中考数学图形的变换专题秘籍

合集下载

2024年中考数学二轮专题复习之图形变换(简单)

2024年中考数学二轮专题复习之图形变换(简单)

中考二轮专题复习之 图形变换 知识点归纳 考点一:对称有关概念 1.轴对称 (1). 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .(2). 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .(3).如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .2.中心对称(1). 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .(2). 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .(3). 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.(4). 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . 对应训练1、如图,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像( )2、如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④3、已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形4、如图,AD 是ΔABC 的中线,∠ADC=45°,把ΔADC 沿AD 对折,点C 落在点C ′的位置,则BC′与BC 之间的数量关系是 .5、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.6、如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′,并写出对应点的坐标;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .7.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在点E 处,EQ 与BC 交于点F.若AD =8 cm ,AB =6 cm ,AE =4 cm ,则△EBF 的周长是________cm .8、如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .9、如图,正方形ABCD 中,AB =2,E 是CD 中点,将正方形ABCD 沿AM 折叠,使点B 的对应点F 落在AE 上,延长MF 交CD 于点N ,则DN 的长为 __________.考点二:平移旋转有关概念1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为__ ___,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角. 4. 图形的旋转由 、 和 所决定.①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针.③旋转 一般小于360º.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .对应训练1、如图,下列图案②③④⑤⑥⑦中, 是由①平移得出的, 是由①平移且旋转得出的。

初中数学图与图形的变换精讲

初中数学图与图形的变换精讲

图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。

备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)

备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)

备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)翻折变换(折叠问题)专训单选题:1、(2017长安.中考模拟) 如图,对△ABC纸片进行如下操作:第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1,然后还原纸片;第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2,然后还原纸片;…按上述方法不断操作下去…,经过第n次操作后得到的折痕Dn En到BC的距离记作hn ,若h=1,则hn的值不可能是()A .B .C .D .2、(2019吴兴.中考模拟) 如图,将长BC=8cm,宽AB=4cm的矩形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为()A . 4cmB . cmC . cmD . c3、(2017长清.中考模拟) 如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为()A . 2B .C . 1D .4、(2017武汉.中考模拟) 如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A . 12B . 16C . 18D . 245、(2013百色.中考真卷) 如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA 与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是()A . 1B .C .D . 26、(2015.中考真卷) 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是()A . (4,8)B . (5,8)C . (,)D . (,)7、(2012遵义.中考真卷) 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A . 3B . 2C . 2D . 28、(2020南岸.中考模拟) △ABC中,∠ACB=45°,D为AC上一点,AD=5 ,连接BD,将△ABD沿BD翻折至△EBD,点A的对应点E点恰好落在边BC上.延长BC至点F,连接DF,若CF=2,tan∠ABD= ,则DF长为()A .B .C . 5D . 79、(2020鄞州.中考模拟) 三角形纸片ABC中,∠C=90°,甲折叠纸片使点A与点B 重合,压平得到的折痕长记为m;乙折叠纸片使得CA与CB所在的直线重合,压平得到的折痕长记为n,则m,n的大小关系是()A . m≤nB . m<nC . m≥nD . m>n10、(2020沙河.中考模拟) 欧几里得在《几何原本》中,记载了用图解法解方程的方法,类似地可以用折纸的方法求方程的一个正根。

中考数学中的形变换与对称性质解题技巧总结

中考数学中的形变换与对称性质解题技巧总结

中考数学中的形变换与对称性质解题技巧总结形变换是中学数学中一个重要的概念,它通过平移、旋转、翻转等操作改变了图形的位置、方向和形状。

而对称性质则是指图形在某种变换下不发生改变。

在中考数学中,形变换和对称性质常常被用于解决与图形相关的题目。

本文将对中考数学中的形变换与对称性质解题技巧进行总结和探讨。

一、平移与旋转的应用1. 平移变换平移变换是将图形在平面上沿着某个方向同时移动一定的距离,通常用箭头表示。

平移变换具有保持距离和保持方向的性质,因此可以应用于解决线段、角度、面积等相关的题目。

例如,当解决计算线段长度的题目时,可以通过将线段平移使其与坐标轴重合,然后计算坐标差值来求解长度。

2. 旋转变换旋转变换是将图形绕着某个点旋转一定的角度。

旋转变换具有保持形状和保持大小的性质,因此可以应用于解决角度、相似图形、面积等相关的题目。

例如,当解决判断两条线段是否平行的题目时,可以通过将其中一条线段绕着某个点旋转使其与另一条线段平行,然后判断旋转后的线段是否与原线段重合来得出结论。

二、翻转与对称的运用1. 翻转变换翻转变换是将图形绕着一条直线翻转对称。

翻转变换具有保持形状和改变方向的性质,因此可以应用于解决关于对称性质的题目。

例如,当解决判断一个图形是否具有对称性的题目时,可以通过对该图形进行翻转变换,然后比较翻转后的图形与原图形是否完全重合来判断。

2. 对称性质对称性质是指一个图形在某种变换下不发生改变。

常见的对称性质有中心对称和轴对称。

中心对称是指图形相对于某个点在平面上对称,关于中心对称的图形可以通过将其每个点与中心点连线的延长部分重合来得出结论。

轴对称是指图形相对于某条直线在平面上对称,关于轴对称的图形可以通过将其沿着轴线折叠或反复映射得出结论。

三、形变换与对称性质的综合应用在解决中考数学中的形变换与对称性质相关的题目时,往往需要综合应用多种变换和性质。

例如,当解决计算两个面积之比的题目时,可以通过将一个图形旋转或翻转使其与另一个图形重合,并利用面积的不变性质来求解比值。

中考数学中的形变换与对称性质应用总结

中考数学中的形变换与对称性质应用总结

中考数学中的形变换与对称性质应用总结形变换和对称性质是数学中重要的概念,也是中考数学考试中常出现的题型。

通过形变换和对称性质的应用,可以解决一些复杂的几何问题,提升解题的效率和准确性。

本文将总结中考数学中形变换和对称性质的基本概念和应用技巧。

一、形变换的基本概念形变换是指平移、旋转、镜像和放缩等几何变换的统称。

在中考数学中,形变换的概念常常运用在题目解答中,通过对图形进行形变换,可以得到与原图形性质相同或相似的新图形,从而更方便地解题。

1. 平移平移是指将图形沿着某个方向上确定的距离进行移动,移动后图形与原图形的大小形状完全相同。

在解题过程中,可以通过平移来寻找图形之间的对应关系,进而推导出所求结果。

2. 旋转旋转是指将图形绕着某个点或某条线进行旋转,旋转后图形与原图形的大小形状相似或相等。

通过观察旋转后的图形特点,可以得到与之前图形之间的对应关系,进而解决题目。

3. 镜像镜像是指将图形沿着某条直线进行翻转,翻转后图形与原图形完全相同。

在解题过程中,可以通过镜像来寻找图形之间的对应关系,进而推导出所求结果。

4. 放缩放缩是指将图形进行等比例的扩大或缩小,放缩后图形与原图形相似。

通过放缩可以求得图形的线段长度、面积等性质。

二、对称性质的应用技巧对称性质是指图形在某种变换下仍保持不变的性质,包括轴对称、中心对称和旋转对称等。

在中考数学中,利用对称性质也可以解决一些几何问题。

1. 轴对称轴对称是指图形沿着某条轴线对称重合。

在解题过程中,可以通过观察轴对称图形的特点,从而推导出所求结果。

2. 中心对称中心对称是指图形以某个点为中心,图形上的任意一点与该点通过直线的连线相互对称。

通过利用中心对称性质,可以找到图形的对应点,进而解决题目。

3. 旋转对称旋转对称是指图形旋转一定角度后与原图形完全相同。

通过观察旋转对称图形的特点,可以推导出所求结果。

三、综合应用技巧在解决中考数学中的形变换与对称性质题目时,需要灵活运用形变换和对称性质的基本概念,结合具体题目进行分析和推导。

中考数学专项知识点总结— 图形的变换、图形的相似

中考数学专项知识点总结— 图形的变换、图形的相似

中考数学专项知识点总结—图形的变换、图形的相似考点一、平移(3~5 分)1 、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

2 、性质(1 )平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2 )连接各组对应点的线段平行(或在同一直线上)且相等。

考点二、轴对称(3~5 分)1 、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2 、性质(1 )关于某条直线对称的两个图形是全等形。

(2 )如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3 )两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3 、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4 、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

考点三、旋转(3~8 分)1 、定义把一个图形绕某一点O 转动一个角度的图形变换叫做旋转,其中O 叫做旋转中心,转动的角叫做旋转角。

2 、性质(1 )对应点到旋转中心的距离相等。

(2 )对应点与旋转中心所连线段的夹角等于旋转角。

考点四、中心对称( 3 分)1 、定义把一个图形绕着某一个点旋转180 °,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2 、性质(1 )关于中心对称的两个图形是全等形。

(2 )关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3 )关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3 、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

几何变换解题的常见技巧与应用

几何变换解题的常见技巧与应用

几何变换解题的常见技巧与应用几何变换作为数学中的一个重要分支,具有广泛的应用领域,能够帮助我们更好地理解和解决几何问题。

本文将介绍几何变换解题的常见技巧和应用。

一、平移技巧平移是指将几何图形沿着给定的向量作等距移动的操作。

在解题过程中,平移技巧常常用于确定几何图形的位置关系或帮助构造新的图形。

例如,在解决证明题时,我们可以通过平移技巧将待证明的两个图形重合,从而得出结论。

二、旋转技巧旋转是指将几何图形绕着一个点或一条直线旋转一定角度的操作。

旋转技巧常常用于确定几何图形的对称性或帮助构造新的图形。

例如,在解决构造题时,我们可以通过旋转技巧将给定的图形旋转一定角度,从而构造出满足题意的新图形。

三、对称技巧对称是指将几何图形以某个中心对称轴进行反射的操作。

对称技巧常常用于确定几何图形的对称性或帮助构造新的图形。

例如,在解决证明题或构造题时,我们可以通过对称技巧将给定的图形进行镜像,从而得到有关图形关系的结论。

四、相似性技巧相似性是指两个几何图形在形状上相似的性质。

相似性技巧常常用于确定几何图形的形状关系或解决比例问题。

例如,在解决测量或比较题时,我们可以利用相似性技巧确定两个几何图形的比例关系,从而解决问题。

五、尺规作图技巧尺规作图是指利用直尺和圆规进行几何图形的构造。

尺规作图技巧常常用于解决构造题或帮助求解几何问题。

例如,在解决构造题时,我们可以利用尺规作图技巧进行直线的平行、垂直、等分等构造操作,从而满足题目要求。

六、解析几何技巧解析几何是将几何问题转化为代数问题进行求解的方法。

解析几何技巧常常用于解决复杂几何问题或求得几何问题的具体数值。

例如,在解决曲线的性质问题时,我们可以利用解析几何技巧将曲线方程转化为代数方程,从而求得曲线的特点或性质。

综上所述,几何变换解题的常见技巧与应用包括平移技巧、旋转技巧、对称技巧、相似性技巧、尺规作图技巧和解析几何技巧等。

通过灵活运用这些技巧,我们能够更好地理解和解决各类几何问题,提高解题效率和准确性。

初中数学辅助线添加秘籍5、图形变换 旋转

初中数学辅助线添加秘籍5、图形变换  旋转

初中数学辅助线添加秘籍5、图形变换—旋转一:如何构造旋转图形1、遇中点,旋180°,构造中心对称图形,即倍长中线。

2、遇90°,旋90°,构造垂直—等腰直角三角形、正方形。

3、遇60°,旋60°,构造等边。

口诀:边相等,就旋转。

二:倒角(旋转后,常见图形)、如图,边长为的正方形AB=AD,由图形旋转的性质可知AD=AB′,故可得出Rt△ADE≌Rt△AB′E,由直角三角形的性质可得出DE的长,再由S阴影=S正方形ABCD-S四边形ADEB′即可得出结论.解答:解:连接AE,∵∠BAB′=30°,∴∠DAB′=60°,∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,∵正方形AB′C′D′是正方形ABCD旋转而成,∴AD=AB′,∠B′=90°,在Rt△ADE与Rt△AB′E中,AD=AB′,AE=AE,∴Rt△ADE≌Rt△AB′E,∴∠DAE==30°,∴DE=AD?tan∠DAE=×=1,∴S四边形ADEB′=2S△ADE=2××AD×DE=,∴S阴影=S正方形ABCD-S四边形ADEB=3-.2、如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PA C绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为????,∠APB=????°.答案此题答案为:6;150°.解:连接PP′.∵△P′AB是△PAC绕点A旋转得到的,∴△P′AB≌△PAC.∵△P′AB≌△PAC,PA=6,PB=8,PC=10,∴P′A=PA=6,P′B=PC=10,∠PAC=∠P′AB.∵△ABC为正三角形,∴∠BAC=60°,∴∠PAC+∠BAP=60°.∵∠PAC=∠P′AB,∴∠P′AB+∠BAP=∠P′AP=60°.∵∠P′AP=60°,PA=P′A,∴△PAP′是等边三角形,∴PP′=PA=6,∴∠P′PA=60°.∵在△PBP′中PP′=6,PB=8,P′B=10,∴△PBP′是直角三角形,∴∠BPP′=90°,∴∠APB=∠P′PA+∠BPP′=60°+90°=150°.3、如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对答案此题答案为:A.解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.4、如图,为线段上一动点(不与点、重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接。

九年级图形的变换知识点

九年级图形的变换知识点

九年级图形的变换知识点图形的变换是数学课程中的一个重要内容,也是九年级学生需要掌握的知识点之一。

通过图形的变换,我们可以改变图形的位置、大小和方向,从而帮助我们更好地理解和解决问题。

本文将介绍九年级图形的变换知识点,包括平移、旋转、镜像和缩放。

1. 平移平移是指将图形在平面上沿着某个方向移动一定的距离,而形状和大小保持不变。

平移的基本步骤是:确定平移的方向和距离,然后保持图形的形状不变,将每个点按照相同的方向和距离移动。

平移有一些重要的性质:- 平移不改变图形的面积和形状。

- 平移前后,图形上的对应点之间的距离保持不变。

- 平移可以用于解决有关位置关系和对称性质的问题。

2. 旋转旋转是指将图形沿着一个中心点旋转一定的角度,而不改变其大小和形状。

旋转的基本步骤是:确定旋转的中心和角度,然后按顺时针或逆时针方向旋转每个点。

旋转有一些重要的性质:- 旋转不改变图形的面积和形状。

- 旋转前后,图形上的对应点之间的距离保持不变。

- 旋转可以用于解决有关对称性质和角度关系的问题。

3. 镜像镜像是指将图形通过一个镜面对称地映射到另一侧,使得图形的每一个点与其镜像点关于镜面对称。

镜像的基本步骤是:选择镜面的位置和方向,然后将原图形上的每个点与镜面上的对应点连接,得到镜像图形。

镜像有一些重要的性质:- 镜像不改变图形的面积和形状。

- 镜像前后,图形上的对应点之间的距离保持不变。

- 镜像可以用于解决有关对称性质和位置关系的问题。

4. 缩放缩放是指按照比例因子改变图形的大小,而形状保持不变。

缩放的基本步骤是:确定缩放的中心和比例因子,然后将图形上的每个点相对于中心按照比例因子进行放缩。

缩放有一些重要的性质:- 缩放改变图形的大小,但不改变其形状。

- 缩放前后,图形上的对应点之间的距离保持按比例变化。

- 缩放可以用于解决有关比例关系和相关性质的问题。

综上所述,九年级图形的变换知识点主要包括平移、旋转、镜像和缩放。

这些变换可以帮助我们更好地理解和解决与图形相关的问题,提高空间想象能力和数学推理能力。

[中考解题技巧,:几何变换法]中考几何题解题技巧

[中考解题技巧,:几何变换法]中考几何题解题技巧

[中考解题技巧,:几何变换法]中考几何题解题技巧中考解题技巧:几何变换法中考解题技巧:几何变换法几何变换包括:(1)平移;(2)旋转;(3)对称。

1.平移变换把图形中的某一个线段或者一个角移动到一个新的位置,使图形中分散的条件紧密地结合到一起。

一般有2种方法:(1)平移已知条件(2)平移所求问题,把所求问题转化,其实就是逆向证明。

几何题多数都是逆向思考的。

例:在三角形ABC中,BD=CE,求证:AB+AC大于AD+AE。

这是典型的平移条件问题。

解:我们把三角形AEC平移到如图所示的FBD位置。

这里用了BD=EC 的条件。

设AB与FD交于P 这样,容易构造两个全等的三角形AEC,FBD 由于PA+PD大于AD PF+PB大于BF 两式相加PA+PB+PD+PF大于AD+BF 又因为BF= AE,AC= FD 所以AB+AC大于AD+AE 2.旋转变换把平面图形绕旋转中心,旋转一个定角,使分散的条件集中在一起. 例:如图,等腰直角三角形ABC中,AB=AC,∠A=90,M,N为斜边BC上两点且∠MAN=45,求证:BM^2+CN^2=MN^2解:要证BM^2+CN^2=MN^2,容易想到勾股定理.但是BM,CN,MN都不在同一个三角形上,所以,我们就设法将BM,CN,MN移到同一三角形上。

考虑到△ABC是等腰三角形,且是直角三角形,将△ABM 绕点A逆时针旋转90.使AB与AC重合.得到△ACD,则△NCD 为直角三角形只需证明MN=ND即可因为∠MAN=45,所以∠BAM+∠NAC=45 ,即∠NAD=45 又因为AM=AD 所以△AND≌△AMN 所以MN=ND,在直角△NDC中,有ND^2=NC^2+DC^2,所以BM^2+CN^2=MN^2 3.对称变换通过作关于某一直线或一点的对称图,把图形中的图形对称到另一个位置上,使分散的条件集中在一起。

当出现以下两种情况时,经常考虑用此变换:1.出现了明显的轴对称、中心对称条件时。

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)

中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。

(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。

(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。

2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。

这条直线叫做它的对称轴。

(3)轴对称的性质:关于某条直线对称的图形是全等形。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。

(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。

(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。

中考数学图形的变换与组合

中考数学图形的变换与组合

中考数学图形的变换与组合一、图形的变换图形的变换是指通过平移、旋转、翻转等操作,使得原来的图形发生形状、位置或者方向上的变化。

这些变换可以帮助我们观察、分析和解决各种数学问题。

下面将介绍几种常见的图形变换方式。

1. 平移变换平移变换是指保持图形大小、方向和形状不变,只改变其位置的变换方式。

我们可以通过指定的向量来描述平移变换的规律,如向右平移2个单位,向上平移3个单位等。

2. 旋转变换旋转变换是指将图形按照一定的角度绕着旋转中心旋转的变换方式。

旋转变换可以使我们观察图形的对称性、角度关系等。

旋转变换可以根据图形的旋转角度分为顺时针旋转和逆时针旋转。

3. 翻转变换翻转变换是指将图形按照一定的轴线镜像翻转的变换方式。

常见的翻转变换有关于x轴的翻转和关于y轴的翻转。

翻转变换可以帮助我们研究图形的对称性和性质。

二、图形的组合图形的组合是指通过将多个基本图形进行组合,得到新的图形。

通过图形的组合,我们可以观察和研究图形的性质,探索图形的变换关系。

1. 平移组合平移组合是指将多个图形进行平移变换,使它们保持相对位置不变,形成一个新的图形。

通过平移组合,我们可以探索平移变换的性质,研究图形的对称性和相交关系等。

2. 旋转组合旋转组合是指将多个图形进行旋转变换,使它们按照一定的角度和方向进行旋转,形成一个新的图形。

通过旋转组合,我们可以研究旋转变换的角度关系,探索图形的对称性和旋转对称性等。

3. 翻转组合翻转组合是指将多个图形进行翻转变换,使它们按照一定的轴线进行镜像翻转,形成一个新的图形。

通过翻转组合,我们可以观察和研究图形的对称性,探索图形的性质和对称中心等。

4. 变换的应用图形的变换和组合在数学中有广泛的应用。

例如,在几何学中,我们可以利用变换和组合的方法来研究图形的对称性、相似性和共线性等性质;在代数学中,我们可以通过变换和组合的方式来表示和求解方程组、函数的复合等。

三、图形的变换与组合的综合应用图形的变换和组合不仅仅是数学中的一个概念,它还可以应用于各个领域中。

理解初中数学中的几何形变换技巧

理解初中数学中的几何形变换技巧

理解初中数学中的几何形变换技巧数学是一门抽象而又有趣的学科,而几何形变换则是数学中一项重要而又实用的技巧。

几何形变换涉及到图形的平移、旋转、翻转和放缩等操作,通过这些操作可以改变图形的位置、形状、大小等特征。

了解和掌握几何形变换技巧对于初中数学学习和解题是非常重要的。

本文将从几何形变换的基本概念、实际应用和解题技巧等方面进行讨论。

一、基本概念几何形变换是指通过平移、旋转、翻转和放缩等操作,改变图形的位置、形状、大小等特征。

以下是几个基本概念的介绍:1. 平移:平移是指沿着一定方向和距离将图形整体移动,移动后的图形与原图形相似,只是位置发生了改变。

2. 旋转:旋转是指围绕一个中心点进行转动,使图形绕中心点旋转一定的角度。

旋转后的图形与原图形具有相同的形状,只是方向和位置发生了改变。

3. 翻转:翻转是指图形在平面上关于一条直线或者一个点进行对称变换。

翻转后的图形与原图形相似,只是关于对称轴对称。

4. 放缩:放缩是指改变图形的大小,使图形的各个部分等比例地缩放或者拉伸。

放缩后的图形与原图形具有相似的形状,只是大小发生了改变。

二、实际应用几何形变换技巧在现实生活中有着广泛的应用。

以下是几个实际应用的案例:1. 建筑设计:在建筑设计中,几何形变换技巧可以用来确定建筑物的平面布局和立体结构,包括平面的平移、旋转和翻转,以及空间的放缩等。

2. 电子游戏:在电子游戏中,几何形变换技巧可以用来实现游戏角色的移动、旋转和变形等效果,使游戏画面更加逼真和动态。

3. 图像处理:在图像处理中,几何形变换技巧可以用来调整图像的大小、形状和位置,实现图像的放缩、旋转和翻转等效果。

4. 人工智能:在人工智能领域,几何形变换技巧可以用来处理图形和图像数据,例如目标检测、图像分类和图像生成等任务。

三、解题技巧掌握几何形变换技巧对于初中数学解题非常重要。

以下是一些解题技巧的介绍:1. 利用平移性质解决问题:对于平移的题目,可以利用平移性质将问题转化为简单的计算或者构造问题。

?【中考数学:几何图形变换类题型的解题技巧】

?【中考数学:几何图形变换类题型的解题技巧】

【中考数学:几何图形变换类题型的解题技巧】
近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。

不过这些传说中的主角,并没有大家想象的那么神秘,只是我们需要找出这些压轴题目的切入点。

切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。

对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。

中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。

有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。

中考总复习:图形的变换--知识讲解(基础)

中考总复习:图形的变换--知识讲解(基础)

中考总复习:图形的变换--知识讲解(基础)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.4.中心对称与中心对称图形中心对称:把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心对称的对称点.中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫中心对称图形.5.中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.【要点诠释】图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.【典型例题】类型一、平移变换1.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为____________.【思路点拨】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【答案与解析】∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;【总结升华】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.举一反三:【变式】(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【答案】解:(1)△AGB为△DEC平移后的三角形,如下图所示;(2)∵△AGB为△DEC平移后的三角形,∴BG=CE=3,BG∥CE,∵CE⊥BD,∴BG⊥BD.在Rt△BDG中,∵∠GBD=90°,BG=3,BD=6,∴DG==3,∵四边形ABCD是平行四边形,∴AD=BC=2,∴AG=DG﹣AD=3﹣2=.2.如图(1),已知ABC ∆的面积为3,且,AC AB =现将ABC ∆沿CA 方向平移CA 长度得到EFA ∆. (1)求ABC ∆所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由; (3)若,15︒=∠BEC 求AC 的长.【思路点拨】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解. 【答案与解析】(1)由平移的性质得AF ∥BC ,且AF=BC ,△EFA ≌△ABC ∴四边形AFBC 为平行四边形 S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE ⊥AF证明:由(1)知四边形AFBC 为平行四边形 ∴BF ∥AC ,且BF=AC 又∵AE=CA∴BF ∥AE 且BF=AE∴四边形EFBA 为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA 为菱形 ∴BE ⊥AF ;(3)如上图,作BD ⊥AC 于D ∵∠BEC=15°,AE=AB ∴∠EBA=∠BEC=15° ∴∠BAC=2∠BEC=30° ∴在Rt △BAD 中,AB=2BDBCA ('C )FE设BD=x,则AC=AB=2x∵S△ABC=3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x=3∴AC=23.【总结升华】此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.类型二、轴对称变换3.(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.【思路点拨】(1)Rt△ABC中,根据sinB═=,即可证明∠B=30°;(2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.(3)先判断出AD=AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.【答案与解析】(1)证明:Rt△ABC中,∠C=90°,,∵sinB==,∴∠B=30°;(2)解:∵正方形边长为2,E、F为AB、CD的中点,∴EA=FD=×边长=1,∵沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,∴A′D=AD=2,∴=,∴∠FA′D=30°,可得∠FDA′=90°﹣30°=60°,∵A沿GD折叠落在A′处,∴∠ADG=∠A′DG,AG=A′G,∴∠ADG===15°,∵A′D=2,FD=1,∴A′F==,∴EA′=EF﹣A′F=2﹣,∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,则A′G=AG=2EA′=2(2﹣);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,=tan30°,则AD=DC•tan30°=6×=2,∵∠DAF=∠FAO=∠DAO==30°,∴=tan30°=,∴DF=AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.【总结升华】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考察的知识点较多,注意将所学知识融会贯通.举一反三:【变式】如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50°.若将其右下角向内这出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C=度.【答案】∵∠CPR=12∠B=12×120°=60°,∠CRP=12∠D=12×50°=25°,∴∠C=180°-60°-25°=95°.4. 如图1,矩形纸片ABCD的边长分别为a,b(a<b).将纸片任意翻折(如图2),折痕为PQ.(P 在BC上),使顶点C落在四边形APCD内一点C′,PC′的延长线交直线AD于M,再将纸片的另一部分翻折,使A落在直线PM上一点A′,且A′M所在直线与PM•所在直线重合(如图3),折痕为MN.(1)猜想两折痕PQ,MN之间的位置关系,并加以证明.(2)若∠QPC的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ,•MN间的距离有何变化?请说明理由.(3)若∠QPC的角度在每次翻折的过程中都为45°(如图4),每次翻折后,非重叠部分的四边形MC′QD,及四边形BPA′N的周长与a,b有何关系,为什么?(1)(2)(3)(4)【思路点拨】(1)猜想两直线平行,由矩形的对边平行,得到一组内错角相等,翻折前后对应角相等,那么可得到PQ与MN被MP所截得的内错角相等,得到平行.(2)作出两直线间的距离.∵PM长相等,∠NPM是不变的,所以利用相应的三角函数可得到两直线间的距离不变.(3)由特殊角得到所求四边形的形状,把与周长相关的边转移到同一线段求解.【答案与解析】(1)PQ∥MN.∵四边形ABCD是矩形,∴AD∥BC,且M在AD直线上,则有AM∥BC.∴∠AMP=∠MPC.由翻折可得:∠MPQ=∠CPQ=12∠MPC,∠NMP=∠AMN=12∠AMP,∴∠MPQ=∠NMP,故PQ∥MN.(2)两折痕PQ,MN间的距离不变.过P作PH⊥MN,则PH=PM•sin∠PMH,∵∠QPC的角度不变,∴∠C′PC的角度也不变,则所有的PM都是平行的.又∵AD∥BC,∴所有的PM都是相等的.又∵∠PMH=∠QPC,故PH的长不变.(3)当∠QPC=45°时,四边形PCQC′是正方形,四边形C′QDM是矩形.∵C′Q=CQ,C′Q+QD=a,∴矩形C′QDM的周长为2a.同理可得矩形BPA′N的周长为2a,∴两个四边形的周长都为2a,与b无关.【总结升华】翻折前后对应角相等,对应边相等,应注意使用相应的三角函数,平行线的判断,特殊四边形的判定.类型三、旋转变换5.已知O是等边三角形ABC内一点,∠AOB=110°,∠BOC=135°,试问:(1)以OA,OB,OC为边能否构成一个三角形?若能,求出该三角形各角的度数;若不能,请说明理由;(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时,以OA,OB,OC为边的三角形是一个直角三角形?【思路点拨】因为△ABC是等边三角形,所以可以运用旋转将△BCO转至△ACD.【答案与解析】(1)以OC为边作等边△OCD,连AD.∵△ABC是等边三角形∴∠BCO=∠ACD (∠BCO+∠ACO=60°,∠ACD+∠ACO=60°)∵ BC=AC,OC=CD∴△BCO≌△ACD (SAS)∴ OB=AD,∠ADC=∠BOC又∵OC=OD∴△OAD是以线段OA,OB,OC为边构成的三角形∵∠AOB=110°, ∠BOC=135°∴∠AOC=115°∴∠AOD=115°-60°=55°∵∠ADC=135°∴∠ADO=135°-60°=75°∴∠OAD=180°-55°-75°=50°∴以线段OA,OB,OC为边构成的三角形的各角是50°、55°、75°.(2)∠AOB+∠AOC+∠BOC=∠AOB+∠AOC+∠ADC=∠AOB+(∠AOD+∠DOC)+(∠ADO+∠CDO)=∠110°+(∠AOD+60°)+(∠ADO+60°) =360°∴∠AOD+∠ADO=130°∴∠OAD=50°当∠AOD是直角时,∠AOD=90°,∠AOC=90°+60°=150°,∠BOC=100°;当∠ADO是直角时,∠ADC=90°+60°=150°,∠BOC=150°.【总结升华】此题主要运用旋转的性质、等边三角形的判定、勾股定理的逆定理等知识,渗透分类讨论思想.6 . 如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.【思路点拨】(1)要证AE1=BF1,就要首先考虑它们是全等三角形的对应边;(2)要证△AOE1为直角三角形,就要考虑证∠E1AO=90°.【答案与解析】(1)AE1=BF1,证明如下:∵O为正方形ABCD的中心,∴OA=OB=OD.∴OE=OF .∵△E1OF1是△EOF绕点O逆时针旋转α角得到,∴OE1=OF1.∵ ∠AOB=∠EOF=900,∴ ∠E1OA=900-∠F1OA=∠F1OB.在△E1OA和△F1OB中,1111OE OFE OA FOBO A OB⎧⎪∠∠⎨⎪⎩===,∴△E1OA≌△F1OB(SAS).∴AE1=BF1.(2)取OE1中点G,连接AG.∵∠AOD=900,α=30°,∴ ∠E1OA=900-α=60°.∵OE1=2OA,∴OA=OG,∴ ∠E1OA=∠AGO=∠OAG=60°.∴ AG=GE1,∴∠GAE1=∠GE1A=30°.∴∠E1AO=90°.∴△AOE1为直角三角形.【总结升华】正方形的性质,旋转的性质,全等三角形的判定和性质,直角三角形的判定. 举一反三:【变式】如图,P为正方形ABCD内一点,若PA=a,PB=2a,PC=3a(a>0).(1)求∠APB的度数;(2)求正方形ABCD的面积.【答案】(1)将△ABP绕点B顺时针方向旋转90°得△CBQ.则△ABP≌△CBQ且PB⊥QB.于是PB=QB=2a,.在△PQC中,∵,.∴.∴.∵△PBQ是等腰直角三角形,∴∠BPQ=∠BQP=45°.故∠APB=∠CQB=90°+45°=135°.(2)∵∠APQ=∠APB+∠BPQ=135°+45°=180°,∴三点A、P、Q在同一直线上.在Rt△AQC中,.∴正方形ABCD的面积.中考总复习:图形的变换--巩固练习(基础)【巩固练习】一、选择题1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有().A.4个 B.5个 C.6个 D.3个2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是().A.①③ B.①② C.②③ D.②④3.在图形的平移中,下列说法中错误的是().A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是().A.△OCDB.△OABC.△OAFD.△OEF5.如图,△ABC的面积为2,将△ABC沿AC方向平移到△D FE,且AC=CD,则四边形AEFB的面积为()A.6 B.8 C.10 D.126.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是().A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19二、填空题7. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△A GE,那么△A GE与四边形AECD重叠部分的面积是.第7题第8题8.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为_______.9. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________.第9题第10题10. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC= cm.11.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为 .12.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与AB BC ,相交,交点分别为N M ,.如果y ON x OM AD AB ====,,6,4,则y 与x 的关系式为 .三、解答题13.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM ),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由) (2)如果AM=1,sin∠DMF=,求AB 的长.14.把两个全等的等腰直角三角板ABC 和EFG (其直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②). (1)在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论;(2)连接HK ,在上述旋转过程中,设BH=x ,△GKH 的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH 的面积恰好等于△ABC 面积的516?若存在,求出此时x 的值;若不存在,说明理由.15.如图,将矩形纸片ABCD 按如下顺序进行折叠: 对折、展平, 得折痕EF(如图①); 沿GC 折叠, 使点B 落在EF 上的点B ′ 处(如图②); 展平, 得折痕GC(如图③); 沿GH 折叠, 使点C 落在DH 上的点C ′ 处(如图④); 沿GC ′ 折叠(如图⑤); 展平, 得折痕GC ′、GH(如图⑥). (1)求图②中∠BCB′ 的大小;(2)图⑥中的△GCC′ 是正三角形吗?请说明理由.图⑤A BC D GH A'C'图⑥A BCD G H C'图④A BC D GH C'图③A BC DEF G 图②A BCD E F GB'ABCDEF 图①16.已知矩形纸片ABCD ,1,2==AD AB .将纸片折叠,使顶点A 与边CD 上的点E 重合. (1)如果折痕FG 分别与AD ,AB 交于点F ,G (如图(1)),,32=AF 求DE 的长. (2)如果折痕FG 分别与CD ,AB 交于点F ,G (如图(2)),AED ∆的外接圆与直线BC 相切,求折痕FG 的长.【答案与解析】一.选择题1.【答案】A.2.【答案】D.【解析】①温度计中液柱的上升或下降改变图形的大小,不属于平移;②打气筒打气时,活塞的运动属于平移;③钟摆的摆动是旋转,不属于平移;④传送带上瓶装饮料的移动符合平移的性质,属于平移.3.【答案】C.4.【答案】C.5.【答案】C.【解析】由题意可得平移的距离是2AC,AC=CD,连接FC,S△BFC=2S△ABC,S△ABC= S△FDC=S△FDE=2,∴四边形AEFB的面积为10. 6.【答案】D.【解析】∵△ADB绕点D旋转180°,得到△EDC,∴AB=EC,AD=DE,而AD=7,∴AE=14,在△ACE中,AC=5,∴AE-AC<EC<AC+AE,即14 -5<EC<14+5,∴9<AD<19.二.填空题7.【答案】22-2.【解析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,故AE=2,由折叠易得△ABG为等腰直角三角形,∴S△ABG=12BA•AG=2,S△ABE=1,∴CG=2BE-BC=22-2,∴CO=OG=2-2,∴S △COG =3-22,∴重叠部分的面积为2-1-(3-22)=22-2. 8.【答案】54π. 【解析】S 阴影=S 扇形ABB1=2505=3604AB ππ. 9.【答案】对角线平分内角的矩形是正方形.10.【答案】4cm.【解析】∵AB=2cm ,AB=AB 1∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE ,∴∠ABE=∠AB 1E=90° ∵AE=CE ,∴AB 1=B 1C ,∴AC=4cm . 11.【答案】 .【解析】根据折叠的性质可知CD=AC=3,B ′C=BC=4,∠ACE=∠DCE ,∠BCF=∠B ′CF ,CE ⊥AB , ∴B ′D=4﹣3=1,∠DCE+∠B ′CF=∠ACE+∠BCF , ∵∠ACB=90°, ∴∠ECF=45°,∴△ECF 是等腰直角三角形, ∴EF=CE ,∠EFC=45°, ∴∠BFC=∠B ′FC=135°, ∴∠B ′FD=90°,∵S △ABC =AC •BC=AB •CE , ∴AC •BC=AB •CE ,∵根据勾股定理求得AB=5, ∴CE=, ∴EF=,ED=AE=,∴DF=EF ﹣ED=, ∴B ′F=.故答案为:. 12.【答案】32y x =. 三.综合题 13.【解析】 解:(1)△AMP ∽△BPQ ∽△CQD , ∵四边形ABCD 是矩形, ∴∠A=∠B=∠C=90°,根据折叠的性质可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ,同理:△BPQ∽△CQD,根据相似的传递性,△AMP∽△CQD;(2)∵AD∥BC,∴∠DQC=∠MDQ,根据折叠的性质可知:∠DQC=∠DQM,∴∠MDQ=∠DQM,∴MD=MQ,∵AM=ME,BQ=EQ,∴BQ=MQ﹣ME=MD﹣AM,∵sin∠DMF==,∴设DF=3x,MD=5x,∴BP=PA=PE=,BQ=5x﹣1,∵△AMP∽△BPQ,∴,∴,解得:x=(舍)或x=2,∴AB=6.14.【解析】(1).在上述旋转过程中,BH=CK,四边形CHGK的面积不变.证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,B KCG CG BGBGH CGK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH=S△CGK.∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=12S△ABC=12×12×4×4=4,即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=x,∴CH=4-x,CK=x.由S△GHK=S四边形CHGK-S△CHK,得y=4 -12x(4-x),∴y=12x2-2x+4.由0°<α<90°,得到BH最大=BC=4,∴0<x<4;(3)存在.根据题意,得12x2-2x+4=516×8,解这个方程,得x1=1,x2=3,即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的5 16.15.【解析】(1)由折叠的性质知:B′C=BC,在Rt△B′FC中,∵cos∠B′CF=FCB C'=FCBC=12,∴∠B′CF=60°,即∠BCB′=60°;(2)根据题意得:GC平分∠BCC′,∴∠GCB=∠GCC′=12∠BCB′=30°,∴∠GCC ′=∠BCD-∠BCG=60°,由折叠的性质知:GH 是线段CC ′的对称轴, ∴GC ′=GC ,∴△GCC ′是正三角形.16.【解析】在矩形ABCD 中,AB=2,AD=1,,32=AF ,∠D=90°. 根据轴对称的性质,得EF=AF=23. ∴DF=AD-AF=13.在Rt △DEF 中,DE=22213-=333⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.(2)设AE 与FG 的交点为O .根据轴对称的性质,得AO=EO . 取AD 的中点M ,连接MO .则MO=12DE ,MO ∥DC . 设DE=x ,则MO=12x ,在矩形ABCD 中,∠C=∠D=90°, ∴AE 为△AED 的外接圆的直径,O 为圆心. 延长MO 交BC 于点N ,则ON ∥CD, ∴∠CNM=180°-∠C=90°,∴ON ⊥BC ,四边形MNCD 是矩形. ∴MN=CD=AB=2.∴ON=MN-MO=2-12x. ∵△AED 的外接圆与BC 相切, ∴ON 是△AED 的外接圆的半径, ∴OE=ON=2-12x ,AE=2ON=4-x . 在Rt △AED 中,AD 2+DE 2=AE 2,∴12+x 2=(4-x )2. 解这个方程,得x=158. ∴DE=158,OE=2-12x=1716. 根据轴对称的性质,得AE ⊥FG .∴∠FOE=∠D=90° 可得FO EO DA DE =,即FO=1730. 又AB ∥CD ,∴∠EFO=∠AGO ,∠FEO=∠GAO .。

中考数学图形与变换

中考数学图形与变换

中考数学图形与变换数学是中学生中考科目中的一项重要内容,其中数学的图形与变换是一个重要的考察点。

本文将围绕中考数学图形与变换展开讨论,并介绍一些相关的概念和方法。

一、图形的基本概念在数学中,图形是指由一组点或线段组成的具有特定形状和特征的对象。

常见的图形有点、直线、线段、角、三角形、四边形、圆等。

首先,我们来介绍一些常见的图形概念。

点是图形的基本单位,用一个大写字母表示,如A、B、C。

直线是由无数个连续的点组成,没有端点,用一对大写字母表示,如AB。

线段是直线的一部分,有两个端点,用一对大写字母表示,如AB。

角是由两个线段共享一个端点组成,用一个大写字母表示,如∠ABC。

三角形是由三个线段组成的图形,用三个大写字母表示,如△ABC。

四边形是由四个线段组成的图形,用四个大写字母表示,如ABCD。

圆是由一组处于同一平面上等距离于一个点的点组成的图形,用一个大写字母表示,如O。

二、图形的基本特征图形除了有形状之外,还具有一些基本特征,例如长度、面积和角度等。

长度是指图形所包含的线段的总长度。

在计算长度时,我们可以使用勾股定理、平移等方法进行求解。

面积是指图形所围成的空间区域的大小。

在计算面积时,根据不同的图形,可以使用不同的公式进行计算,例如三角形可以使用海伦公式,矩形可以使用边长相乘,圆可以使用πr²等。

角度是指由两个线段共享一个端点而形成的开口部分。

角度的度量单位是度,一般用度(°)表示。

在计算角度时,可以根据需要使用360度制或弧度制。

三、图形的变换方法图形的变换是指通过平移、旋转、翻转等操作改变图形的位置、方向或形状。

平移是指保持图形形状不变,仅仅对图形进行位置上的移动。

平移可以用向量来表示,根据向量的平移法则进行操作。

旋转是指保持图形形状不变,仅仅对图形进行旋转。

旋转可以通过绕一个特定点旋转或绕一个特定的线旋转来完成。

翻转是指将图形按照指定的轴进行对称操作,可以分为水平翻转、垂直翻转和中心对称三种。

初中数学解题技巧:几何变换法

初中数学解题技巧:几何变换法

初中数学解题技巧:几何变换法初中数学解题技巧:几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换要紧是初等变换。

有一些看来专门难甚至于无法下手的习题,能够借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法选择题是给出条件和结论,要求依照一定的关系找出正确答案的一类题型。

选择题的题型构思精巧,形式灵活,能够比较全面地考察学生的基础知识和差不多技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判定能力和运算能力等优点,不同的是填空题未给出答案,能够防止学生猜估答案的情形。

要想迅速、正确地解选择题、填空题,除了具有准确的运算、严密的推理外,还要有解选择题、填空题的方法与技巧。

下面通过实例介绍常用方法。

(1)直截了当推演法:直截了当从命题给出的条件动身,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这确实是传统的解题方法,这种解法叫直截了当推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。

当遇到定量命题时,常用此法。

(3)专门元素法:用合适的专门元素(如数或图形)代入题设条件或结论中去,从而获得解答。

这种方法叫专门元素法。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。

初中数学几何变换解题技巧

初中数学几何变换解题技巧

初中数学几何变换解题技巧初中数学几何变换法解题技巧在数学问题的研究中,经常使用变换方法将复杂问题转化为简单问题并求解。

转换是从一个集合的任何元素到同一集合的元素的一对一映射。

中学数学涉及的变换主要是初等变换。

有一些看起来很难甚至不可能做的练习,可以通过几何变换来简化。

另一方面,转化的观点也可以渗透到中学数学教学中。

把从等静条件下对图形的研究与运动中的研究结合起来,有利于理解图形的本质。

几何变换包括:(1)平移;(2)旋转;(3)对称性。

解决客观问题的方法选择题是给出条件和结论的题,要求根据一定的关系找到正确答案。

选择题构思巧妙,形式灵活,可以全面考查学生的基础知识和技能,从而增加试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一。

和选择题一样,它具有考试目标明确、知识覆盖面广、阅卷准确快速等优点,有利于考查学生的分析判断能力和计算能力。

不同的是填空题没有给出答案,这样可以防止学生猜测答案。

要快速、正确地解决选择题和填空题,除了要计算准确、推理严谨外,还需要有解决选择题和填空题的方法和技巧。

以下示例介绍了常用方法。

(1)直接演绎法:直接从命题给出的条件出发,运用概念、公式、定理等。

进行推理或计算,得出结论,并选择正确答案。

这就是传统的解法,叫做直接演绎法。

(2)验证法:从问题中找出合适的验证条件,然后通过验证找出正确答案,或将备选答案代入条件中进行验证,找出正确答案。

这种方法称为验证方法(也称为替代方法)。

这种方法在遇到数量命题时经常用到。

(3)特殊元素法:用适当的特殊元素(如数字或图形)代入问题设置条件或结论,从而得出答案。

这种方法称为特殊元素法。

(4)排除筛选法:对于只有一个正确答案的选择题,根据数学知识或推理计算,排除不正确的结论,筛选出剩余的结论,从而做出正确的结论。

(5)图解法:借助符合标题要求的图形或图像的性质和特征,通过判断做出正确选择的方法,称为图解法。

图解法是解决选择题的常用方法之一。

初中数学图形变换技巧整理

初中数学图形变换技巧整理

初中数学图形变换技巧整理图形变换是初中数学中的一个重要内容,对于学生来说,掌握一些图形变换的技巧是非常必要的。

在初中数学中,图形变换主要包括平移、旋转和翻转三种基本变换。

下面,我将为大家整理一些常见的图形变换技巧,希望对大家的学习有所帮助。

首先,我们来看平移变换。

平移是指在平面内保持图形大小和形状不变的前提下,将图形沿着平行于原有位置的某个方向移动一定距离。

平移变换的关键是确定平移的方向和距离。

在进行平移变换时,可以利用向量的性质来进行计算。

假设平移向量为\(\overrightarrow{v}(a,b)\),那么图形上的每一个点P(x,y)在平移后的位置为P'(x+a,y+b)。

通过这个规律,我们可以很方便地进行平移变换的计算。

其次,我们来看旋转变换。

旋转是指围绕某一点(旋转中心)将图形按照一定角度旋转的变换。

旋转变换的关键是确定旋转中心和旋转角度。

在进行旋转变换时,可以利用正弦、余弦函数来进行计算。

假设旋转中心为O,旋转角度为θ,那么图形上的每一个点P(x,y)在旋转后的位置为P',可以通过下列公式计算得到:\[x' = x \cdot \cos\theta - y \cdot \sin\theta\]\[y' = x \cdot \sin\theta + y \cdot \cos\theta\]通过这个规律,我们可以方便地进行旋转变换的计算。

最后,我们来看翻转变换。

翻转是指将图形关于一个直线对称的变换。

在进行翻转变换时,可以利用翻折纸的思想来进行计算。

假设翻转直线为l,图形上的每一个点P到翻转直线的距离为d,那么点P对应的翻转后的点P',可以通过下列规律计算得到:\[P' = P - 2 \cdot d\]通过这个规律,我们可以很方便地进行翻转变换的计算。

除了上述三种基本的图形变换外,我们还可以进行多种变换的组合,来达到更复杂的效果。

例如,通过先进行平移变换,再进行旋转变换,可以实现图形的平移和旋转同时进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学图形的变换专题复习
1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;
2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;
3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.
4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);
5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.
【知识网络】
【考点梳理】
考点一、平移变换
1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为
平移,平移不改变图形的形状和大小.
【要点诠释】
(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内
的变换;
(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是
图形平移的依据;
(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,
而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.
2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动
相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所
连的线段平行且相等,对应角相等.
【要点诠释】
(1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征;
(2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,
又可作为平移作图的依据.
考点二、轴对称变换
1.轴对称与轴对称图形
轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
2.轴对称变换的性质
①关于直线对称的两个图形是全等图形.
②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.
③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.
④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.
3.轴对称作图步骤
①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.
②按原图形的连结方式顺次连结对称点即得所作图形.
4.翻折变换:图形翻折问题是近年来中考的一个热点,其实质是轴对称问题,折叠重合部分必全等,折痕所在直线就是这两个全等形的对称轴,互相重合的两点(对称点)连线必被折痕垂直平分.
【要点诠释】翻折的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等,折叠图形中有相似三角形,常用勾股定理.
考点三、旋转变换
1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.
2.旋转变换的性质
图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.
3.旋转作图步骤
①分析题目要求,找出旋转中心,确定旋转角.
②分析所作图形,找出构成图形的关键点.
③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.
④按原图形连结方式顺次连结各对应点.
【要点诠释】
1.图形变换与图案设计的基本步骤
①确定图案的设计主题及要求;
②分析设计图案所给定的基本图案;
③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;
④对图案进行修饰,完成图案.
2.平移、旋转和轴对称之间的联系
一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.
【典型例题】
类型一、平移变换
1.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.
(1)证明△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.
【思路点拨】
(1)根据已知利用SAS判定△A′AD′≌△CC′B;
(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′
是菱形,由已知可得到BC′=1
2
AC,AB=
1
2
AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.。

相关文档
最新文档