万有引力定律经典例题

合集下载

万有引力定律的案例分析-例题解析

万有引力定律的案例分析-例题解析

▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 万有引力定律的案例分析-例题解析1.关于双星的例题【例1】 两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动.现测得两行星中心距离为R ,其周期为T .求两行星的总质量.解析:由万有引力定律得:G 121221R m Rm m ω= 所以1222R RGm ω=,所以m 2=G R R 212ω 同理:G 222221R m R m m ω=所以m 1=G R R 222ω所以m 1+m 2=G R R R )(2122+ω 又因为:R 1+R 2=R ,所以m 1+m 2=G R 32ω,而ω=Tπ2 解得:m 1+m 2=232π4GT R .2.关于“和平号”空间站的例题【例2】 1986年2月20日发射升空的“和平号”空间站,在服役15年后于2001年3月23日坠落在太平洋.“和平号”风风雨雨15年铸就了辉煌业绩,已成为航天史上的永恒篇章.“和平号”空间站总质量137 t ,工作容积超过400 m 3.是迄今为止人类探索太空规模最大的航天器,有“人造天宫”之称.在太空运行的这一“庞然大物”按照地面指令准确降落在预定海域,这在人类历史上还是第一次.“和平号”空间站正常运行时,距离地面的平均高度大约是350 km.为保证空间站最终安全坠毁,俄罗斯航天局控制中心对空间站的运行作了精心的安排和控制.在坠毁前空间站已经顺利进入指定的低空轨道,此时“和平号”距离地面的高度大约为240 km.在“和平号”沿指定的低空轨道运行时,其轨道高度平均每昼夜降低2.7 km.设“和平号”空间站正常运行时沿高度为350 km 圆形轨道运行,在坠落前沿高度240 km 的指定圆形低空轨道运行.而且沿指定的低空轨道运行时,每运行一周空间站高度变化很小,因此计算时对空间站的每一周的运动都可以作为匀速圆周运动处理.(1)空间站沿正常轨道运行时的加速度与沿指定的低空轨道运行时加速度大小的比值是多大?(计算时保留两位有效数字)(2)空间站沿指定的低空轨道运行时,每运行一周过程中空间站高度平均变化多大?(计算中取地球半径R =6.4×103 km ,计算时保留一位有效数字)解析:(1)根据a =2RGM ,a 1∶a 2=0.97. (2)h =2.7 km.。

万有引力定律种典型题完整版

万有引力定律种典型题完整版

万有引力定律种典型题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】万有引力定律12种典型题【案例1】下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。

月球也是地球的一颗卫星。

设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。

总之,牛顿万有引力定律是解决天体运动问题的关键。

【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。

“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24h。

问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少?解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大⑴所有运动学量量都是r的函数。

我们应该建立函数的思想。

⑵运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。

⑶任何卫星的环绕速度不大于7.9km/s,运动周期不小于85min。

⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。

【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k G k k δρ==--3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。

万有引力经典例题

万有引力经典例题

一、万有引力定律:(1687年)适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ⋅⨯=- 二、万有引力定律的应用1.解题的相关知识:(1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222rv m r Mm G ==r T m 224πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G2R mM =mg 从而得出GM =R 2g 。

(2)圆周运动的有关公式:ω=Tπ2,v=ωr 。

讨论:1)由222rv m r Mm G =可得:r GM v = r 越大,v 越小。

2)由r m rMm G 22ω=可得:3r GM =ω r 越大,ω越小。

3)由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π可得:GM r T 32π= r 越大,T 越大。

4)由向ma r Mm G =2可得:2r GM a =向 r 越大,a 向越小。

点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。

人造卫星及天体的运动都近似为匀速圆周运动。

2.常见题型万有引力定律的应用主要涉及几个方面:(1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。

现有一中子星,观测到它的自转周期为T =301s 。

问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。

计算时星体可视为均匀球体。

(引力 常数G =6.67⨯1011-m 3/kg.s 2)解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。

万有引力定律(精选例题)

万有引力定律(精选例题)

例题11:
中子星是恒星演化过程的一种可能结果, 中子星是恒星演化过程的一种可能结果 , 它的密度很 现有一中子星, 30s 大 。现有一中子星 , 观测到它的自转周期为T=1/30s。 问该中子星的最小密度应是多少才能维持该星的稳定, 问该中子星的最小密度应是多少才能维持该星的稳定 , 不致因自转而瓦解。计算时星体可视为均匀球体。 不致因自转而瓦解 。计算时星体可视为均匀球体。(引 2 67× -11 力常数G=6.67×10 N ·m /kg2) 解析:设想中子星赤道处一小块物质,只有当它受到的 解析:设想中子星赤道处一小块物质, 万有引力大于或等于它随星体所需的向心力时, 万有引力大于或等于它随星体所需的向心力时,中子星 才不会瓦解。 才不会瓦解。
3π r= 2 GT
GT M r= 4π 2 (3)海王星发现:
2
(2)天体运动情况:
1 3
(4)证明开普勒第三定律的正确性。
四、人造卫星:基本上都是引力提供向心力
Mm v 4π 2 G 2 = m = mrω = m 2 r = 4π 2 mrf 2 = ma r r T GM 1、线速度: = 即线速度 v ∝ v r
纬度↓ ,r ↑ ,g ↓ 。
例题1:
已知下面哪组数据可以计算出地球的质量M地(引力常数G 为已知)(AD) (A)月球绕地球运行的周期T1及月球到地球中心的距离r1 (B)地球“同步卫星”离地面的高度h
小结: 小结:应用的基本思路与方法 1、天体运动的向心力来源于天体之间的万有引力,即 天体运动的向心力来源于天体之间的万有引力,
例题3:
第一宇宙速度是用r=R 地 计算出来的,实际上人造地球 卫星轨道半径都是r>R地,那么轨道上的人造卫星的线 速度都是( ) (A)等于第一宇宙速度 (C)小于第一宇宙速度 (B)大于第一宇宙速度 (D)以上三种情况都可能

高中物理万有引力定律的应用题20套(带答案)及解析

高中物理万有引力定律的应用题20套(带答案)及解析

高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。

土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。

【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

高中物理万有引力定律的应用真题汇编(含答案)含解析

高中物理万有引力定律的应用真题汇编(含答案)含解析

高中物理万有引力定律的应用真题汇编(含答案)含解析高中物理万有引力定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求:(1)地球的密度; (2)地球的第一宇宙速度v ;(3)“天宫一号”距离地球表面的高度.【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =,地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+,据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g =9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字).【答案】(1)1.54V (2)不能(3)5410m ? 【解析】【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.(3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M,自转周期为T,引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F0.①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.4.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】(1)22324gR T r π= (2)22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)6T =2)21t gπ=【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2MmmgG R = 联立解得6T =;(2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π, 所以10002222133t gT R===ππππωωωω---;6.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。

万有引力定律应用例题

万有引力定律应用例题

万有引力定律应用例题
1. 在太阳系中,行星绕太阳运动的轨道是通过万有引力定律来解释的。

根据万有引力定律,行星受到太阳的引力作用,行星沿着椭圆轨道绕太阳运动。

2. 在地球表面上,物体受到地球的引力作用,加速度约为9.8米/秒²。

这是因为根据万有引力定律,地球的质量和物体的质量以及两者之间的距离决定了引力的大小和方向。

3. 人造卫星的运行也是通过万有引力定律来解释的。

卫星受到地球的引力作用,沿着地球表面上的轨道飞行,同时还要克服大气阻力和其他外力的影响。

4. 万有引力定律也可以用来解释天体的引力束缚。

例如,引力束缚是在双星系统中观察到的现象,其中两个星体以互相围绕的方式相互吸引。

5. 万有引力定律还可以用来解释地球潮汐现象。

地球和月球之间的引力相互作用导致地球潮汐的形成,使得海洋表面上的水产生周期性的涨落。

这些是万有引力定律在物理学和天文学中的一些应用例题。

它提供了解释和预测天体运动和相互作用的基本原理。

万有引力定律典型例题

万有引力定律典型例题

万有引力定律·典型例题解析【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:(1)g (2)(3)r 60R 地面上物体的重力加速度=;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GMR GMrg 22αα(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,求的值.αg解析:(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力GMmr mg G Mmrm 22α的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目的条件可以用、ω或来表示.v r r T2224r 2π【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.距月球表面14m 高处,有一质量m =60kg 的物体自由下落.(1)它落到月球表面需用多少时间?(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?解析:(1)4s (2)588N点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设mg GM m R mg GM m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的万有引力,设=.以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 22122214175S g .(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .跟踪反馈1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:[ ]A .Gm 1m 2/r 2B .Gm 1m 2/r 12C .Gm 1m 2/(r 1+r 2)2D .Gm 1m 2/(r 1+r 2+r)22.下列说法正确的是[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.4.下列说法正确的是[ ] A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同参考答案1.D 2.CD 3.3.54×1022;7.28×134.A。

万有引力定律 典型例题

万有引力定律 典型例题

万有引力定律典型例题【例1】用m 表示地球同步通信卫星的质量、h 表示卫星离地面的高度、M 表示地球的质量、R 0表示地球的半径、g 表示地球表面处的重力加速度、T 0表示地球自转的周期、ω0表示地球自转的角速度,则:(1)地球同步通信卫星的环绕速度v 为( ) A.ω0(R 0+h ) B.hR GM+0 C.30ωGM D. 32T GM π(2)地球同步通信卫星所受的地球对它的万有引力F 的大小为( )A.m2020)(h R g R + B.m ω20(R 0+h ) C.m 30204ωg RD.m 34416T GM π解析:(1)3302302002000200204)2(,0T R R R v GM R T m R m R v m R GMm h πϖπϖ=======可得由假设将GM 代入选项一一检验均符合。

(2)符合。

,代入选项一一检验均又假设mg F g R GM gR T R g R vR GM gR v v h O ==∙========2000000001.22,,,0πϖπω0002T R R v πϖ==【例2】变轨问题:发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。

轨道1、2相切于Q点,轨道2、3相切于P点,如图所示,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是( )A. 卫星在轨道3上的速率大于在轨道1上的速率B. 卫星在轨道3上的角速度小于在轨道1上的角速度C. 卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D. 卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【例3】关于第一宇宙速度,下面说法中错误的是A.它是人造地球卫星绕地飞行的最小速度B.它是人造地球卫星在近地圆形轨道上的运行速度C.它是能使卫星进入近地圆形轨道的最小发射速度2/D vgR r.从人造卫星环绕地球运转的速度=可知,把卫星发射到越远的地方越容易【例4】地球和另一个天体的密度之比为3∶2,半径之比为1∶2,地球表面的重力加速度g=9.8m/s2,则这个天体表面的重力加速度是多少?在这个天体上发射卫星的环绕速度是多少?【例1】在天体运动中,将两颗彼此距离较近的行星称为双星,由于两星间的引力等于向心力而使它们在运动中距离保持不变,已知两个行星的质量分别为M1、M2,相距为L,求它们的角速度.解析:如图44-2所示,设M 1的轨道半径为r 1,M 2的轨道半径为r 2,两个行星都绕O 点做匀速圆周运动的角速度为ω;由于两个行星之间的万有引力提供向心力,根据牛顿第二定律有G M M r M r G M M r M r r r L1212112122222212==+=ωω以上三式联立解得ω=112L G M M L()+【例1】关于人造地球卫星,下列说法正确的是(已知地球半径为6400km)[ ]A .运行的轨道半径越大,线速度也越大;B .运行的速率可能等于8km/s ;C .运行的轨道半径越大,周期也越大;D .运行的周期可能等于80min .解析:C 正确.设地球质量为M ,卫星质量为m ,卫星在轨道半径为r 的轨道上运行的速率为,根据万有引力定律等于向心力的关系可得:==因为为常数,由上式知越小,越大.当==时,v mv /r v GM r r R 6400km 2GMmrGM r2卫星的运行速率最大,卫星的最大运行速率为7.9km/s .应该指出7.9km/s 是卫星在绕地球做圆周运动时的最大速度,当卫星绕地球做椭圆运动时速度可以超过.=·即得=所以越大,7.9km /s mr T r GMm r Tr GM 2222344ππT 越大.由周期公式代入g 的关系得T 的最小值为85min ,80min <85min ,故D 也错.点拨:本题从几个侧面考查了卫星的问题.从卫星发射,到卫星的运转,以及卫星的宇宙速度.既然是卫星问题总离不开万有引力提供向心力问题,当然是把卫星的运动当成圆周运动看待.【作业】两颗人造卫星的质量之比m1∶m2=1∶2,轨道半径之比R1∶R2=3∶1.求:(1)两颗卫星运行的线速度之比;(2)两颗卫星运行的角速度之比;(3)两颗卫星运行的周期之比;(4)两颗卫星运行的向心加速度之比;(5)两颗卫星运行的向心力之比.[思路点拨] 将卫星的运动近似看成匀速圆周运动,其所需向心力系万有引力,即应用时根据实际情况选用适当公式进行分析为求解此类问题的基本方法.[小结] 本题是典型地把天体(或卫星)的运动视为圆周运动,并应用万有引力等于向心力解题的题目.此方法主要用于计算天体的质量,讨论天体(或卫星)的速度、角速度、周期及半径等问题.在应用以上思路解题时,一般常采用比例计算法.。

万有引力定律应用典型题型(全)

万有引力定律应用典型题型(全)

万有引力定律应用的典型题型【题型1】天体的质量与密度的估算(1)测天体的质量及密度:(万有引力全部提供向心力)由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。

现有一中子星,观测到它的自转周期为T =301s 。

问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。

计算时星体可视为均匀球体。

(引力常数G =6.67⨯1011-m 3/kg.s 2)解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。

设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有R m R GMm 22ω= T πω2= ρπ334R M =由以上各式得23GT πρ=,代入数据解得:314/1027.1m kg ⨯=ρ。

点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。

变式训练:数据能够估算出地球的质量的是( ) A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。

月球也是地球的一颗卫星。

设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T4m r Mm G 222π=……①得:232G T r 4M π=……②可见A 正确而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得:G3T 2π=ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。

万有引力定律的应用例题

万有引力定律的应用例题

万有引力定律的应用例题万有引力定律是描述物体之间相互作用的重要定律,它可以应用于多个领域。

下面是一些关于万有引力定律应用的例题:1. 两个质量分别为2kg和4kg的物体,在它们之间的距离为3米的地方,求它们之间的引力大小。

根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数(约等于6.67430 × 10^-11 N·m^2/kg^2),m1和m2分别为物体1和物体2的质量,r为它们之间的距离。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (2kg * 4kg) / (3m)^2 ≈ 8.83 × 10^-10 N。

2. 地球的质量为5.97 × 10^24 kg,半径为6.37 × 10^6 m。

一个质量为70 kg的人站在地球表面上,请计算他所受到的重力大小。

根据万有引力定律,我们可以计算出人所受到的地球引力。

将地球看作质点,人与地球的距离为地球半径。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (70kg * 5.97 × 10^24 kg) / (6.37 × 10^6 m)^2 ≈ 686 N。

3. 在国际空间站(ISS)轨道上,距离地球表面约400公里的地方,一个质量为600 kg的卫星以4 km/s的速度绕地球运动。

求该卫星所受到的引力大小。

在空间站轨道上,卫星的质量和距离会随时间变化,但我们可以假设在给定时刻,质量和距离保持恒定。

根据万有引力定律,我们可以计算出卫星所受到的引力。

代入数据可得:F = (6.67430 × 10^-11 N·m^2/kg^2) * (600kg * 5.97 × 10^24 kg) / (400km + 地球半径)^2 ≈ 2.10 × 10^4 N。

万有引力定律应用例题

万有引力定律应用例题

万有引力定律应用例题
1. 一个天体的质量是地球的5倍,距离地球的位置上空1兆米的地方有一颗小行星。

求小行星受到的引力与在地球表面受到的引力之比。

解答:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比。

设地球质量为M,小行星质量为m,地球半径为R,小行星与地球的距离为r。

在地球表面受到的引力为F1=GMm/R²,其中G为万有引力常数。

在位置上空1兆米的地方,小行星与地球的距离为R+r,利用万有引力定律得到小行星受到的引力为F2=GMm/(R+r)²。

所以,小行星受到的引力与在地球表面受到的引力之比为
F2/F1=(GMm/(R+r)²)/(GMm/R²)=(R/R+r)²。

代入已知条件,得到比值为(6400km/6400000000m)
²=2.5×10^-19。

2. 一个地球上的物体质量为5千克,距离地球表面2米的地方有一只1千克的小鸟。

求小鸟受到的引力大小和方向。

解答:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比。

小鸟受到的引力大小为F=GMm/r²,其中G为万有引力常数,M为地球质量,m为小鸟质量,r为小鸟与地球的距离。

代入已知条件,得到引力大小为F=(6.67×10^-11 N·m²/kg²)×(5 kg)×(1 kg)/(2 m)²。

计算得到引力大小为F≈3.34×10^-9牛顿。

引力的方向与两个物体之间的连线方向相反,所以小鸟受到的引力方向指向地球。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.天体运动的分析方法2.中心天体质量和密度的估算(1)已知天体表面的重力加速度g 和天体半径RG MmR 2=mg⎩⎨⎧天体质量:M =gR 2G天体密度:ρ=3g 4πGR(2)已知卫星绕天体做圆周运动的周期T 和轨道半径r⎩⎪⎨⎪⎧①G Mm r 2=m 4π2T 2rM =4π2r 3GT 2②ρ=M 43πR 3=3πr3GT 2R3③卫星在天体表面附近飞行时,r =R ,则ρ=3πGT21.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( )A .g ′∶g =4∶1B .g ′∶g =10∶7C .v ′∶v =528D .v ′∶v =514解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43πR 3,解两式得g =43G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力充当向心力,由G Mm R 2=m v 2R ,M =ρ43πR 3,解两式得v =2R G πρ3,所以v ′∶v =528,C 项正确,D 项错.答案:C3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( )A .求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 =r 23T 22 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2T 12得T 1=4π2r 13GM =4π2r 13Gρ43πr3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22=mr 24π2T 22,T 2=4π2r 23GM ′,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动的半径r 1,根据F =GMM ′r 12可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动的中心天体一个是地球一个是月球,D 错误.答案:B估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 人造卫星的运行 授课提示:对应学生用书第57页1.人造卫星的a 、ω、v 、T 与r 的关系GMmr 2=⎩⎪⎪⎨⎪⎪⎧⎭⎪⎪⎬⎪⎪⎫ma ―→a =GM r 2―→a ∝1r 2m v 2r ―→v =GM r ―→v ∝1r mω2r ―→ω=GM r 3―→ω∝1r 3m 4π2T 2r ―→T =4π2r 3GM ―→T ∝r 32.近地时mg =GMmR 2―→GM =gR 2.1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=×104 km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)绕行方向一定:与地球自转的方向一致. 2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.1.(2015·高考福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )=r 2r 1=r 1r 2=⎝⎛⎭⎫r 2r 12 =⎝⎛⎭⎫r 1r 22 解析:根据万有引力定律可得G Mm r 2=m v 2r ,即v =GM r ,所以有v 1v 2=r 2r 1,所以A项正确,B 、C 、D 项错误.答案:A2.2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭,将我国首颗新一代北斗导航卫星发射升空,于31号凌晨3点34分顺利进入预定轨道.这次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星.中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )A .周期大B .线速度小C .角速度小D .向心加速度大解析:卫星离地面的高度越低,则运动半径越小.根据万有引力提供圆周运动向心力得G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,则周期T =4π2r 3GM ,知半径r 越小,周期越小,故A错误;线速度v =GMr ,知半径r 越小,线速度越大,故B 错误;角速度ω=GM r 3,知半径r 越小,角速度越大,故C 错误;向心加速度a =GMr 2,知半径r 越小,向心加速度越大,故D 正确.答案:D3.“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所.假设“空间站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A .“空间站”运行时的加速度小于同步卫星运行的加速度B .“空间站”运行时的速度等于同步卫星运行速度的10倍C .站在地球赤道上的人观察到“空间站”向东运动D .在“空间站”工作的宇航员因不受重力而可在舱中悬浮解析:根据G Mm r 2=ma 得a =Gmr 2,知“空间站”运行的加速度大于同步卫星运行的加速度,故A 错误;根据G Mm r 2=m v 2r 得v =GMr ,离地球表面的高度不是其运动半径,所以线速度之比不是10∶1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观察到空间站向东运动,故C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充当向心力和空间站一起做圆周运动,故D 错误.答案:C人造卫星问题的解题技巧(1)利用万有引力提供向心力的不同表达式 GMm r 2=m v 2r =mrω2=m 4π2r T 2=ma n(2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、v 、ω、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.②a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定. (3)要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月天)等.考点三 卫星的发射和变轨问题 授课提示:对应学生用书第57页1.第一宇宙速度(环绕速度)v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度,还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2.第二宇宙速度(脱离速度)v 2=11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3.第三宇宙速度(逃逸速度)v 3=16.7 km/s ,使卫星挣脱太阳引力束缚的最小发射速度.1.第一宇宙速度的两种计算方法 (1)由G Mm R 2=m v 2R 得v =GM R .(2)由mg =m v 2R 得v =gR . 2.卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.(2)变轨分析:卫星在圆轨道上稳定时,G Mm r 2=m v 2r =mω2r =m ⎝⎛⎭⎫2πT 2r .①当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v = GMr 可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr 可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015·高考广东卷)在星球表面发射探测器,当发射速度为v时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1.下列说法正确的有() A.探测器的质量越大,脱离星球所需要的发射速度越大B.探测器在地球表面受到的引力比在火星表面的大C.探测器分别脱离两星球所需要的发射速度相等D.探测器脱离星球的过程中,势能逐渐增大解析:由G MmR2=mv2R得,v=GMR,2v=2GMR,可知探测器脱离星球所需要的发射速度与探测器的质量无关,A项错误;由F=G MmR2及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B项正确;由2v=2GMR可知,探测器脱离两星球所需的发射速度不同,C项错误;探测器在脱离两星球的过程中,引力做负功,引力势能增大,D项正确.答案:BD2.(多选)2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是()A.发射速度一定大于7.9 km/sB.在轨道Ⅱ上从P到Q的过程中速率不断增大C.在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度D.在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过P的加速度解析:“嫦娥三号”探测器的发射速度一定大于km/s,A正确.在轨道Ⅱ上从P到Q的过程中速率不断增大,选项B正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度,选项C正确.在轨道Ⅱ上经过P的加速度等于在轨道Ⅰ上经过P的加速度,D错.答案:ABC3.(2016·成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星A、B、C,在某一时刻恰好在同一条直线上.它们的轨道半径之比为1∶2∶3,质量相等,则下列说法中正确的是()A .三颗卫星的加速度之比为9∶4∶1B .三颗卫星具有机械能的大小关系为E A <E B <EC C .B 卫星加速后可与A 卫星相遇D .A 卫星运动27周后,C 卫星也恰回到原地点解析:根据万有引力提供向心力G Mm r 2=ma ,得a =GM r 2,故a A ∶a B ∶a C =1r A 2∶1r B 2∶1r C2=112∶122∶132=36∶9∶4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机械能越大,故E A <E B <E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可能与A 卫星相遇,故C 错误;根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,得T =2πr 3GM ,所以T AT C =r A 3r C 3=127,即T C =27T A .若A 卫星运动27周后,C 卫星也恰回到原地点,则C 的周期应为A 的周期的27倍,故D 错误.答案:B航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v =GMr 判断.(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度.考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页1.模型构建绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2.模型条件(1)两颗星彼此相距较近.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动. 3.模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等.(3)“半径反比”——圆心在两颗行星的连线上,且r 1+r 2=L ,两颗行星做匀速圆周运动的半径与行星的质量成反比.1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )T T TT解析:设两颗双星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,根据万有引力提供向心力可得G m 1m 2r 1+r 22=m 1r 14π2T 2,G m 1m 2r 1+r 22=m 2r 24π2T 2,联立两式解得m 1+m 2=4π2r 1+r 23GT 2,即T 2=4π2r 1+r 23Gm 1+m 2,因此,当两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍时,两星圆周运动的周期为T ′=n 3k T ,B 正确,A 、C 、D 错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a2 C .四颗星表面的重力加速度均为GmR 2 D .四颗星的周期均为2πa2a4+2Gm解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A 正确,B 错误;在星体表面,根据万有引力等于重力,可得G mm ′R 2=m ′g ,解得g =GmR 2,故C 正确;由万有引力定律和向心力公式得Gm 22a 2+2Gm 2a 2=m 4π2T 2·2a2,T =2πa2a4+2Gm ,故D 正确.答案:ACD3.如图所示,双星系统中的星球A 、B 都可视为质点.A 、B 绕两者连线上的O 点做匀速圆周运动,A 、B 之间距离不变,引力常量为G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m 1、m 2.(1)求B 的周期和速率.(2)A 受B 的引力F A 可等效为位于O 点处质量为m ′的星体对它的引力,试求m ′.(用m 1、m 2表示)解析:(1)设A 、B 的轨道半径分别为r 1、r 2,它们做圆周运动的周期T 、角速度ω都相同,根据牛顿第二定律有F A =m 1ω2r 1,F B =m 2ω2r 2,即r 1r 2=m 2m 1.故B 的周期和速率分别为:T B =T A =T ,v B =ωr 2=ωm 1r 1m 2=m 1vm 2.(2)A 、B 之间的距离r =r 1+r 2=m 1+m 2m 2r 1,根据万有引力定律有F A =Gm 1m 2r 2=Gm 1m ′r 12,所以m ′=m 23m 1+m 22.答案:(1)T m 1v m 2(2)m 23m 1+m 22解答双星问题应注意“两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的. (2)双星问题的“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离. ②由m 1ω2r 1=m 2ω2r 2知,由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[随堂反馈]授课提示:对应学生用书第59页1.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0解析:由GMm R +h 2=mg ′得g ′=GM R +h 2,B 项正确.答案:B2.(2015·高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由GMm r 2=m ⎝⎛⎭⎫2πT 2r ,可知地球的周期比火星的周期小,故A 项错误;由GMm r 2=m v 2r ,可知地球公转的线速度大,故B 项错误;由GMm r 2=ma ,可知地球公转的加速度大,故C 项错误;由GMm r 2=mω2r ,可知地球公转的角速度大,故D 项正确.答案:D3.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距离地面的高度为GM RB .卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR 2D .卫星运行的向心加速度小于地球表面的重力加速度解析:由GMm R +h 2=m (R +h )⎝⎛⎭⎫2πT 2得h =3GMT 24π2-R ,A 项错误;近地卫星的运行速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm R +h 2,C 错误;由G Mm R 2=mg 得地球表面的重力加速度g =G MR 2,而同步卫星所在处的向心加速度g ′=GMR +h 2,D 正确. 答案:D4.(2015·成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,可以解出月球的质量M =4π2r 3GT 2,由于不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于Q 点的速度,故C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故D 正确.答案:D5.一物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为 s 与 s ,求:(1)该星球表面重力加速度值;(2)若该星球的半径为180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少 解析:(1)根据运动学公式,由题意可得⎩⎨⎧x =v 1t 1+12gt 122x =v 1t 1+t 2+12gt 1+t22代入数值可求得g =2 m/s 2.(2)对质量为m 的卫星有G Mm r 2=m ⎝⎛⎭⎫2πT 2r星球表面有G Mm ′R 2=m ′g可知当R =r 时卫星做圆周运动的最小周期为 T =2πR g代入数据解得T 最小=600π s. 答案:(1)2 m/s 2 (2)600π s[课时作业]授课提示:对应学生用书第243页一、单项选择题1.(2016·成都市石室中学一诊)下列说法正确的是( ) A .洗衣机脱水桶脱水时利用了离心运动 B .牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D .理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动.故A 正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2.欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯581c”.该行星的质量是地球的5倍,直径是地球的倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为E k1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则E k1E k2为( )A .B .C .D .解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 故有G Mm r 2=m v 2r ,所以卫星的动能为E k =12mv 2=GMm2r 故在地球表面运行的卫星的动能E k2=GM 地m2R 地在“格利斯”行星表面运行的卫星的动能E k1=GM 行m2R 行所以有E k1E k2=GM 行m 2R 行GM 地m 2R 地=M 行M 地·R 地R 行=51×错误!=错误!=.答案:C3.(2015·高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球表面时的支持力,则mg =mrω2,ω=gr ,因此角速度与质量无关,C 、D 项错误;半径越大,需要的角速度越小,A 项错误,B 项正确.答案:B4.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的12,则变轨前后卫星的( )A .轨道半径之比为1∶2B .向心加速度大小之比为4∶1C .角速度大小之比为2∶1D .周期之比为1∶8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,G Mm r 2=m v 2r v =GM r ,v 1v 2=r 2r 1=2r 1r 2=14,A 项错;G Mm r 2=maa =GM r 2,所以a 1a 2=16,B 项错;由开普勒第三定律T 12T 22=r 13r 23=143T 1T 2=18,D 项正确;因为T =2πω,角速度与周期成反比,故ω1ω2=8,C 项错.答案:D5.美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离地球约600光年,体积是地球的倍.已知万有引力常量和地球表面的重力加速度.根据以上信息,下列推理中正确的是( )A .若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D .若已知该行星的密度和半径,可求出该行星的轨道半径解析:根据万有引力公式F =G Mmr 2,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式G Mm r 2=mg ,有g =G Mr 2,若该行星的密度与地球的密度相等,体积是地球的倍,则有M 行M 地=V 行V 地=,r 行r 地=3V 行V 地=错误!,根据错误!=错误!,可以求出该行星表面的重力加速度,故B 正确;由于地球与行星不是围绕同一个中心天体做匀速圆周运动,故根据地球的公转周期与轨道半径,无法求出该行星的轨道半径,故C 错误;由于不知道中心天体的质量,已知该行星的密度和半径,无法求出该行星的轨道半径,故D 错误.答案:B6.如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )A .小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值B .小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值C .太阳对各小行星的引力相同D .各小行星绕太阳运动的周期均小于一年。

相关文档
最新文档