2分 (2)方法一:)3)(2(1)3)(2()2()3)(1(32212++-=+++-++=++-++=-a a a a a a a a a a a N M ……5分∵a>0∴02>+a ,03>+a ∴0)3)(2(1<++-a a ……………7分 ∴0<-N M ∴N M < ……………8分 方法二:4434232122++++=++⋅++=a a a a a a a a N M ……………5分 ∵a>0∴0>M ,0>N ,0342>++a a ∴1443422<++++a a a a ……………7分 ∴1<NM ∴N M < ……………8分 22.证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD .∴∠ABF=∠ECF.∵EC=DC, ∴AB=EC . ……………2分 在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,AB=EC ,∴△ABF ≌△ECF . ……………4分(2)解法一:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF=EF , BF=CF .∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,又∵∠AFC=2∠D ,∴∠AFC=2∠ABC .∵∠AFC=∠ABF+∠BAF ,∴∠ABF=∠BAF .∴FA=FB .∴FA=FE=FB=FC, ∴AE=BC .∴□ABEC 是矩形. ……………9分 解法二:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D=∠BCE .又∵∠AFC=2∠D ,∴∠AFC=2∠BCE ,∵∠AFC=∠FCE+∠FEC ,∴∠FCE=∠FEC .∴∠D=∠FEC .∴AE=AD .又∵CE=DC ,∴AC ⊥DE .即∠ACE=90°.∴□ABEC 是矩形. ……………9分23.解:(1)∵函数y 1=xk 的图象过点A (1,4),即4=, ∴k=4,即y 1=, ……………2分又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.……………4分(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,∴x<﹣ 2 或0<x<1.……………7分(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.……………10分24.(1)四边形EFGH是正方形.……………2分(2) ①设∠ADC=α(0°<α<90°),在□ABCD中,AB∥CD,∴∠BAD=180°-∠ADC=180°-a;∵△HAD和△EAB都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a)=90°+a.∵△HAD和△GDC都是等腰直角三角形,∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAD+∠ADC+∠CDG=90°+a=∠HAE.……………5分∵△AEB和△DGC都是等腰直角三角形,∴AE=22AB,DG=22CD,在□ABCD中,AB=CD,∴AE=DG,∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.……………7分②四边形EFGH是正方形.由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),∴GH=GF=FG=FE,∴四边形EFGH是菱形;∵△HAE≌△HDG(已证),∴∠AHE=∠DHG,又∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.……………10分。

【最新】2015~2016学年苏科版第二学期初二数学期末试卷有答案

【最新】2015~2016学年苏科版第二学期初二数学期末试卷有答案


x1
14. 当 x
2 时,分式
x
b 无意义;当
x= 4 时,此分式的值为
0,则 a+ b= _______.
xa
Байду номын сангаас
15. 如图,在菱形 ABCD中,对角线 AC 与 BD 相交于点 O,OE⊥ AB,垂足为 E,若∠ ADC=140°,则∠ AOE
的大小为

第 15 题图
16. 若关于 x 的分式方程 m 1 2 的解为正数,则 m的取值范围是
2015~ 2016 学年第二学期初二数学期末试卷
一、选择题 ( 本题共 10 小题,每小题 3 分,共 30 分) 1. 下列约分中, 正确的是 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
x6 A . x2
x3 ;
x B.
y
0;
xy
xy 1
C
. x 2 xy
; x
2xy2 1

x1
14. 当 x
2 时,分式
x
b 无意义;当
x= 4 时,此分式的值为
0,则 a+ b= _______.
xa
15. 如图,在菱形 ABCD中,对角线 AC 与 BD 相交于点 O,OE⊥ AB,垂足为 E,若∠ ADC=140°,则∠ AOE
的大小为

第 15 题图
16. 若关于 x 的分式方程 m 1 2 的解为正数,则 m的取值范围是
“不确定” )
12. 若反比例函数 y m 1 x 2 m2 的图像在第二、四象限,则 m 的值为

1
13. 若代数式
在实数内范围有意义,则 x 的取值范围为

15-16学年第二学期八年级期末数学试卷及参考答案

15-16学年第二学期八年级期末数学试卷及参考答案

2015-2016学年度第二学期期末质量监测八 年 级 数 学 试 题(时间:100分钟 总分:100分)温馨提示:1.亲爱的同学,欢迎你参加本次考试,本次考试满分100分,时间100分钟,祝你答题成功!2.数学试卷共6页,共22题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题. 一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题意的,请把你认 为正确的选项前字母填写在该题后面的括号中.1. 在数﹣,0,1,中,最大的数是( )A .B .1C .0D . 2. 下列长度的三条线段能组成直角三角形的是( ) A .4,5,6 B .2,3,4 C .1,1, D .1,2,23.如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4B .3C .D .2第3题 第4题4. 如图,在 ABCD 中,对角线AC 、BD 相交于点O ,AC=10,BD=6,AD=4,则 ABCD 的面积是( ) A .12 B .12C .24D .30 5.函数y=2x ﹣1的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6. 若=b ﹣a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b7. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,C.中位数40 D.这10户家庭月用电量共205度8. 两个一次函数y=ax﹣b,y=bx﹣a(a,b为常数),它们在同一直角坐标系中的图象可能是()A.B.C.D.9. 如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm第9题第10题10. 甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法:①a=4.5;②甲的速度是60千米/时;③乙出发80分钟追上甲;④乙刚到达货站时,甲距B地180千米;其中正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6小题,每小题3分,共18分) 11. 若二次根式有意义,则x 的取值范围是 .12. 已知a 、b 、c 是的△ABC 三边长,且满足关系+|a ﹣b|=0,则△ABC 的形状为 .13. 如图,在线段AB 上取一点C ,分别以AC 、BC 为边长作菱形ACDE 和菱形BCFG ,使点D 在CF 上,连接EG ,H 是EG 的中点,EG=4,则CH 的长是 . 14. 在△ABC 中,∠ABC=30°,AB=8,AC=2,边AB 的垂直平分线与直线BC 相交于点F ,则线段CF 的长为 .第13题 第16题x 与方差S 2: 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 . 16.如图,已知正方形ABCD ,以AB 为边向外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD 的度数. 三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)计算:(1)﹣÷(2)(2﹣3)(3+2)18. (本小题满分8分)如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.19.(本小题满分8分)分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.20. (本小题满分8分)某校为了解八年级女生体能情况,抽取了50名八年级女学生进行“一分钟仰卧起坐”测试.测(1)通过计算得出这组数据的平均数是40,请你直接写出这组数据的众数和中位数,它们分别是、;(2)被抽取的八年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是39次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩;(3)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为38次,已知该校八年级有女生250名,试估计该校八年级女生“一分钟仰卧起坐”的合格人数是多少?21. (本小题满分9分)A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.(2)设总运费为W元,请写出W与x的函数关系式,并直接写出x的取值范围.(3)怎样调送荔枝才能使运费最少?如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其它不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.2015-2016学年度第二学期期末质量监测八年级数学参考答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)二、填空题:(本大题共6小题,每小题3分,共18分)11. x≥﹣1 12.等腰直角三角形 13. 214.或 15.甲 16. 60°三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)(1)解:原式=2﹣…………………………………………………3分=…………………………………………………………………4分(2)解:原式=(2)2﹣32…………………………………………2分=﹣1……………………………………………………………4分18.(本小题满分8分)解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:,解得:k=﹣1,b=﹣3.…………………………………………………………………5分(2)x>﹣3.……………………………………………………………………………8分19.(本小题满分8分)解:(每小题4分,满分8分)20.(本小题满分8分)解:(1)38 ;38 ………………………………………………………………………2分(2)尽管低于平均数,但高于众数和中位数,所以还有比较好的;………………4分(3)合格人数为:250×80%=200(人).………………………………………………8分21.(本小题满分9分)(1)如下表:………………3分(2)根据题意得,W=50x+30(13﹣x)+60(14﹣x)+45(x﹣1)=5x+1185,……5分由,解得:1≤x≤13.……………………………………………………………………………6分(3)在函数W=5x+1185中,k=5>0,∴W随x的增大而增大,当x=1时,W取得最小值,最小值为5×1+1185=1190.此时A调往甲地1吨,调往乙地12吨,B调往甲地13吨.…………………………9分22.(本小题满分11分)解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;………………………………………… 3分(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN…………………………………………………………………………… 6分(3)解:作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=1﹣x,……………………………………………………………… 10分x的取值范围为0≤x≤.………………………………………………………… 11分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省淮安市洪泽县八年级(下)期末数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分)
1.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()
A. B.C.D.
2.(3分)要使分式有意义,则x的取值范围是()
A.x>2 B.x<2 C.x≠﹣2 D.x≠2
3.(3分)下列事件中,是必然事件的为()
A.3天内会下雨
B.打开电视机,正在播放广告
C.367人中至少有2人公历生日相同
D.某妇产医院里,下一个出生的婴儿是女孩
4.(3分)下列各式计算正确的是()
A.+=B.4﹣3=1 C.2×3=6D.÷=3 5.(3分)如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()
A.B. C. D.
6.(3分)下列式子为最简二次根式的是()
A.B.C.D.
7.(3分)如图,▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是()
A.16°B.22°C.32°D.68°
8.(3分)菱形OABC的顶点O为原点,顶点B在y轴上,菱形的两条对角线的
长分别是8和6(AC>BO),反比例函数y=(x<0)的图象经过点C,则k的值为()
A.12 B.24 C.﹣12 D.﹣24
二、填空题(本题共有10小题,每小题3分,共30分)
9.(3分)4的平方根是.
10.(3分)若式子在实数范围内有意义,则x的取值范围是.11.(3分)计算:2=.
12.(3分)点A(﹣1,y1),B(﹣2,y2)在反比例函数y=的图象上,则y1,y2的大小关系是.
13.(3分)如图,要使平行四边形ABCD成为矩形,应添加的条件是(只需填一个你认为正确的结论即可).
14.(3分)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有个.15.(3分)如图,在▱ABCD中,∠ABC的平分线BM交CD于点M,且MC=2,
▱ABCD的周长是14,则DM等于.
16.(3分)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.
17.(3分)如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为.
18.(3分)将正整数按如图规律排列,从第1行到第2016行(含2016行)共有个数字.
三、解答题(本题共8小题,共66分)
19.(12分)(1)计算(3﹣)(+3)
(2)解方程=2﹣.
20.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.21.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长
BC至点F,使CF=BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
22.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
解答下列问题:
(1)这次抽样调查的样本容量是,并补全频数分布直方图;
(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?
23.(6分)2016年我县为了继续美化三河风光带,计划在三河滩内的路旁安装路灯960盏,由于志愿者的参加,实际每天安装的盏数比原计划多20%,结果提前4天完成,求原计划每天安装路灯多少盏?
24.(8分)如图,▱ABCD对角线AC、BD相交于点O,E、F分别是OA、OC的中点;
(1)求证:四边形DEBF是平行四边形;
(2)当OA=2OB时,▱DEBF是形;
(3)当AB=AD时,▱DEBF是形.
25.(8分)如图,直线y=mx+n与双曲线y=相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C.
(1)求m,n的值;
(2)若点D与点C关于x轴对称,求△ABD的面积.
26.(12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解:
如图1,在四边形ABCD中添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.
(2)问题探究:
①小红猜想:对角线互相垂直的“等邻边四边形”一定是菱形.她的猜想正确吗?请说明理由.
②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=2,并将Rt△ABC 沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结BA′,CC′,小红要使平移后的四边形A′BCC′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?
2015-2016学年江苏省淮安市洪泽县八年级(下)期末数
学试卷
参考答案
一、选择题(本大题共有8小题,每小题3分,共24分)
1.C;2.D;3.C;4.D;5.A;6.A;7.C;8.C;
二、填空题(本题共有10小题,每小题3分,共30分)
9.±2;10.x≥﹣1;11.﹣;12.y1<y2;13.AC=BD;14.4;15.3;16.65;17.;18.20162;
三、解答题(本题共8小题,共66分)
19.;20.;21.;22.50;0.32;72;23.;24.矩;菱;25.;26.;。

相关文档
最新文档