鲁教版七年级数学上下册试题及答案

合集下载

鲁教版七年级上册数学试卷

鲁教版七年级上册数学试卷

鲁教版七年级上册数学试卷
下列哪个数是有理数?
A. π(圆周率)
B. √2(2的平方根)
C. -3/4(负四分之三)
D. 无限不循环小数
下列哪个选项表示的是代数式?
A. 3 + 4 = 7
B. x + y
C. 5 > 3
D. “小明今年12岁”
下列哪个选项是单项式?
A. x + y
B. 3xy
C. x2 - y2
D. 1/x
下列哪个选项是方程?
A. 3 + 4 = 7
B. x + 5
C. x - 3 = 0
D. “苹果的价格是5元/斤”
下列哪个选项是一元一次方程的解?
A. x = 2 是方程x2 - 4 = 0 的解
B. x = 3 是方程2x + 1 = 7 的解
C. x = -1 是方程x + 5 = 3 的解
D. x = 0 是方程x/2 + 1 = 2 的解
下列哪个选项表示的是几何图形中的线段?
A. 一个无限延伸的直线
B. 一个有起点和终点,但中间可以弯曲的路径
C. 一个有起点但没有终点的射线
D. 一个有确定长度,两个端点的直线部分
下列哪个选项是角的概念的正确描述?
A. 角是由两条射线组成的图形
B. 角是由两条直线组成的图形
C. 角是由一条直线和一个点组成的图形
D. 角是由两条线段组成的图形
下列哪个选项是平行线的正确性质?
A. 平行线间的距离处处相等
B. 平行线永远不会相交
C. 平行线在同一平面内,但方向不同
D. 平行线只能存在于平面几何中,不能存在于立体几何中。

鲁教版七年级数学上下册试题及答案

鲁教版七年级数学上下册试题及答案

七年级数学试题(时间:120分钟,满分120分)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的)1、如图所示,将三角形绕直线l 旋转一周,可以得到图(E)所示的立体图形的是( ) l l l l lA .B .C .D . E2、若x 是6的相反数,y 比x 的相等数小2,则x -y =( )A .4 B.8 C.-10 D.-23、某班共有学生x 人,其中女生占45%,那么男生人数是( )A .45%x B.(1-45%)x C.45%x D.145%x-4、a 是一个三位数,b 是一个一位数,如果把b 放在a 的左边,那么所组成 的四位数是( )A .ba B.1000b+a C.10a+b D.b+a 5、若│a │=5,b=-2,那么│a+b │的值是( )A .7 B.3 C.-7或-3 D.+7或+3 6、下面四个图形折叠后能围成如图所示正方体的图形是()7、有一列数1a 2a 3a ……n a ,从第二个数开始,每一个数都等于1与它前面那个数的差,若1a =2,则2007a 为( ) A .-1 B.2 C.12D.2007 8.24x x k ++是一个完全平方式,k 的值为( ) A .2B . 4C .16D .-49.如右图,直线a 与直线b 互相平行,则|x y -|的值是( )A .20B .80C .120D .18010.如右图,直线EO ⊥BC 于点O ,∠BOC =3∠1,OD 平分 ∠AOC ,则∠2的度数是( ) A .30° B .40° C .60° D .以上结果都不正确11.表格列出了一项实验的统计数据,表示皮球从高度d 落下时弹跳高度b 与下落高d 的关系,试问下面的哪个式子能表示这种关系(单位cm )( )d 50 80 100 150 b 25 40 50 75A .2b d =B .2b d =C .25b d =+D .2db =12.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系( )A. B. C. D.二、填空题(直接填写最后结果,本题共8个小题,每小题3分,共24分)13、某地气温从-1C 下降3C 后为___C 14、已知4m a 3b 与-32a n b 是同类项,则-m n =___ 15、绝对值大于1而小于5的所有整数的和是___ 16、若x +22y +5的值是7,则代数式3x +62y +4的值是___17、做拉面时,拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:这样捏合到第___次后可以拉出128根面条。

初中数学鲁教版(五四制)七年级上册第一章 三角形4 三角形的尺规作图-章节测试习题

初中数学鲁教版(五四制)七年级上册第一章 三角形4 三角形的尺规作图-章节测试习题

章节测试题1.【题文】画一个三角形,再画一个与其全等的图形.【答案】见解析【分析】作任意再作一个三角形与它全等即可.【解答】解:1,作任意 2,作射线在上截取 3,以为圆心, 为半径画圆4,以为圆心, 为半径画圆,交圆于,5,连接得,全等于2.【答题】下列尺规作图,能判断是边上的高是().A.B.C.D.【答案】B【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】A选项:AD为BC边上的中线,不符合题意;B选项:AD为BD边上的高;C选项:AD为∠BAC的角平分线;D选项:AD不是BC边上的高.选B.方法总结:掌握利用尺规作图作三角形的高的方法.3.【答题】已知三边作三角形时,用到所学知识是( )A. 作一个角等于已知角B. 作一个角使它等于已知角的一半C. 在射线上取一线段等于已知线段D. 作一条直线的平行线或垂线【答案】C【分析】根据三边做三角形用到作一条线段等于已知线段的基本作图方法.【解答】已知三边作三角形时,用到的三角形的判定方法是SSS定理,而第一条边的作法,需要在射线上截取一条线段等于已知的线段。

故C。

方法总结:作一个三角形等于已知的三角形,有多种方法,本题是其中的三边作图,用的是SSS判定定理。

4.【答题】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )A. 作一条线段等于已知线段B. 作一个角等于已知角C. 作两条线段等于已知三角形的边,并使其夹角等于已知角D. 先作一条线段等于已知线段或先作一个角等于已知角【答案】D【分析】利用基本作图先要作一个线段等于已知线段,再作一个角等于已知角或先作一个角等于已知角,然后便于作边.【解答】已知三角形的两边及其夹角,求作这个三角形,可以先A法,也可以先B法,但是都不全面,因为这两种方法都可以,故选D.。

5.【答题】利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A. 已知三条边B. 已知三个角C. 已知两角和夹边D. 已知两边和夹角【答案】B【分析】看是否符合所学的全等的公理或定理即可.【解答】A、符合全等三角形的判定SSS,能作出唯一直角三角形;B、不正确,已知三个角可画出无数个三角形;C、正确,符合ASA判定;D、正确,符合SAS判定.选B.方法总结:此题主要考查由已知条件作三角形,可以依据三角形全等的判定来做.6.【答题】用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A. 三角形的两条边和它们的夹角B. 三角形的三边C. 三角形的两个角和它们的夹边D. 三角形的三个角【答案】A【分析】由已知条件可判定已知条件为两边和它们的夹角作三角形.【解答】由已知条件可判定已知条件为两边和它们的夹角作三角形.选A.7.【答题】已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS【答案】D【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS得到三角形全等,由全等三角形的性质,可得全等三角形的对应角相等.【解答】如图,连接CD、C’D’,∵在△COD和△C’O’D’中,∴△COD≌△C’O’D’(SSS),∴∠AOB=∠A’O’B’选D.8.【答题】用尺规作图,已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三边作三角形实质就是把三边的长度用圆规画出,选C.9.【答题】如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】根据图形,可以确定两角及其夹边.选C.10.【答题】根据下列已知条件,能唯一画出△ABC的是( )A. ∠A=36°,∠B=45°,AB=4B. AB=4,BC=3,∠A=30°C. AB=3,BC=4,CA=1D. ∠C=90°,AB=6【答案】A【分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【解答】A.∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.选A.11.【答题】利用基本作图方法,不能作出唯一三角形的是( )A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边【答案】C【分析】三角形全等的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】A. 已知两边及其夹角,作图依据“SAS”;B. 已知两角及其夹边,作图依据“ASA”;C. 已知两边及一边的对角,不能做出唯一的三角形;D. 已知三边,作图依据“SSS”.选C.12.【答题】已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作一条线段等于已知线段的和【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三角形的三边,求作符合要求的三角形,其作图依据是“SSS”.故用到的基本作图是:作一条线段等于已知线段.选C.13.【答题】下列各条件中,能作出唯一的△ABC的是( )A. AB=4,BC=5,AC=10B. AB=5,BC=4,∠A=40°C. ∠A=90°,AB=10D. ∠A=60°,∠B=50°,AB=5【答案】D【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】本题中A选项中的三边不能确定三角形,B选项中不是夹角,C选项中缺少一个条件,选D.14.【答题】下列选项所给条件能画出唯一的是()A. ,,B. ,,C. ,D. ,,【答案】A【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】A中两角夹一边,形状固定,所以可作唯一三角形;B中∠B并不是AB,AC的夹角,所以可画出多个三角形;C中两个锐角也不确定,也可画出多个三角形;D中AC与BC两边之差大于第三边,所以不能作出三角形,选A.15.【答题】如图,根据图中作图痕迹,可以得出作三角形的依据分别是:(1)______;(2)______;(3)______(图中虚线表示最后作出的线段)【答案】SAS,SSS,ASA【分析】从作图痕迹可知是通过作两边和两边的夹角得到三角形的,作图的依据是SAS.从作图痕迹可知是通过作三边得到三角形的,作图的依据是SSS.从作图痕迹可知是通过作两角和夹边得到三角形的,作图的依据是ASA.【解答】解:答案为:16.【答题】尺规作三角形的类型:尺类型依据规作图已知两边及其夹角作三角形______已知两角一边作三角形______(或)已知三边作三角形______【答案】SAS,ASA,SSS【分析】判定三角形全等的方法有:【解答】解:已知两边及其夹角作三角形,其依据是:SAS.已知两角一边作三角形,其依据是:ASA(或).已知三边作三角形, 其依据是:故答案为:17.【答题】作三角形用到的基本作图是:(1)______;(2)______;【答案】作一个角等于已知角,作一条线段等于已知线段【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】解:作三角形用到的基本作图是:(1). 作一个角等于已知角(2). 作一条线段等于已知线段故答案为:(1). 作一个角等于已知角(2). 作一条线段等于已知线段.18.【答题】下列作图中:①用量角器画出;②作,使;③连接;④用直尺和三角板作的平行线,属于尺规作图的是______.(填序号)【答案】②③【分析】尺规作图的定义:只能用没有刻度的直尺和圆规作图【解答】属于尺规作图的是②、③.故答案为②③.19.【答题】已知,分别以射线、为始边,在的外部作,,则与的位置关系是______.【答案】互相垂直或重合【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】①∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠COD=90°,此时OC⊥OD;②∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠BOC=45°,此时OC与OD 重合.故答案为互相垂直或重合.方法总结:本题关键在于考虑到两个可能性.20.【答题】利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“______”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“______”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“______”.【答案】SAS,ASA,SSS【分析】根据三角形全等的判定定理可得答案.【解答】根据SAS—两边及其夹角分别相等的两个三角形全等;ASA—两角及其夹边分别相等的两个三角形全等;SSS—三边分别相等的两个三角形全等.故答案:(1)SAS、 (2)ASA 、(3)SSS.。

七年级鲁教版数学试卷

七年级鲁教版数学试卷

一、选择题(每题3分,共30分)1.下列各数中,是整数的是()A. √4B. -2.5C. 3.14D. 2/32.下列各数中,是负数的是()A. 0B. -2C. 3D. 43.下列各数中,是正数的是()A. -1B. 0C. -2D. 34.下列各数中,是奇数的是()A. 2B. 3C. 4D. 55.下列各数中,是偶数的是()A. 1B. 3C. 4D. 66.下列各数中,是质数的是()A. 2B. 3C. 4D. 57.下列各数中,是合数的是()A. 2B. 3C. 4D. 58.下列各数中,是正有理数的是()A. -1B. 0C. 1D. 29.下列各数中,是无理数的是()A. √4B. √9C. √16D. √2510.下列各数中,是同类二次根式的是()A. √4和√9B. √4和√16C. √9和√16D. √16和√25二、填空题(每题3分,共30分)11.5的倒数是__________。

12.(-3)的平方是__________。

13.|-3|的值是__________。

14.(-2)×(-3)的值是__________。

15.√4+√9的值是__________。

16.2/3-1/4的值是__________。

17.(-5)÷(-2)的值是__________。

18.(-2)×(-3)×(-4)的值是__________。

19.(-2)的平方根是__________。

20.√16-√9的值是__________。

三、解答题(每题10分,共40分)21.已知a=-2,b=3,求下列各式的值:(1)a+b;(2)a-b;(3)a×b;(4)a÷b。

22.已知a=5,b=-3,求下列各式的值:(1)|a|+|b|;(2)a-b;(3)a×b;(4)a÷b。

23.已知a=√4,b=√9,求下列各式的值:(1)a+b;(2)a-b;(3)a×b;(4)a÷b。

数学七上鲁教版习题答案

数学七上鲁教版习题答案

数学七上鲁教版习题答案数学是一门让人又爱又恨的学科,对于很多学生来说,解题是一件头疼的事情。

而对于七年级的学生来说,数学的难度也有所增加。

鲁教版七年级数学教材是一本较为常用的教材,下面将为大家提供一些习题的答案,希望能够帮助到大家。

第一章:整数1. 用整数表示以下海拔高度:a) 北京市的海拔高度是43米,用整数表示为+43。

b) 雅鲁藏布江的海拔高度是-638米,用整数表示为-638。

2. 求和:a) (-4) + 6 + (-8) + 2 = -4 + 6 - 8 + 2 = -4。

b) 5 + (-7) + 3 + (-9) = 5 - 7 + 3 - 9 = -8。

3. 求差:a) 7 - (-3) = 7 + 3 = 10。

b) (-5) - 9 = -5 + (-9) = -14。

4. 乘积和商:a) (-2) × 3 = -6。

b) (-8) ÷ (-4) = 2。

第二章:代数式1. 计算代数式的值:a) 当x = 3时,2x - 5 = 2 × 3 - 5 = 6 - 5 = 1。

b) 当y = -2时,3y + 4 = 3 × (-2) + 4 = -6 + 4 = -2。

2. 合并同类项:a) 2x + 3x - 5x = (2 + 3 - 5)x = 0x = 0。

b) 4y - 2y + 6y = (4 - 2 + 6)y = 8y。

3. 分配律:a) 3(x + 2) = 3x + 3 × 2 = 3x + 6。

b) 2(3y - 5) = 2 × 3y - 2 × 5 = 6y - 10。

第三章:图形的认识1. 判断正方形和长方形:a) 一个有四个边长相等的四边形是正方形。

b) 一个有四个角都是直角的四边形是长方形。

2. 计算图形的周长:a) 一个正方形的边长是4cm,周长是4 × 4 = 16cm。

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。

2022年鲁教版五四制七年级数学上册期末测试题及答案

2022年鲁教版五四制七年级数学上册期末测试题及答案

一、选择题(每小题4分,共48分)1.下列图案中,不是轴对称图形的是( A )2.√52的算术平方根是( C )A.±√5B.±5C.√5D.-√523.已知三角形的三边长分别为3,x,13,若x为正整数,则这样的三角形有( C )A.2个B.3个C.5个D.13个4.(2021贵港)在平面直角坐标系中,若点P(a-3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是( C )A.1B.2C.3D.45.(2021河口期中)下列说法正确的是( D )A.角是轴对称图形,对称轴是角的平分线B.平方根是它本身的数是0和1C.两边及其一角对应相等的两个三角形全等D.实数和数轴上的点是一一对应的6.如图所示,点C,D在线段AB上,AC=DB,AE∥BF.添加以下哪一个条件仍不能判定△AED≌△BFC( A )A.ED=CFB.AE=BFC.∠E=∠FD.ED∥CF第6题图7.已知一次函数y=kx-k的图象过点(-1,4),则下列结论正确的是( C )A.y随x的增大而增大B.k=2C.该函数图象过点(1,0)D.与坐标轴围成的三角形面积为28.如图所示,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是( B )A.30B.15C.10D.5第8题图9.如图所示,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(丙)的坐标是( D )A.(2,2)B.(0,1)C.(2,-1)D.(2,1)第9题图10.如图所示,某超市为了吸引顾客,在超市门口离地面4.5 m的墙上,装有一个由传感器控制的门铃A,当人移至该门铃5 m及5 m以内时,门铃就会自动发出语音“欢迎光临”.若一个身高1.5 m的学生走到D处,门铃恰好自动响起,则BD的长为( B )A.3 mB.4 mC.5 mD.7 m第10题图11.(2021黔东南)已知直线y=-x+1与x轴、y轴分别交于A,B两点,点P是第一象限内的点,若△PAB为等腰直角三角形,则点P的坐标为( C )A.(1,1)B.(1,1)或(1,2)C.(1,1),(1,2)或(2,1)D.(0,0),(1,1),(1,2)或(2,1)12.在一次全民健身越野赛中,甲、乙两选手的路程y(km)随时间t(h)变化的图象(全程)如图所示.下列四种说法:①起跑后1 h内,甲在乙的前面;②第1 h两人都跑了10 km;③甲比乙先到达终点;④两人都跑了20 km.其中正确的有( C )A.①②③④B.①②③C.①②④D.②③④第12题图二、填空题(每小题4分,共24分)13.如图所示,AC∥BD,AB与CD相交于点O,若AO=AC,∠A=48°,则∠D= 66°.第13题图14.在无理数√17,√11,√5,-√3中,被墨迹(如图所示)覆盖住的无理数是√11.15.如图所示,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为140°.第15题图16.如图所示,在长方形地面ABCD中,长AB=20 m,宽AD=10 m,中间竖有一堵砖墙高MN=2 m.一只蚂蚱从点A爬到点C,它必须翻过中间那堵墙,则它至少要爬26 m.第16题图17.如图所示,已知△ABC的顶点坐标分别为A(0,3),B(-4,0),C(2,0),若存在点D使△BCD与△ABC全等,则点D的坐标是(-2,3),(0,-3)或(-2,-3).第17题图18.(2021武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图所示,则两车先后两次相遇的间隔时间是 1.5 h.第18题图三、解答题(共78分)19.(8分)已知2a-1的平方根是±3,3a+b-9的立方根是2,c是√57的整数部分,求a+2b+c的算术平方根.解:因为2a-1的平方根是±3,3a+b-9的立方根是2,所以2a-1=9,3a+b-9=8,解得a=5,b=2.因为49<57<64,所以7<√57<8,所以√57的整数部分是7,所以c=7,所以a+2b+c=5+4+7=16.因为16的算术平方根为4,所以a+2b+c的算术平方根是4.20.(8分)如图所示,用(-1,-1)表示点A 的位置,用(3,0)表示点B 的位置.(1)画出平面直角坐标系;(2)写出点E 的坐标;(3)求△CDE 的面积.题图解:(1)如图所示.答图(2)点E 的坐标为(3,2).(3)S △CDE =3×3-12×2×3-12×1×2-12×1×3=3.5. 21.(10分)(1)如图①所示,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B=30°,∠C=50°,求∠DAE 的度数.(2)如图②所示,已知AF 平分∠BAC ,交边BC 于点E ,过点F 作FD ⊥BC 于点D ,∠B=x °,∠C=(x+36)°.①∠CAE= ;(用含x 的式子表示)②求∠F 的度数.① ②解:(1)因为∠B=30°,∠C=50°,所以在△ABC 中,∠BAC=180°-∠B-∠C=180°-30°-50°=100°. 因为AE 是△ABC 的角平分线,即AE 平分∠BAC ,所以∠CAE=12∠BAC=12×100°=50°. 因为AD 是△ABC 的高,即AD ⊥BC ,所以在Rt △ADC 中,∠CAD=90°-∠C=90°-50°=40°,所以∠DAE=∠CAE-∠CAD=50°-40°=10°.(2)①(72-x)°②因为AF 平分∠BAC ,所以∠BAE=∠CAE=(72-x)°.因为∠AEC=∠BAE+∠B=72°,所以∠FED=∠AEC=72°.因为FD ⊥BC ,所以在Rt △EDF 中,∠F=90°-∠FED=90°-72°=18°.22.(12分)如图所示,在△ABC 中,AB=AC ,点D ,E ,F 分别在AB ,BC ,AC 上,且BE=CF ,BD=CE.(1)试说明:△DEF 是等腰三角形;(2)试说明:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.解:(1)因为AB=AC,所以∠B=∠C.在△DBE和△ECF中,BE=CF,∠B=∠C,BD=CE,所以△DBE≌△ECF,所以DE=FE,所以△DEF是等腰三角形.(2)因为△BDE≌△CEF,所以∠FEC=∠BDE,所以∠DEF=180°-∠BED-∠FEC=180°-∠DEB-∠EDB=∠B.(3)因为AB=AC,∠A=40°,所以∠DEF=∠B=70°.23.(12分)某学校准备租用甲、乙两种大客车共8辆,送师生集体外出研学.甲种客车每辆载客量45人,乙种客车每辆载客量30人,1辆甲种客车的租金是400元,1辆乙种客车的租金是280元.设租用甲种客车x辆,则租用乙种客车(8-x)辆,租车费用为y元.(1)求y与x的函数表达式.(2)若租用甲种客车不小于6辆,应如何租用才能使租车费用最低?最低费用是多少?解:(1)由题意,得y=400x+280(8-x)=120x+2 240,所以y与x的函数表达式为y=120x+2 240.(2)在函数y=120x+2 240中,k=120>0,所以y随x的增大而增大,所以当x=6时,y有最小值,最小值为120×6+2 240=2 960,所以租用甲种客车6辆,乙种客车2辆时,租车费用最低,最低费用是2 960元.24.(14分)(2021丽水)李师傅将容量为60 L的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(km)与行驶时间t(h)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10 L时,货车会自动显示加油提醒.设货车平均耗油量为0.1 L/km,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,行驶时间t在怎样的范围内货车应进站加油?解:(1)由图象,得t=0时,s=880,所以工厂离目的地的路程为880 km.(2)设s=kt+b(k≠0),将t=0,s=880和t=4,s=560分别代入表达式,得b=880,560=4k+b,解得k=-80,所以s关于t的函数表达式为s=-80t+880(0≤t≤11).(3)当油箱中剩余油量为10 L时,s=880-(60-10)÷0.1=380,所以380=-80t+880,解得t=25.4当油箱中剩余油量为0 L时,s=880-60÷0.1=280,所以280=-80t+880,解得t=152. 所以t 的取值范围是254<t<152. 25.(14分)如图所示,P 是等边三角形ABC 内的一点,连接PA ,PB ,PC ,以BP 为边作∠PBQ=60°,且BQ=BP ,连接CQ.(1)观察并猜想AP 与CQ 之间的数量关系,并说明理由;(2)若PA ∶PB ∶PC=3∶4∶5,连接PQ ,试判断△PQC 的形状,并说明 理由.解:(1)AP=CQ.理由如下:因为△ABC 是等边三角形,所以∠ABC=60°,AB=BC ,所以∠ABP+∠PBC=60°.因为∠PBQ=60°,所以∠QBC+∠PBC=60°,所以∠ABP=∠QBC.又因为BP=BQ ,所以△ABP ≌△CBQ ,所以AP=CQ.(2)△PQC 是直角三角形.理由如下:由PA ∶PB ∶PC=3∶4∶5,可设PA=3a,PB=4a,PC=5a,则CQ=AP=3a.因为PB=BQ=4a,∠PBQ=60°,所以△PBQ为等边三角形,所以PQ=4a.在△PQC中,PQ2+QC2=(4a)2+(3a)2=16a2+9a2=25a2=PC2,所以△PQC是直角三角形.。

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(22)

初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(22)

章节测试题1.【答题】如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A. 2B. 3C. 6D. 不能确定【答案】A【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)-(BC+BD+CD)=AB-BC=5-3=2.选A.2.【答题】若AD是△ABC的中线,则下列结论错误的是()A. AD平分∠BACB. BD=DCC. AD平分BCD. BC=2DC【答案】A【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.选A.3.【答题】如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE 的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】解:∵△ABC的角平分线AD、中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,正确;②AO≠OD,∴BO不是△ABD的中线,错误;③在△ADC中,AE=CE,DE是△ADC的中线,正确;④∠ADE不一定等于∠EDC,那么ED不一定是△EBC的角平分线,错误;正确的有2个选项.选B.4.【答题】三角形三条中线的交点叫做三角形的()A. 内心B. 外心C. 中心D. 重心【答案】D【分析】根据三角形的重心概念作出回答,结合选项得出结果.【解答】解:三角形的重心是三角形三条中线的交点.选D.5.【答题】如图,AD⊥BC,GC⊥BC,CF⊥AB,D,C,F是垂足,下列说法中错误的是()A. △ABC中,AD是BC边上的高B. △ABC中,GC是BC边上的高C. △GBC中,GC是BC边上的高D. △GBC中,CF是BG边上的高【答案】B【分析】本题考查了三角形的高线.【解答】A.△ABC中,AD是BC边上的高,正确,B.△ABC中,GC是BC边上的高,错误,C.△GBC中,GC是BC边上的高,正确,D.△GBC中,CF是BG边上的高,正确,选B.6.【答题】给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,这个点叫三角形的重心.正确的命题有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵三条线段组成的封闭图形叫三角形,∴选项①不正确;∵三角形相邻两边组成的角叫三角形的内角,∴选项②正确;∵三角形的角平分线是线段,∴选项③不正确;∵三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,∴选项④不正确.∵任何一个三角形都有三条高、三条中线、三条角平分线,∴选项⑤正确;∵三角形的三条角平分线交于一点,这个点叫三角形的内心,∴选项⑥不正确;综上,可得正确的命题有2个:②、⑤.选:B.7.【答题】画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.【答案】D【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点C作边AB的垂线段,即画AB边上的高CD,∴画法正确的是D.选D.8.【答题】以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A. B.C. D.【答案】B【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.选B.9.【答题】在如图中,正确画出AC边上高的是()A. B.C. D.【答案】C【分析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线即可.【解答】解:画出AC边上高就是过B作AC的垂线,选: C.10.【答题】画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.【答案】C【分析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线即可.【解答】解:过点C作AB边的垂线.选C.11.【答题】下列各图中,正确画出AC边上的高的是()A. B.C. D.【答案】D【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高的定义,只有D选项中的BE是边AC上的高.选D.12.【答题】下面四个图形中,线段BE是△ABC的高的图是()A. B.C. D.【答案】A【分析】根据三角形高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.【解答】解:根据三角形高的定义,只有A选项符合.选A.13.【答题】下列△ABC中,正确画出AC边上的高的是()A. B.C. D.【答案】D【分析】根据三角形高的定义解答即可.【解答】解:△ABC中AC边上的高是过点B垂直于AC边的线段,只有D选项正确.选D.14.【答题】下面四个图形中,线段BE是△ABC的高的图是()A. B.C. D.【答案】D【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.选D.15.【答题】画△ABC的BC边上的高,正确的是()A. B.C. D.【答案】C【分析】根据高的画法可知,画△ABC的BC边上的高,即过点A作BC边的垂线.【解答】解:画△ABC的BC边上的高,即过点A作BC边的垂线.选C.16.【答题】下列说法中错误的是()A. 三角形三条角平分线都在三角形的内部B. 三角形三条中线都在三角形的内部C. 三角形三条高都在三角形的内部D. 三角形三条高至少有一条在三角形的内部【答案】C【分析】在三角形的角平分线、中线、高三个概念中,特别注意三角形三条角平分线和中线一定都在三角形的内部,只有高不一定都在三角形的内部,直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部.【解答】解:A、三角形三条角平分线都在三角形的内部,故正确;B、三角形三条中线都在三角形的内部,故正确;C、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.D、三角形三条高至少有一条在三角形的内部,故正确.选C.17.【答题】如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定【答案】C【分析】根据三角形的高的特点对选项进行一一分析,即可得出答案.【解答】解:A、锐角三角形,三条高的交点在三角形内,故错误;B、钝角三角形,三条高不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.选C.18.【答题】不一定在三角形内部的线段是()A. 三角形的角平分线B. 三角形的中线C. 三角形的高 D. 以上皆不对【答案】C【分析】根据三角形的角平分线、中线、高的定义解答即可.【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高有两条是三角形的直角边,钝角三角形的高有两条在三角形的外部,∴,不一定在三角形内部的线段是三角形的高.选C.19.【答题】如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形【答案】A【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.【解答】解:利用三角形高的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.选:A.20.【答题】如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能【答案】C【分析】作出一个直角三角形的高进行判断,就可以得到.【解答】解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.选C.。

鲁教版七年级上数学全套试卷

鲁教版七年级上数学全套试卷

鲁教版七年级上数学全套试卷鲁教版七年级数学上册期末总复习第1单元三角形复习测试题(含答案)一.选择题(共15小题)1.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.2.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A.1cm2 B.2cm2 C.8cm2 D.16cm2(2题图)(4题图)(6题图)(7题图)3.下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)4.将一副三角板按图中的方式叠放,则∠α等于()A.75°B.60°C.45°D.30°5.在△ABC中,满足下列条件:①∠A=60°,∠C=30°;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=90°﹣∠C,能确定△ABC是直角三角形的有()A.1个B.2个C.3个D.4个6.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个8.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去(8题图)(10题图)(11题图)(12题图)9.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.10.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣1,)B.(﹣,1)C.(﹣2,1)D.(﹣1,2)11.如图,在△ABC中,∠ABC=45°,AC=5,F是高AD和BE的交点,则BF的长是()A.7 B.6 C.5 D.412.如图,过正方形ABCD的顶点B作直线l,过A、C作直线L的垂线,垂足分别为E、F,若AE=1,CF=2,则AB的长为()A.B.2 C.3 D.13.如图,直线l上有三个正方形A、B、C,若正方形A、C的面积分别为5和11,则正方形B的面积为()A.4 B.6 C.16 D.55(13题图)(14题图)(15题图)14.如图,在△ABC中,∠ACB=90°,AC=BC,点F在AB上,连接CF,AE⊥CF于E,BD垂直CF的延长线于点D.若AE=4cm,BD=2cm,则EF的长是()A.cm B.cm C.1cm D.cm15.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)DA平分∠EDF;(2)△EBD≌△FCD;(3)△AED≌△AFD;(4)AD垂直BC.()A.1个B.2个C.3个D.4个二.填空题(共7小题)16.已知三角形的两边分别是5和10,则第三边长x的取值范围是.17.已知△ABC底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC的面积减少了cm2.18.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.(18题图)(19题图)(20题图)(21题图)19.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB、AC§科§网Z§X§X§K]上,将△ABC沿着DE折叠压平,使点A与点N重合.(1)若∠B=35°,∠C=60°,则∠A的度数为;(2)若∠A=70°,则∠1+∠2的度数为.20.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.21.如图,△A BC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.22.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC ≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).(22题图)(23题图)三.解答题(共8小题)23.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=°;x=°;x=°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=°.24.如图,∠BAC=∠CDB=90°,请你从下列条件中任选一个,使得△BAC≌△CDA,并证明.①AB=CD;②AC=DB;③∠ABC=∠DCB;④∠ACB=∠DBC.25.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.26.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.27.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.28.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.29.要测量河两岸相对两点A,B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的l的垂线上取点E,使A、C、E三点在一条直线上,这时ED的长就是A,B两点间的距离.你知道为什么吗?说说你的理由.30.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB与点B,已知DA=10km,CB=15km,现在AB上建一个水泵站E,使得C,D两村到E站的距离相等.求E应建在距A多远处?鲁教版七年级数学上册期末总复习第1单元复习测试题参考答案一.选择题(共15小题)1.D;2.D;3.A;4.A;5.C;6.D;7.C;8.C;9.D;10.B;11.C; 12.D; 13.C; 14.D; 15.D;二.填空题(共7小题)16.5<x<15;17.44;18.22.5;19.85°;140°;20.180°;21.66°;22.AB=DE;三.解答题(共8小题)23.解:(1)如图①,延长BO交AC于点D,∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)如图②,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图③,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G,根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,∵∠GFC+∠FGC+∠C=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°,∴∠A+∠C+∠E=70°,∴∠B+∠D+∠F=70°,∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.故答案为:180、180、180、140.24.解:选①AB=CD.理由如下:∵∠BAC=∠CDB=90°,∴△BAC和△CDA是直角三角形,在Rt△△BAC和Rt△CDA中,,∴Rt△BAC≌Rt△CDA(HL).25.证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).26.证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.27.解:如图,△ABC为所求.28.解:(1)△ABC与△DEF全等.理由如下:在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∠ABC+∠DFE=90°,理由如下:由(1)知,Rt△ABC≌Rt△DEF,则∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.29.解:∵AB⊥l,CD⊥l,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE,即ED的长就是A,B两点间的距离.30.解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得102+x2=152+(25﹣x)2,解得:x=15.故:E点应建在距A站15千米处.鲁教版七年级数学上册期末总复习第2单元轴对称测试题(含答案)一.选择题(共13小题)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.电子钟镜子里的像如图所示,实际时间是()A.21:10 B.10:21 C.10:51 D.12:01(2题图)(4题图)(5题图)(6题图)(7题图)3.下列图形中对称轴只有两条的是()A.B.C.D.4.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分5.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=4,则FD的长为()A.2 B.4 C.D.26.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.67.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.48.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2(8题图)(9题图)(10题图)9.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.310.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm11.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或1212.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°13.已知a、b、c是三角形的三边长,且满足(a﹣b)2+|b﹣c|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.钝角三角形D.锐角三角形二.填空题(共7小题)14.室内墙壁上挂一平面镜,明敏在平面镜内看到他背后墙上的时钟如图,则这时的实际时间是.(14题图)(15题图)(16题图)(17题图)15.如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为.16.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.17.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.18.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为.(18题图)(19题图)(20题图)19.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.20.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0).(1)画出点P从第一次到第四次碰到长方形的边的全过程中,运动的路径;(2)当点P第2014次碰到长方形的边时,点P的坐标为.三.解答题(共10小题)21.已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.24.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.25.如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.26.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.27.如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的四幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.28.如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线.29.如图:A村和B村在公路l同侧,且AB=3千米,两村距离公路都是2千米.现决定在公路l上建立一个供水站P,要求使PA+PB最短.(1)用尺规作图,作出点P;(作图要求:不写作法,保留作图痕迹)(2)求出PA+PB的最小值.30.如图,将长方形纸片ABCD沿对角线BD折叠得到△BDE,DE交AB于点G.(1)求证:DG=BG;(2)若AD=4,AB=8,求△BDG的面积.鲁教版七年级数学上册期末总复习第2单元轴对称参考答案一.选择题(共13小题)1.D;2.C;3.C;4.A;5.B;6.A;7.C;8.C;9.A;10.C;11.C; 12.C; 13.B;二.填空题(共7小题)14.3:40;15.4.5cm;16.3;17.87;18.36°;19.14cm;20.(5,0);三.解答题(共10小题)21.解:AE∥BC.∵AB=AC,∴∠B=∠C,由三角形的外角性质得,∠DAC=∠B+∠C=2∠B,∵AE平分∠DAC,∴∠DAC=2∠DAE,∴∠B=∠DAE,∴AE∥BC.22.证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°﹣40°)÷2=70°∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°;(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.25.解:(1)∵DE⊥AC于点E,∠D=20°,∴∠CAD=70°,∵AD∥BC,∴∠C=∠CAD=70°,∵∠BAC=70°,∴∠B=40°,AB=AC,∴△ABC是等腰三角形;(2)∵延长线段DE恰好过点B,DE⊥AC,∴BD⊥AC,∵△ABC是等腰三角形,∴DB是∠ABC的平分线.26.解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;(2)如图所示:(3)A1(2,5),B1(1,0),C1(4,3).(26题图)(29题图)27.解:如图所示.28.证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∴∠ECD=∠EDC;(2)在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE(HL),∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.29.解:(1)作图,如右图,作出A点的对称点A′,连接BA′,找到交点P点;(2)连接AB,由题意知AB=3km,A A′=4km,在Rt△A A′B中,根据勾股定理得:A′B2=42+32,∴A′B=5km,即PA+PB=A′B=5km,答:PA+PB的最小值是5km.30.解:(1)由折叠可知∠CDB=∠GDB,∵DC∥AB,∴∠CDB=∠DBG.∴∠GDB=∠DBG.∴DG=BG.(2)设DG=BG=x,则AG=8﹣x在△ADG中,∠A=90°,∴42+(8﹣x)2=x2.解得x=5.所以△BDG的面积=×5×4=10.鲁教版七年级数学上册期末总复习第3\4单元勾股定理和实数复习测试题(含答案)一.选择题(共14小题)1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°(1题图)(3题图)(6题图)(7题图)2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,43.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=()A.25 B.31 C.32 D.404.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或255.三角形的三边长分别为6,8,10,它的最短边上的高为()A.6 B.4.5 C.2.4 D.86.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺7.如图,圆柱形纸杯高8cm,底面周长为l2cm,在纸杯内壁离杯底2Cem的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()A.2 B.6C.10 D.以上答案都不对8.在实数0、π、、、﹣中,无理数的个数有()A.1个B.2个C.3个D.4个9.的算术平方根是()A.2 B.±2 C.D.±10.的平方根是()A.±9 B.9 C.3 D.±311.下列运算中,正确的是()A.(﹣2)0=1 B.=﹣3 C.=±2 D.2﹣1=﹣212.若一个数的平方根与它的立方根完全相同,则这个数是()A.0 B.1 C.﹣1 D.±1,013.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c14.下列四个数中的负数是()A.﹣22B.C.(﹣2)2D.|﹣2|二.填空题(共8小题)15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.(15题图)(16题图)(17题图)16.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…,则OA10的长度为.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.18.一个零件的形状如图,工人师傅量得这个零件的各边尺寸(单位:dm)如下:AB=3,AD=4,BC=12,CD=13,且∠DAB=90°,求这个零件的面积.(18题图)(19题图)19.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=.20.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.21.已知a是﹣1的整数部分,则a=.22.计算:|﹣2|+(π﹣0)0×(﹣1)2015﹣+()﹣3=.三.解答题(共8小题)23.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.24.如图,已知AC=4,BC=3,BD=12,AD=13,∠ACB=90°,试求阴影部分的面积.25.如图,在四边形地块ABCD中,∠B=90°,AB=30m,BC=40m,CD=130m,AD=120m,求这块地的面积.26.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?27.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.28.求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.29.在数轴上表示与它的相反数.30.探索与应用.先填写下表,通过观察后再回答问题:a …0.0001 0.01 1 100 10000 ……0.01 x 1 y 100 …(1)表格中x=;y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=1.8,若=180,则a=;(3)拓展:已知,若,则z=.鲁教版七年级数学上册期末总复习第3\4单元勾股定理和实数复习测试题参考答案一.选择题(共14小题)1.B;2.B;3.B;4.D;5.D;6.D;7.C;8.B;9.C;10.D;11.A; 12.A; 13.D; 14.A;二.填空题(共8小题)15.76;16.32;17.24;18.36;19.6;20.-1; 21.3;22.7;三.解答题(共8小题)23.解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.(23题图)(24题图)(25题图)24.解:连接AB,∵∠ACB=90°,∴AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,∴△ABD为直角三角形,阴影部分的面积=AB×BD﹣AC×BC=30﹣6=24.答:阴影部分的面积是24.25.解:连接AC,如下图所示:∵∠B=90°,AB=30,BC=40,∴AC==50,在△ACD中,AC2+AD2=2500+14400=16900=CD2,∴△ACD是直角三角形,∴S四边形ABC D=S△ABC+S△ACD=AB•BC+AC•AD=×30×40+×50×120=600+3000=3600(m2).26.解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC=m=2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5m﹣0.7m=0.8m答:梯足向外移动了0.8m.27.解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.28.解:(1)系数化为1得:x3=﹣27,∴x=﹣3;(2)移项得:∴,.29.解:如图所示:30.解:(1)x=0.1,y=10,故答案为:0.1,10;(2)①=31.62,a=32400,故答案为:31.62,32400;(4)z=0.012,故答案为:0.012.鲁教版七年级数学上册期末总复习第5\6单元位置与坐标和一次函数复习测试题(含答案)一.选择题(共12小题)1.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)(1题图)(2题图)(12题图)2.如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1 C.2 D.3.在下列点中,与点A(﹣2,﹣4)的连线平行于y轴的是()A.(2,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)4.点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)5.在平面直角坐标系中,已知点A(m,3)与点B(4,n)关于y轴对称,那么(m+n)2015的值为()A.﹣1 B.1 C.﹣72015D.720156.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.8.下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣19.已知k>0,b<0,则一次函数y=kx﹣b的大致图象为()A.B. C.D.10.一次函数y=kx+b的图象经过(2,0)(0,﹣2),则函数表达式为()A.y=x﹣2 B.y=﹣x+2 C.y=2x﹣1 D.y=2x+111.某体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元,现两家商店搞捉销活动:买一副球拍赠送一盒乒乓球,某班级在此商店一次性购买球拍4副,乒乓球x盒(x不少于4盒).则应付款y(元)与乒乓球盒数x(盒)的函数关系式是()A.y=5x(x>4) B.y=5x+80(x≥4)C.y=5x+60(x≥4)D.y=5x+100(x≥4)12.(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()【来源:21·世纪·教育·网】A.1 B.2 C.3 D.4二.填空题(共7小题)13.电影院里5排2号可以用(5,2)表示,则(7,4)表示.14.如图,A,B两点的坐标分别是A(1,),B(,0),则△ABO的面积是.15.若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第象限.16.若点(a,1)与(﹣2,b)关于原点对称,则a b=.17.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是,常量是.18.要使y=(m﹣2)x|m﹣1|+3是关于x的一次函数,则m=.19.一次函数y=kx+b(kb<0)图象一定经过第象限.三.解答题(共6小题)20.在平面直角坐标系中,(1)确定点A、B的坐标;(2)描出点M(﹣2,1),点N(2,﹣2);(3)求以C、D、E为顶点的三角形的面积.21.已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,求(a+b)2014的值.22.一次函数y=﹣2x+4的图象如图,图象与x轴交于点A,与y轴交于点B.(1)求A、B两点坐标.(2)求图象与坐标轴所围成的三角形的面积是多少.23.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?24.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)判定点C(4,﹣2)是否在该函数图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.25.如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.(1)求A、B、P三点的坐标;(2)求四边形PQOB的面积.鲁教版七年级数学上册期末总复习第5\6单元位置与坐标和一次函数复习测试题参考答案一.选择题(共12小题)1.C;2.C;3.C;4.C;5.A;6.A;7.B;8.C;9.A;10.A;11.C; 12.C;二.填空题(共7小题)13.7排4号;14.;15.四;16.; 17.C、r;2π;18.0;19.一、四;三.解答题(共6小题)20.解:(1)A(﹣4,4),B(﹣3,0);(2)如图,(3)S△CDE=×3×3=.21.解:∵点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,∴(a+b)2014=1.22.解:(1)对于y=﹣2x+4,令y=0,得﹣2x+4,∴x=2;∴一次函数y=﹣2x+4的图象与x轴的交点A的坐标为(2,0);令x=0,得y=4.∴一次函数y=﹣2x+4的图象与y轴的交点B的坐标为(0,4);(2)S△AOB=•OA•OB=×2×4=4.∴图象与坐标轴所围成的三角形的面积是4.23.解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)当月通话时间多于300分钟时,A套餐更省钱.24.解:(1)在y=2x中,令x=1,解得y=2,则B的坐标是(1,2),设一次函数的解析式是y=kx+b,则,解得:.则一次函数的解析式是y=﹣x+3;(2)当a=4时,y=﹣1,则C(4,﹣2)不在函数的图象上;(3)一次函数的解析式y=﹣x+3中令y=0,解得:x=3,则D的坐标是(3,0).则S△BOD=OD×2=×3×2=3.25.解:(1)∵一次函数y=x+1的图象与x轴交于点A,∴A(﹣1,0),一次函数y=﹣2x+2的图象与x轴交于点B,∴B(1,0),由,解得,∴P(,).(2)设直线PA与y轴交于点Q,则Q(0,1),直线PB与y轴交于点M,则M(0,2),∴四边形PQOB的面积=S△BOM﹣S△QPM=×1×2﹣×1×=.鲁教版七年级数学上学期期末模拟试卷(120分钟120分)一.选择题(共14小题)1.如图所示的图形中:其中是轴对称图形的共有()A.1个B.2个C.3个D.4个2.直线y=﹣5x+10一定通过下列点中的()A.(0,2)B.(2,0)C.(1,﹣5)D.(﹣1,5)3.一次函数y=7x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.已知三角形的两边长分别为4cm和7cm,则此三角形的第三边长可能是()A.3cm B.11cm C.7cm D.15cm5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°(5) (6) (8)6.在一次“寻宝”游戏中,“寻宝”人找到了如图所示标志点A(3,3),B(5,1),则“宝藏”所在地点C的坐标为()A.(6,4)B.(3,3)C.(6,5)D.(3,4)7.若点P(a,b)在第三象限,则点Q(﹣a,b)一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,已知CF垂直平分AB于点E,∠ACD=70°,则∠A的度数是()A.25°B.35°C.40°D.45°9.若点A(x1,y1)和B(x2,y2)是直线y=﹣3x+4上的两点,且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定10.下列说法中,正确的是()A.一个数的立方根有两个,它们互为相反数B.负数没有立方根C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根的符号与被开方数的符号相同11.下列结论:①有理数与数轴上的点是一一对应的;②无理数与数轴上的点是一一对应的;③实数与数轴上的点是一一对应的;④在平面直角坐标系中,平面上的点与有序实数对之间是一一对应的.其中正确的结论共有()A.1个B.2个C.3个D.4个12.△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠C B.a:b:c=5:12:13C.b2﹣a2=c2 D.∠A:∠B:∠C=3:4:513.一次函数y=﹣2x+4的图象与两条坐标轴所围成的三角形面积是()A.2 B.4C.6D.814.有一块直角三角形纸片,两直角边AC=12cm,BC=16cm如图,现将直角边AC沿AD 折叠,使它落在斜边AB上,且与AE重合,则DE等于()A.6cm B.8cm C.10cm D.14cm(14) (18) (21)二.填空题(共8小题)15.169的平方根是_________.16.2﹣的绝对值是_________.17.一个数的立方根的立方根等于它本身,则这个数是_________.18.如图,在△ABC中,∠B=90°,∠BAC=60°,AB=5,D是BC边延长线上的一点,并且∠D=15°,则CD的长为_________.19.若点P(3,m)与Q(n,﹣6)关于x轴对称,则m+n=_________.20.直线y=kx+b与y轴交于点(0,5)且与直线y=﹣4x平行,则该直线的函数关系式为_________.21.如图,△ABC中,∠C=90°,BD平分∠ABC,DC=4,AB=10,则△DAB的面积为_________.22.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表,则a n=_________(用含n的代数式表示).所剪次数 1 2 3 4 …n4 7 10 13 …a n正三角形个数三.解答题(共6小题)23.(1)计算:;(2)若(x﹣1)2﹣49=0,求x的值.24.作图题如图,小河边有两个村庄A、B,要在河边建一自来水厂P,向A村B村供水.(1)若要使厂部到A、B两村的距离相等,则厂部P应选在哪里?在图①中画出;(2)若要使厂部到A、B两村的输水管长度之和最小,则厂部P应选在什么地方?在图②中画出.(保留作图痕迹,不写作法,但要写结论)25.如图,l1反映了某公司产品的销售收入y1(元)与销售量x(吨)的关系,l2反映了该公司产品的销售成本y2(元)与销售量x(吨)之间的关系,根据图象填空:(1)当销售量等于_________吨时,利润为零(收入等于成本);当销售量_________吨时,该公司盈利(收入大于成本);当销售量_________吨时,该公司亏损(收入小于成本);(2)l1对应的函数表达式是_________;(3)求利润w(元)(销售收入﹣销售成本)与销售量x(吨)之间的函数关系式.26.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?27.某出版社出版适合中学生阅读的科普读物,该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下表:印数x(册)5000 8000 11000 14000 …成本y(元)28500 36000 43500 51000 …(1)通过对上表中数据的探究,你发现这种读物的投入成本y(元)是印数x(册)的正比例函数?还是一次函数?并求出这个函数的表达式(不要求写出x的取值范围);(2)如果出版社投入成本60000元,那么能印该读物多少册?28.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.参考答案一.选择题(共14小题)1.C.2.B.3.B.4.C.5.C.6.A.7.D.8.B.9.A.10.D.11.B.12.D.13.B.14.A.二.填空题(共8小题)15.±13.16.17.﹣1、0、1.18.10.19.9.20.y=﹣4x+5.21.2022.3n+1.三.解答题(共6小题)23.解:(1)原式=﹣3+3﹣(﹣1)=1;(2)∵(x﹣1)2﹣49=0,∴(x﹣1)2=49,∴x﹣1=±7,∴x=﹣6或x=8.24.解:(1)如图①所示:点C即为所求;(2)如图②所示:点C即为所求..25.解:(1)如图所示:当销售量等于4吨时,利润为零(收入等于成本);当销售量大于4吨时,该公司盈利(收入大于成本);当销售量小于4吨时,该公司亏损(收入小于成本);故答案为:4、大于4、小于4;(2)将(4,4000)代入y1=ax,∴4000=4a,解得;a=1000,∴l1对应的函数表达式是:y1=1000x;故答案为:y1=1000x;(3)设l2对应的函数关系式为y2=kx+b,∵l2过点(0,2000),∴b=2000,又∵l2过点(4,4000),∴4000=4k+2000,解得:k=500,所以y2=500x+2000,又∵w=y1﹣y2=1000x﹣(500x+2000)∴w=500x﹣2000.26.解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站多少20千米的地方.27.解:(1)投入成本y(元)是印数x(册)的一次函数的解析式为y=kx+b,由题意,得,解得:.故所求的函数关系式为;(2)由题意,得,解得x=17600答:能印该读物17600册.28.解:(1)成立.理由:∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,∴△ABE≌△ACE(SAS)∴BE=CE.(2)成立.理由:∵∠BAC=45°,BF⊥AF.∴△ABF为等腰直角三角形∴AF=BF 由(1)知AD⊥BC,∴∠EAF=∠CBF在△AEF和△BCF中,.∴△AEF≌△BCF(AAS),∴EF=CF鲁教版七年级数学上学期期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.若2m -4与3m -1是同一个数的两个平方根,则m 为( ) A. -3 B. 1 C. -3或1 D. -12. 小丰的妈妈买了一台29英寸(约74 cm )的电视机,下列对29英寸的说法中正确的 是( )A.29英寸指的是屏幕的长度B.29英寸指的是屏幕的宽度C.29英寸指的是屏幕的周长D.29英寸指的是屏幕对角线的长度 3. 如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )4. 有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.B. C. D. 5. 下列说法错误的是( ) A.若|a |=-a ,则a 是非正实数 B.若(√a)2=a ,则a ≥0C. a 、b 是实数,若a <b ,则√a 3<√b 3D.“4的平方根是±2”,用数学式子表示√4=±2 6. 方程在自然数范围内的解( )A.有无数对B.只有1对C.只有3对D.以上都不对 7. 点M 在x 轴的上侧,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( ) A.(5,3) B.(-5,3)或(5,3) C.(3,5) D.(-3,5)或(3,5)8. 下列函数:①y =πx ;②y =2x −1;③y =1x ;④y =2−3x ;⑤y =x 2−1中,是一次函数的有( )A.4个B.3个C.2个D.1个9. 矩形ABCD 的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内, B 、D 两1316121472=+yx A B C D 第3题图 上折右折 沿虚线剪下 展开点对应的坐标分别是(2, 0)、(0, 0),且 A 、C 两点关于x 轴对称.则C 点对应的坐标是( ) A.(1, -2)B.(1, -1)C.(1, 1)D.(2, -2)10. 若方程组{4x +3y =5,kx −(k −1)y =8的解中的x 的值比y 的值的相反数大1,则k 为( )A.3B.-3C.2D.-2 11.若甲、乙两弹簧的长度y cm 与所挂物体质量x kg 之间的函数解析式分别为y =k 1x +b 1和y =k 2x +b 2,如图所示,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( ) A.y 1>y 2 B.y 1=y 2 C.y 1<y 2D.不能确定12.设A 、B 两镇相距x 千米,甲从A 镇、乙从B 镇同时出发,相向而行,甲、乙行驶的速度分别为u 千米/时、v 千米/时,①出发后30分钟相遇;②甲到B 镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A 镇还有4千米.求x 、u 、v .根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是() A.x =u +4 B.x =v +4 C.2x −u =4 D.x −v =4 二、填空题(每小题3分,共24分)13. 若5+√7的小数部分是a ,5-√7的小数部分是b ,则ab +5b =.14.袋子里装有红、黄、蓝三种小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5个,且分别标有数字1,2,3,4,5.现从中摸出一球: (1)摸出的球是蓝色球的概率为多少?答: ; (2)摸出的球是红色1号球的概率为多少?答: ; (3)摸出的球是5号球的概率为多少?答: . 15.对实数a 、b ,定义运算☆如下:a ☆b ={a b (a >b ,a ≠0),a −b(a ≤b ,a ≠0),例如2☆3=2−3=18. 计算[2☆(-4)]×[(-4)☆(-2)]=.16. 线段AB 的端点坐标为A(a ,b),B(c ,d),其坐标的横坐标不变,纵坐标分别加上m(m >0),得到相应的点的坐标为A′_______,B′_______ .则线段A′B′与AB 相比的变化为:其长度_______,位置_______ .17. 若一次函数y =(2m −1)x +3−2m 的图象经过第一、二、四象限,则m 的取值范围是.18. 根据指令[s ,A](s ≥0,0°<A <180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s ,现机器人在直角坐标系的坐标原点,且面对x 轴正方向,若下指令[4,90°],则机器人应移动到点 .19.如图所示,直线y =kx +b (k >0)与x 轴的交点为(-2,0),则关于x 的不等式k x +b <0的解集是.20. 已知{x =m ,y =n 和{x =n ,y =m是方程2x -3y =1的解,则代数式2m−63n−5的值为_____.第11题图第19题图。

鲁教版七年级数学试卷

鲁教版七年级数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 0.3B. √2C. -5D. 3/42. 下列各式中,正确的有()A. a + b = b + aB. (a - b) × c = ac - bcC. a^2 × b^2 = (ab)^2D. a^2 + b^2 = (a + b)^23. 下列各式中,正确的有()A. a × b = abB. a ÷ b = abC. a + b = abD. a - b = ab4. 下列各式中,正确的有()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^25. 下列各式中,正确的有()A. a^3 × b^3 = (ab)^3B. a^3 ÷ b^3 = (ab)^3C. a^3 × b^3 = a^3b^3D. a^3 ÷ b^3 = a^3b^36. 下列各式中,正确的有()A. a^2 × b^2 = (ab)^2B. a^2 ÷ b^2 = (ab)^2C. a^2 × b^2 = a^2b^2D. a^2 ÷ b^2 = a^2b^27. 下列各式中,正确的有()A. a^3 × b^3 = (ab)^3B. a^3 ÷ b^3 = (ab)^3C. a^3 × b^3 = a^3b^3D. a^3 ÷ b^3 = a^3b^38. 下列各式中,正确的有()A. a^2 × b^2 = (ab)^2B. a^2 ÷ b^2 = (ab)^2C. a^2 × b^2 = a^2b^2D. a^2 ÷ b^2 = a^2b^29. 下列各式中,正确的有()A. a^3 × b^3 = (ab)^3B. a^3 ÷ b^3 = (ab)^3C. a^3 × b^3 = a^3b^3D. a^3 ÷ b^3 = a^3b^310. 下列各式中,正确的有()A. a^2 × b^2 = (ab)^2B. a^2 ÷ b^2 = (ab)^2C. a^2 × b^2 = a^2b^2D. a^2 ÷ b^2 = a^2b^2二、填空题(每题4分,共40分)11. 3/4 + 2/5 = __________12. (a - b)^2 = __________13. (a + b)^2 = __________14. a^2 × b^2 = __________15. a^3 × b^3 = __________16. a^2 ÷ b^2 = __________17. a^3 ÷ b^3 = __________18. (a + b)^2 - 2ab = __________19. (a - b)^2 + 2ab = __________20. a^2 - b^2 = __________三、解答题(每题10分,共40分)21. 简化下列各式:(1)3a^2 - 2ab + b^2(2)a^2 - 2ab + b^2(3)a^2 + 2ab + b^222. 求下列各式的值:(1)当a = 2,b = 3时,求2a^2 + 3b^2 - 4ab的值。

最新鲁教版五四制七年级数学上册《利用三角形全等测距离》专题练习及答案.doc

最新鲁教版五四制七年级数学上册《利用三角形全等测距离》专题练习及答案.doc

1.5利用三角形全等测距离1、如图,O为AC,BD的中点,则图中全等三角形共有()对.A.2B.3C.4D.52、如图,AB=AD,AC=AE,∠BAD=∠CAE,那么△ACD≌△AEB的依据是()A.ASAB.AASC.SASD.SSS3、如图,要测量河岸相对两点A,B的距离,可以从AB的垂线BF上取两点C,D.使BC=CD,过D作DE⊥BF,且A,C,E三点在一直线上,若测得DE=15米,即可知道AB也为15米,请你说明理由.4、要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则次工件的外径必是CD之长了,你能说明其中的道理吗?5、如图,为修公路,需测量出被大石头阻挡的∠BAC的大小,为此,小张师傅便在直线AC上取点D使AC=CD,在BC的延长线上取点E,使BC=CE,连DE,则只要测出∠D的度数,则知∠A的度数也与∠D的度数相同了,请说明理由.6、有一座锥形小山,如图,要测量锥形两端A,B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A,B的距离,你能说说其中的道理吗?7、如图所示,要测量湖中小岛E距岸边A和D的距离,作法如下:(1)任作线段AB,取中点0;(2)连接DO并延长使DO=CO;(3)连接BC;(4)用仪器测量E,0在一条线上,并交CB于点F,要测量AE,DE,只须测量BF,CF即可,为什么?8、如图,沿AC方向开山修路,为了加快施工进度,要在山的另一边同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD,延长,使DF=BD,过F点作AB的平行线MF,连接MD,并延长,在延长线上取一点E,使DE=DM,在E点开工就能使A,C,E成一条直线,你知道其中道理吗?答案:1、C 2、C 3、由题意可知,∠ABC=∠EDC=90º,BC=CD,∠BCA=∠DCE,从而△ABC≌△EDC,故AB=DE=15米4、显然由OA=OD,OB=OC,∠AOB=∠DOC,可知△AOB≌△COD,从而AB=CD. 5、易知△ABC≌△DEC,故∠A=∠D6、由条件可知△ABC≌△DCE,故AB=DE7、由条件可知,△AOD≌△BOC,∴BC=AD,又∠A=∠B,∠AOE=∠BOF,BO=AO,故三角形△AOE≌△BOF,∴BF=AE,从而DE=CF,因此只要测出BF,CF即可知AE,DE的长度了.8、因为BD=DF,DE=DM,∠BDE=∠MDF,所以△BDE≌△FDM,故∠BEM=∠M,因此BE∥MF,又因为AB∥NF,根据过直线外一点有且只有一条直线与已知直线平行,故A,C,E在一条直线上.利用三角形全等测距离(总分100分时间40分钟)解答题:(每题25分)1.如图,A、B两个建筑分别位于两岸,要测得它们之间的距离,可以从B 出发沿河岸面一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一条直线上, 则DE 的长就是A、之间的距离,请你说明道理,你还能想出其他方法吗?BAE FC2.如图,有一湖的湖岸在A、B之间呈一段圆弧状,AB间的距离不能直接测得,你能用已学过的知识或方法来设计测量方案,求出A、B间的距离吗?3.请利用我军战士测隔河相望的敌人碉堡的方法,试测你校操场中旗杆底座到足球门的距离(不能直接测量),并验证战士的做法,你是否还有其他的方法? 并与同学们进行交流.4.请利用课本中叔叔教小明测池塘两端距离的方法,试测花坛对角线的长度(不能直接测量),你是否还有其他的方法?并与同学们进行交流.。

2023年鲁教版(五四制)数学七年级上册期末考试测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学七年级上册期末考试测试卷及部分答案(共三套)

2023年鲁教版(五四制)数学七年级上册期末考试测试卷及答案(一)一、选择题(共10个小题,每小题3分,共30分)1.已知实数x ,y 满足|x-4|+=0, 则以x ,y 的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16 D .以上答案均不对 2.下列说法正确的是( )A .带根号的数都是无理数B .无限小数都是无理数C .两个无理数之和一定是无理数D .两个无理数之积不一定是无理数(6题图)3.设点A (a,b )是正比例函数y= - x 图像上的任意一点,则下列等式一定成立的是( )A. 2a+3b=0B.2a -3b=0C.3a -2b=0D.3a+2b=04.下列各组数分别是三角形的三边长,不是直角三角形的一组是( )A .4,5,6B .3,4,5C .5,12,13D .6,8,105.下列说法不正确的是( )①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等。

④三角形三条角平分线的交点到这个三角形三边的距离相等。

其中正确的结论有A .1个B .2个C .3个D .4个6.如图是一张直角三角形的纸片,两直角边AC=6cm 、BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm7.△ABC 的三边分别为a 、b 、c ,其对角分别为∠A 、∠B 、∠C .下列条件不能判定△ABC 是直角三角形的是( )A .∠B=∠A ﹣∠CB . a :b :c=5:12:13C . -=D .∠A :∠B :∠C=3:4:58.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数( )A .6B .7C .8D .99.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )8 y a 2c 2b 223327 A .乙前4秒行驶的路程为48米 B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度10. 如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(-3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A.(2,-3)B.(2,3)C(3,2) d(3,-2)二.填空题(共8小题,每小题3分,共24分。

【鲁教版】七年级数学上期末试卷及答案(1)

【鲁教版】七年级数学上期末试卷及答案(1)

一、选择题1.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2α B .45α︒- C .452α︒-D .90α︒-2.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种3.两个锐角的和是( )A .锐角B .直角C .钝角D .锐角或直角或钝角4.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .5.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .696.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+=C .360020160240x x+-=D .360020160240x x--= 7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( ) A .不赔不赚 B .赚9元 C .赔18元 D .赚18元 8.若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6-9.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元10.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6n B .8+6n C .4+4n D .8n 11.用计算器求243,第三个键应按( )A .4B .3C .y xD .=12.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12C .56D .56二、填空题13.分别指出图中截面的形状;14.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .15.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________.16.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.17.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.18.多项式234324x x x -+-按x 的降幂排列为______.19.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m . 20.把35.89543精确到百分位所得到的近似数为________.三、解答题21.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)22.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.23.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底? (2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多? 24.解方程:32122234x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦. 25.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接. 26.计算:(1)()223537a ab a ab -+-++; (2)()222312424a a a a ⎛⎫+---⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先利用角的和差关系求出∠AOB 的度数,根据角平分线的定义求出∠BOD 的度数,再利用角的和差关系求出∠COD 的度数. 【详解】解:∵∠AOC=90°,∠COB=α, ∴∠AOB=∠AOC+∠COB=90°+α. ∵OD 平分∠AOB , ∴∠BOD=12(90°+α)=45°+12α, ∴∠COD=∠BOD-∠COB=45°-12α, 故选:C. 【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键.2.C解析:C 【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可. 【详解】观察图形,得:A 到B 有5条,B 到C 有4条,所以A 到B 到C 有5×4=20条,A 到C 一条.所以从A 地到C 地可供选择的方案共21条. 故选C . 【点睛】解决本题的关键是能够有顺序地数出所有情况.3.D解析:D 【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.4.A解析:A【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选A.【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.5.C解析:C【分析】根据图形可知:三个圆纸片覆盖的总面积+A与B的重叠面积+B与C的重叠面积+C与A 的重叠面积−A、B、C共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A、B、C共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x,则73+6+8+5−x=30×3,得x=2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.6.A解析:A 【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可. 【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A . 【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.7.C解析:C 【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得. 【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得 135-x=25%x y-135=25%y解方程组,得x=108元,y=180元 135+135-108-180=-18 亏本18元 故选:C 【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.8.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.9.D解析:D【分析】根据题中叙述列出代数式即可判断. 【详解】A 、a 是一个数的8倍,则这个数是8a,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意; 故选:D . 【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.10.A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.11.C解析:C 【解析】用计算器求243,按键顺序为2、4、y x 、3、=. 故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.12.A解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.二、填空题13.长方形;五边形;圆【解析】【分析】根据长方体各面的特点结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答【详解】①截面与长面平行可以得解析:长方形;五边形;圆. 【解析】 【分析】根据长方体各面的特点,结合截面与一面平行可解第一图;根据五棱柱特点结合截面平行于底面可得第二图答案;由截面平行于圆锥的底面可得第三图解答. 【详解】①截面与长面平行,可以得到长方形形截面; ②截面与棱柱的底面平行,可得到五边形截面; ③截面与圆锥底平行,可以得到圆形截面. 故答案为:长方形、五边形、圆. 【点睛】此题考查截一个几何体,解题的关键是要掌握截面的形状既与被截的几何体有关,还与截面的角度和方向有关.14.【分析】棱长为1cm 的正方体拼的表面积是6要使拼接成的长方体表面积最大则重合的面要最少当四个正方体排成一列时面积最大重合的有6个面【详解】解:当四个正方体排成一列时面积最大重合的有6个面根据以上分析 解析:18【分析】棱长为1cm 的正方体拼的表面积是6,要使拼接成的长方体表面积最大则重合的面要最少,当四个正方体排成一列时,面积最大.重合的有6个面. 【详解】解:当四个正方体排成一列时,面积最大.重合的有6个面. 根据以上分析表面积最大的为:4×(4×1)+2×(1×1)=18. 故答案为18. 【点睛】本题的考查了长方体表面积的计算,关键是要分析出什么情况下表面积最大.15.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键解析:13【分析】根据共生数对的定义进行分析,列式,求解即可. 【详解】 由已知可得221x x -=--解得x=13故答案为:13【点睛】考核知识点:解一元一次方程.理解题意是关键.16.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3. 【分析】利用一元一次方程的定义判断即可. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣= 解得:x 2=,(2)当m=0时,x 20--=, 解得:x 2=- (3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为x=2或x=-2或x=-3. 【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.17.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31 【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可. 【详解】折叠1次的折痕为1,1121=-; 折叠2次的折痕为3,2321=-; 折叠3次的折痕为7,3721=-; ……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-= 故答案为:31. 【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键.18.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或 解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列. 【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4, 按x 降幂排列为432432x x x -++-. 故答案为:432432x x x -++-. 【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.19.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m 故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.20.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.三、解答题21.见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.22.45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.23.(1)80个(2)15张(3)6张;9张【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底.根据题意,得9001200(20)x x =-.解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底.(2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-.解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.24.8x =-【分析】先去括号,再按照移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:去括号,得1324x x ---=, 移项、合并同类项,得364x -=, 系数化为1,得8x =-.【点睛】 本题考查了一元一次方程的解法,属于常考题型,熟练掌握解一元一次方程的方法是解题的关键.25.数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.26.(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

鲁教版七年级数学上册期末考试试卷-附带答案

鲁教版七年级数学上册期末考试试卷-附带答案

鲁教版七年级数学上册期末考试试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.下列说法中错误的是( ) A .三角形的三个内角中至少有两个角是锐角B .有一个角是锐角的三角形是锐角三角形C .一个三角形的三个内角中至少有一个内角不大于60︒D .如果三角形的两个内角之和小于90︒,那么这个三角形是钝角三角形2.下列货币符号图案是轴对称图形的有( )个.A .0B .1C .2D .33.已知一次函数6y kx =+的图象经过()3,3A -,则k 的值为( )A .3-B .2-C .1D .24.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是(2,1)-,则点Q 不在第( )象限. A .一 B .二 C .三 D .四5.下列语句正确的是( )A .3.78788788878888是无理数B .无理数分正无理数、零、负无理数C .无限小数不能化成分数D .无限不循环小数是无理数6.小明同学把一张长方形纸折了两次,如图,使点A B 、都落在DG 上,折痕分别是DE DF 、,则EDF ∠的度数为( )A .60︒B .75︒C .90︒D .120︒7.如图,菱形ABCD 中,点M 是AD 的中点,点P 由点A 出发,沿A→B→C→D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是( )A.B.C.D.8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米分;①乙走完全程用了32分钟;①乙用16分钟追上甲;①乙到达终点时,甲离终点还有320米.其中正确的结论有()A.1个B.2个C.3个D.4个9.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A .6B .8C .10D .910.点P(3,4)关于y 轴对称的点的坐标是( )A .(3,﹣4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣4,3)二、填空题(共8小题,满分32分)11.如果正比例函数y kx =的图象经过点()8,2-,那么k 的值为 .12.已知点(a +1,2a +5)在y 轴上,则该点坐标为 .13.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为 .14.平面直角坐标系中,点()3,2A -,点B 在y 轴上,则当线段AB 取最小值时,点B 的坐标为 . 15.一次函数()0y kx b k =+≠的图象如图所示,当0x >时,y 的取值范围为 .16.在平面坐标系内,A (﹣1,﹣1)、B (2,3),M 是x 轴上一点,使MB +MA 的值最小,则M 的坐标为 . 17.给出依次排列的一列数:按照此规律,第n个数为.三、解答题(共6小题,每题8分,满分48分)(1)A ,B 两点关于 ___________轴对称;(2)A ,D 两点横坐标相等,线段AD ___________y 轴,线段AD ___________x 轴;若点P 是直线AD 上任意一点,则点P 的横坐标为___________.(3)线段AB 与CD 的位置关系是___________;若点Q 是直线AB 上任意一点,则点Q 的纵坐标为 ___________.22.已知一直角三角形纸片OAB ,其中90AOB ∠=︒,OA=2,OB=4,将该纸片放置在平面直角坐标系中,如图1所示.(1)求经过A ,B 两点的直线的函数表达式.(2)折叠该纸片,使点B 与点A 重合,折痕与边OB 交于点C ,与边AB 交于点D (如图2所示),求点C 的坐标.(3)①若P 为OAB 内一点,其坐标为()0.5,1P ,过点P 作x 轴的平行线交AB 于点M ,作y 轴的平行线交AB 于点N (如图3所示),求点M ,N 的坐标并求PM PN +的长.①若P 为OB 上一动点,设OA 的中点为点E ,AB 的中点为点()1,2F (如图4所示)求PM PN +的最小值,并求取得最小值时点P 的坐标.23.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A .计时制:0.05元/分钟,B .包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?24.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?参考答案: 1.B2.C3.A4.D5.D6.C7.D8.A9.C10.B11.14-/0.25- 12.(0,3)13.4.14.()0,215.3y < 16.(﹣14,0) 17.22(1)1nnn -+ 18.4043219.22±20.(1)这个一次函数的解析式为21y x =-(2)点C (12,0)在这个一次函数的图像上 (3)12x =21.(1)y(2),⊥,-2(3)ABCD ,3。

鲁教版七年级上册数学试题

鲁教版七年级上册数学试题

鲁教版七年级上册数学试题一、选择题(本大题共10小题,每小题3分,共30分)1. 下列计算正确的是 ( )A. 5a - a = 4B. $a^{2} \cdot a^{4} = a^{6}$C. $a^{6} \div a^{2} =a^{3}$ D. $2a^{-2} = \frac{1}{4a^{2}}$2. 下列各式计算正确的是 ( )A. $a^{6} \div a^{2} = a^{3}$B. $a^{2} \cdot a^{3} = a^{6}$C.$2a^{-2} = \frac{1}{4a^{2}}$ D. $a^{-2} = \frac{1}{a^{2}}$3. 下列各式中,正确的是 ( )A. $a^{6} \div a^{2} = a^{3}$B. $a^{2} \cdot a^{3} = a^{5}$C.$2a^{-2} = \frac{1}{4a^{2}}$ D. $a^{-2} = \frac{1}{a^{2}}$4. 下列各式中,计算正确的是 ( )A. $a^{6} \div a^{2} = a^{3}$B. $a^{2} \cdot a^{3} = a^{5}$C.$2a^{- 2} = \frac{1}{4a^{2}}$ D. $a^{- 2} = \frac{1}{a^{2}}$5. 下列计算正确的是 ( )A. $x^{- 3} = \frac{1}{x^{3}}$B. $x^{- 3} = - x^{3}$C. $x^{- p} = x^{- 1} \cdot p$D. $x^{- p} = \frac{1}{x^{p}}$6. 下列计算正确的是 ( )A. $a^{- 2} = \frac{1}{a^{2}}$B. $a^{- 3} = - \frac{1}{a^{3}}$C. $x^{- 6} = \frac{1}{x^{6}}$D. $x^{- p} = x^{- 1} \cdot p$7. 下列计算中,正确的是 ( )A.$5a - a = 4$B.$a^{2} \cdot a^{4} = a^{6}$C.$a^{6} \div a^{2} =a^{3}$ D.$2a^{- 2} = \frac{1}{4a^{2}}$8. 下列计算中,正确的是 ( )A.$x^{- 3} = \frac{1}{x^{3}}$B.$x^{- 3} = - x^{3}$C.$x^{- p} = x^{- 1} \cdot p$D.$x^{- p} = \frac{1}{x^{p}}$9. 下列计算中,正确的是 ( )A.$5a - a = 4$B.$a^{2} \cdot a^{4} = a^{6}$C.$a^{6} \div a^{2} =a^{3}$ D.$2a^{- 2} = \frac{1}{4a^{2}}$10. 下列计算中,正确的是 ( )A.$5a - a = 4$B.$a^{2} \cdot a^{4} = a^{6}$C.$a^{6} \div a^{2} =a^{3}$ D.$2a^{- 2} = \frac{1}{4a^{2}}$二、填空题(本大题共6小题,每小题4分,共24分)11. 计算:$x^{- 2} + x^{- 3} =$____.12. 下列各式计算正确的是 ( )A.$a^{- 3} + a^{- 3} = 0$B.$a^{- 3} \cdot a^{- 3} = a^{- 6}$C.$a^{- 3} \div a^{- 3} = - 1$D.$5(a^{- 3}) = - \frac{5}{a^{3}}$13. 下列计算中,正确的是 ( )A.$5a - a = 4$B.$a^{2} + a^{4} = a^{。

初中鲁教版数学试卷及答案

初中鲁教版数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -1/32. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. -a < -bC. a < bD. a < -b3. 下列代数式中,同类项是()A. 2x^2yB. 3xy^2C. 4x^2yD. 5xy4. 一个长方形的长是a,宽是b,则它的面积是()A. a + bB. abC. a - bD. a^2 + b^25. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 长方形6. 若a,b是方程x^2 - 3x + 2 = 0的两个根,则a + b的值是()A. 2B. 3C. 4D. 57. 下列各数中,无理数是()A. √4B. √9C. √16D. √258. 若m + n = 5,mn = 6,则m^2 + n^2的值是()A. 11B. 12C. 13D. 149. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = 3x^2C. y = 4xD. y = 5x - 210. 一个圆的半径增加了20%,则其面积增加了()A. 20%B. 40%C. 60%D. 100%二、填空题(每题3分,共30分)11. 若x - 2 = 5,则x = ________。

12. 3a^2b^3与4a^3b^2的公因式是 ________。

13. 分数2/3的分子扩大3倍,分母扩大2倍后,分数值是 ________。

14. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长是________cm。

15. 若函数y = 2x + 1的图象向下平移3个单位,则新的函数解析式是 ________。

16. 若一个数列的前三项分别是2,4,8,则第四项是 ________。

【鲁教版】初一数学上期末试卷(及答案)

【鲁教版】初一数学上期末试卷(及答案)

一、选择题1.某校七年级(1)班体育委员对本班60名同学参加球类项目的情况做了统计(每人选一种),绘制成如图所示统计图,已知“羽毛球”所在扇形的圆心角度数为72°,则该班参加乒乓球和羽毛球项目的人数总和为( )A .20人B .25人C .30人D .35人2.下列调查中,适宜抽样调查的是( )A .了解某班学生的身高情况B .选出某校短跑最快的学生参加全市比赛C .了解全班同学每周体育锻炼的时间D .调查某批次汽车的抗撞击能力3.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人乘一辆车,最后剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .3932x x +=-B .9232x x -+= C .9232xx +-= D .2932x x +=+ 4.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款( )A .288元B .288元和332元C .332元D .288元和316元5.如图,在长方形ABCD 中,AB 6cm =,8BC cm =,点E 是AB 上的点,且2AE BE =.点P 从点C 出发,以2/cm s 的速度沿点C D A E ---匀速运动,最终到达点E .设点P 运动时间为ts ,若三角形PCE 的面积为218cm ,则t 的值为( )A.98或194B.194或98或274C.94或6D.6或94或2746.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④7.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则BD的长为()A.6cm B.7cm C.8cm D.9cm8.如图,甲从点A出发向北偏东65°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则BAC的度数是()A.85°B.135°C.105°D.150°9.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种形状的地砖是()A.B.C.D.10.把黑色三角形按如图所示的规律拼成下列图案,其中第①个图案中有4个黑色三角形,第②图案有7个黑色三角形,第③个图案有10个黑色三角形,…,按此规律排列下去,则第⑥图案中黑色三角形的个数为()A .16B .19C .31D .3611.据统计,2014年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学计数法表示为( )元A .4.057×109B .0.4057×1010C .40.57×1011D .4.057×1012 12.几何体的下列性质:①侧面是平行四边形;②底面形状相同;③底面平行;④棱长相等.其中棱柱具有的性质有( )A .1个B .2个C .3个D .4个二、填空题13.某公司有员工700人举行元旦庆祝活动(如图),A 、B 、C 分别表示参加各种活动的人数的百分比,规定每人只参加一项且每人都要参加,则下围棋的员工共有_____人.14.我国是稀土资源最丰富的国家.如图是全球稀土资源储量分布统计图,图中表示“中国”的扇形的圆心角是_________度.15.欧拉是一位著名的数学家,他把他的一生都献给了人类的数学事业,在他一生岁数的14那年,他发表了第一篇数学论文,并且获得了巴黎科学院奖金,此后过了7年,他成为彼得堡科学院的数学教授,在欧拉去世的前17年,他不幸双目失明了,但他继续在黑暗的世界里凭着他的记忆和心算进行数学研究,在这17年里,他写出了数学论文400篇,正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍.根据以上信息,请你算出数学家欧拉一生______岁.16.若x=1是方程2x+a=7的解,则a=_______.17.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.18.观察下面的一列单项式:2x,3-,54x-,……,根据你发现的规律,第8x,716x20个单项式为__________.19.某市出租车的收费标准如下:行驶路程在3千米以内,收费8元;行驶路程超过3千米时,超过3千米的按2.6元/千米收费(不满1千米,按1千米计算).小明乘坐出租车到距离14千米的少年宫,他所付的车费是______元.20.用一个平面去截下列几何体,截面可能是圆的是________(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%22.蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:1.5+,3-,2+,2.5-,3-,1+,2-,2-(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?23.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .24.综合与探究某餐厅中1张餐桌可坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有4张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐人;(2)当有n 张桌子时,第一种摆放方式能坐______人,第二种摆放方式能坐______人; (3)该餐厅有30张这样的长方形桌子,按方式一每3张拼成一张大桌子,则30张桌子可拼成10张大桌子,共可坐______人?按方式二呢?(4)一天中午,该餐厅来了98名顾客共同就餐客(即桌子要摆在一起),但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选用哪种方式来摆餐桌呢? 25.计算:(1)()11124386⎛⎫-+⨯- ⎪⎝⎭(2)()3412426⎡⎤--⨯--⎣⎦ 26.如图是由一些棱长为单位1的相同的小正方体组合成的简单几何体,请在图中的方格子中分别画出从几何体正面看、左面看、上面看得到的图形。

【鲁教版】七年级数学上期末试题(附答案)(2)

【鲁教版】七年级数学上期末试题(附答案)(2)

一、选择题1.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +4.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个5.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.若三个连续偶数的和是24,则它们的积为( ) A .48B .240C .480D .1207.甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .8.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .011.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③12.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.15.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C的销售额应比去年增加__________.16.对任意四个有理数a,b,c,d,定义:a bad bcc d=-,已知24181-=xx,则x=_____.17.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.三、解答题21.已知线段10cmAB=,在直线AB上取一点C,使16cmAC=,求线段AB的中点与AC的中点的距离.22.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D 在线段CB 上”改为“点D 在线段CB 的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD 的长度.23.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 24.解方程: (1)3x ﹣4=2x +5; (2)253164x x--+=. 25.计算:2334[28(2)]--⨯-÷- 26.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ; (3)请用上述计算103+105+107+…+2015+2017的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D . 【详解】∵线段AB 的长度是A 、 B 两点间的距离, ∴(1)错误; ∵射线没有长度, ∴(2)错误; ∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.2.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.4.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.5.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.7.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.11.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体 体 面 平 曲 【解析】 【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种 【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲 【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体 四棱锥 三棱柱 【解析】 【分析】根据常见的几何体的展开图进行判断. 【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱; 【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年 解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可. 【详解】解:设今年产品C 的销售金额应比去年增加x , 由题意得,60%(1)(160%)(145%)1x ++--=, 解得:30%x =.答:今年产品C 的销售金额应比去年增加30%. 故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A和B的销售金额和C的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.16.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x=3故答案为:3【点睛解析:3【分析】首先看清这种运算规则,将24181-=xx转化为一元一次方程2x-(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x-(﹣4x) =186x=18解得:x=3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.17.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】 本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.18.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.三、解答题21.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 22.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人,根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 24.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 25.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.26.(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,n+;故答案为:()22(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=2511009-2=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学试题
(时间:120分钟,满分120分)
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选
项中,只有一个是正确的)
1、如图所示,将三角形绕直线l 旋转一周,可以得到图(E)所示的立体图形的是( ) l l l l l
A .
B .
C .
D . E
2、若x 是6的相反数,y 比x 的相等数小2,则x -y =( )
A .4 B.8 C.-10 D.-2
3、某班共有学生x 人,其中女生占45%,那么男生人数是( )
A .45%x B.(1-45%)x C.45%
x
D.145%x -
4、a 是一个三位数,b 是一个一位数,如果把b 放在a 的左边,那么所组成 的四位数是( )
A .ba B.1000b+a C.10a+b D.b+a 5、若│a │=5,b=-2,那么│a+b │的值是( )
A .7 B.3 C.-7或-3 D.+7或+3 6、下面四个图形折叠后能围成如图所示正方体的图形是()
7、有一列数1a 2a 3a ……n a ,从第二个数开始,每一个数都等于1与它前面那个
数的差,若1a =2,则2007a 为( ) A .-1 B.2 C.
1
2
D.2007 8.24x x k ++是一个完全平方式,k 的值为( ) A .2
B . 4
C .16
D .-4
9.如右图,直线a 与直线b 互相平行,则|x y -|的值是( )
A .20
B .80
C .120
D .180
10.如右图,直线EO ⊥BC 于点O ,∠BOC =3∠1,OD 平分 ∠AOC ,则∠2的度数是( ) A .30° B .40° C .60° D .以上结果都不正确
11.表格列出了一项实验的统计数据,表示皮球从高度d 落下时弹跳高度b 与下d 50 80 100 150 b 25 40 50 75
A .2b d =
B .2b d =
C .25b d =+
D .2
b =
12.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系( )
A. B. C. D.
二、填空题(直接填写最后结果,本题共8个小题,每小题3分,共24分) 13、某地气温从-1C 下降3C 后为___C 14、已知4m a 3b 与-32a n b 是同类项,则-m n =___ 15、绝对值大于1而小于5的所有整数的和是___ 16、若x +22y +5的值是7,则代数式3x +62y +4的值是___
17、做拉面时,拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:这样捏合到第___次后可以拉出128根面条。

18、下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第
n 个图案中白色正方形的个数为___
19.如下图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC =116°,那么∠A 的度数是 .
20.请你认真观察和分析图中数字变化的规律,由此得到下图中所缺的数字应为 .
三、解答题(本题共5个小题,共60分,解答应写出必要的计算过程,推演步骤
或文字说明)
21、计算题(每小题4分,共20分)
(1) 3×2(2)--25-6÷ (3-)
(2)-32×[-23×(-2
3
)2 + 3(2)-]
(3)2(2)(2)3(2)a b a b a b +-+-,其中12a b =-=,;
(4)2[()()()2(2)](2)x y x y x y y x y y +--+--÷-,其中52003x y ==,.
22、(本题10分)
一辆汽车行驶时油箱中的余油量Q(千克)与行驶时间t(时)之间的关系
⑴写出用时间t表示余油量Q的关系式。

⑵当t=2.5时,求余油量Q的值。

⑶油箱中原有汽油可供该汽车行驶多少小时?
23、(本题10分)
某公园的门票价格是:成人票每张10元,学生票是成人票的一半。

一个旅游团共有50人,其中学生x人。

⑴该旅游团需共支付门票多少元?
⑵若其中一共有学生12人,那么他们共支付门票多少元?
24.((本题10分)
如图,已知DE∥AC,DF∥AB.
(1)∠1=∠C吗?∠3=∠B吗?说明理由;
(2)由图中知道,∠1+∠2+∠3=180°,你能否由此说明
∠A+∠B+∠C也等于180°吗?
25.(10分)某农机公司为更好地服务于麦收工作,按左图给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,公司技术人员对购买的这批农机全部进行了检验,绘制了如右图所示的统计图.
请你根据图中提供的信息,解答以下问题:
(1)求该农机公司从丙厂购买农机的台数;
(2)求该农机公司购买的150台农机中优等品的台数;
(3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:
①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?
②甲厂2007年生产的360台产品中的优等品有多少台?
七年级数学参考答案
一、选择题:
1. B
2.C
3.B
4.B
5.D
6.C
7.A
8. B
9. A 10.A 11.D 12.B
二、填空题:
13、-4 14、-9 15、0 16、10
17、7 18、5n+3 19、52°20、29
三、解答:
21. (1)-11
·(2)18
(3)化简得22
a a
b b
-+,值为48;
16122
-.
(4)化简得2
-+,值为1993
y x
22. ⑴Q=48-6t
⑵当t=2.5时,Q=48-6×2.5=33
⑶由题意可知油箱中原有油48千克,每小时耗油6千克,
48÷6=8(小时)
因此可供汽车行驶8小时
23. ⑴(500-5x)元
⑵当x=12时,500-5x=500-5×12=440元
24.(1)∠1=∠C,∠3=∠B.理由是两直线平行,同位角相等.
(2)略.
25.(1)30(台);(2)127(台);(3)丙厂.②300(台).。

相关文档
最新文档