初二数学期末考试卷带答案
山东初二初中数学期末考试带答案解析
山东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列实数中,无理数是A.B.C.D.0.10100100012.-64的立方根是A.-8B.±8C.±4D.-43.下列图形:其中是轴对称图形的共有A.1个B.2个C.3个D.4个4.向如图所示的等边三角形区域扔沙包(区域中每一个小等边三角形除颜色外完全相同),假设沙包击中每一个小等边三角形是等可能的,扔沙包一次,击中阴影区域的概率等于A.B.C.D.5.下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,66.下列各式成立的是A.=9B.="2"C.=±5D.=67.若等腰三角形的一角为100°,则它的底角是A.20°B.40°C.60°D.80°8.一次函数y=-2x+4的图象与x轴的交点坐标是A.(2,0)B.(0,2)C.(0,4)D.(4,0)9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=12,BD=8,则点D到AB的距离是A.6B.4C.3D.210.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是A B C D11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=4,斜边AC的垂直平分线分别交AB、AC于点E、O,连接CE,则CE的长为A. 5B. 6C. 7D. 4.512.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路,若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是A.汽车在高速公路上行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上行驶速度为60km/hD.该记者在出发后4.5h到达采访地二、填空题1.49的算术平方根是_______。
安徽初二初中数学期末考试带答案解析
安徽初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.点(﹣2,3)在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数y=的自变量x 的取值范围是( )A .x≠﹣2B .x≥﹣2C .x >﹣2D .x <﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形5.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D .7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A .m=﹣1B .m=1C .m=±1D .m≠19.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >210.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A.6B.12C.32D.64二、填空题1.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.2.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.3.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 为.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.5.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题1.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E 的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)2.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ; (2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为 .3.如图,点F 、C 在BE 上,BF=CE ,∠A=∠D ,∠B=∠E .求证:AB=DE .4.小明家与学校在同一直线上且相距720m ,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x (分),兄弟两人之间的距离为ym ,图中的折线是y 与x 的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B 的坐标是 ;(2)线段AB 所表示的y 与x 的函数关系式是 ;(3)试在图中补全点B 以后的图象.5.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l 2与x 轴交于点B ,动点P 沿路线O→A→B 运动.(1)求点A 的坐标,并回答当x 取何值时y 1>y 2?(2)求△AOB 的面积;(3)当△POB 的面积是△AOB 的面积的一半时,求出这时点P 的坐标.安徽初二初中数学期末考试答案及解析一、选择题1.下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.点评:此题主要考查了轴对称图形,关键是掌握轴对称的定义.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据各象限内点的坐标特征解答即可.解:点(﹣2,3)所在的象限是第二象限,故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.函数y=的自变量x的取值范围是()A.x≠﹣2B.x≥﹣2C.x>﹣2D.x<﹣2【答案】B【解析】根据被开方数大于等于0列式计算即可得解.解:由题意得:x+2≥0,解得x≥﹣2.故选:B.点评:本题考查的知识点为:二次根式的被开方数是非负数,熟记二次根式的被开方数是非负数是解决本题的关键.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】B【解析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【答案】D【解析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.解:线段BE是△ABC的高的图是选项D.故选D.点评:本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.6.下列各图中,能表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】在坐标系中,对于x 的取值范围内的任意一点,通过这点作x 轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .点评:本题主要考查了函数的定义,函数的意义反映在图象上简单的判断方法是:x 的取值范围内做垂直x 轴的直线与函数图象只会有一个交点.7.下列命题中真命题是( )A .三角形按边可分为不等边三角形,等腰三角形和等边三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形的一个外角大于任何一个内角D .三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【答案】D【解析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.解:A 、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B 、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C 、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D 、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D .点评:本题考查了命题与定理的知识,解题的关键是了解三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质,难度不大.8.若一次函数y=(m ﹣1)x+m 2﹣1的图象通过原点,则m 的值为( )A .m=﹣1B .m=1C .m=±1D .m≠1【答案】A【解析】根据一次函数的定义及函数图象经过原点的特点列出关于m 的不等式组,求出m 的值即可.解:∵一次函数y=(m ﹣1)x+m 2﹣1的图象经过原点,∴0=0+m 2﹣1,m ﹣1≠0,即m 2=1,m≠1解得,m=﹣1.故选A .点评:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b (k≠0)中,当b=0时函数图象经过原点..9.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为( )A .3<a <6B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >2【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:由题意得:8﹣3<1﹣2a <8+3,解得:﹣5<a <﹣2,故选:B .点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .64【答案】C【解析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°, ∵∠MON=30°, ∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°, ∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°, ∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32.故选:C .点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.二、填空题1.如图,在Rt △ABC 中,∠C=90°,边AB 的垂直平分线交BC 点D ,AD 平分∠BAC ,则∠B 度数为 .【答案】30°【解析】根据线段垂直平分线的性质得到DA=DB ,得到∠B=∠DAB ,根据角平分线的定义得到∠DAB=∠DAC ,根据三角形内角和定理计算即可.解:∵DE 是△ABC 的AB 边的垂直平分线,∴AD=BD , ∴∠B=∠DAB , ∵AD 平分∠BAC , ∴∠DAB=∠DAC ,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°点评:本题考查了线段垂直平分线性质的应用,能求出∠B=∠DAB=∠DAC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.【答案】y=﹣2x+2.【解析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.点评:本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.3.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB 为.【答案】10°【解析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.点评:本题考查轴对称的性质,属于基础题,注意外角定理的运用是解决本题的关键.4.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.【答案】4.【解析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故答案为:4.点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等.5.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.【答案】1【解析】结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.解:∵(6﹣2)÷(4﹣2)=2,∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据题意可得:,解得:.∴每家企业供应的足球数量a=1万个.故答案为:1.点评:本题考查了二元一次方程组的应用,解题的关键是得出关于x、a的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题1.夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E 的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)【答案】【解析】延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.解:如图所示,点E或E′就是所求的点.点评:本题考查作图应用设计、角平分线的作法、线段的垂直平分线的作法等知识,解题的关键是熟练掌握这些知识的应用,属于中考常考题型.2.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ; (2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为 .【答案】(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2.解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为:(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.3.如图,点F 、C 在BE 上,BF=CE ,∠A=∠D ,∠B=∠E .求证:AB=DE .【答案】见解析【解析】欲证明AB=DE ,只要证明△ABC ≌△DEF 即可.证明:∵BF=CE ,∴BF+CF=CE+CF 即BC=EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (AAS ),∴AB=DE .点评:本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键,记住一般三角形全等的四种判定方法,属于中考常考题型.4.小明家与学校在同一直线上且相距720m ,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x (分),兄弟两人之间的距离为ym ,图中的折线是y 与x 的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是 m/分,点B 的坐标是 ;(2)线段AB 所表示的y 与x 的函数关系式是 ;(3)试在图中补全点B 以后的图象.【答案】(1)60,120;(2)y=kx+b ,(3)【解析】(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m ;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;(2)利用待定系数法求出解析式,即可解答;(3)根据点B 的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发, ∴弟弟1分钟走了60m , ∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B 的坐标为:(9,120),故答案为:60,120;(2)设线段AB 所表示的y 与x 的函数关系式是:y=kx+b ,把A (3,0),B (9,120)代入y=kx+b 得:解得: ∴y=20x ﹣60,故答案为:y=20x ﹣60.(3)如图所示;点评:本题考查了一次函数的应用,解决本题的关键是看懂函数图象,利用待定系数法求一次函数的解析式.5.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l 2与x 轴交于点B ,动点P 沿路线O→A→B 运动.(1)求点A 的坐标,并回答当x 取何值时y 1>y 2?(2)求△AOB 的面积;(3)当△POB 的面积是△AOB 的面积的一半时,求出这时点P 的坐标.【答案】(1)当x >2时,y 1>y 2;(2)3;(3)P (1,1)或(,1).【解析】(1)当函数图象相交时,y 1=y 2,即﹣2x+6=x ,再解即可得到x 的值,再求出y 的值,进而可得点A 的坐标;当y 1>y 2时,图象在直线AB 的右侧,进而可得答案;(2)由直线l 2:y 2=﹣2x+6求得B 的坐标,然后根据三角形面积即可求得;(3)根据题意求得P 的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P 点的坐标.解:(1)∵直线l 1与直线l 2相交于点A ,∴y 1=y 2,即﹣2x+6=x ,解得x=2,∴y 1=y 2=2,∴点A 的坐标为(2,2);观察图象可得,当x >2时,y 1>y 2;(2)由直线l 2:y 2=﹣2x+6可知,当y=0时,x=3,∴B (3,0),∴S △AOB =×3×2=3;(3)∵△POB 的面积是△AOB 的面积的一半,∴P 的纵坐标为1, ∵点P 沿路线O→A→B 运动,∴P (1,1)或(,1).点评:此题主要考查了两直线相交,一次函数与不等式的关系以及三角形面积等,关键是掌握凡是函数图象经过的点必能满足解析式.。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
江西初二初中数学期末考试带答案解析
江西初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在式子,,,,,中,分式的个数是 A .5B .4C .3D .22.反比例函数的图像经过点,则该函数的图像在A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限3.在下列性质中,平行四边形不一定具有的性质是 A .对边相等 B .对边平行C .对角互补D .内角和为3604.菱形的两条对角线长分别为和,则它的周长和面积分别为 A .B .C .D .5.函数的图像上有两点,,若 0﹤﹤,则A .﹤B .﹥C .=D .,的大小关系不能确定6.在下列各组数据中,可以构成直角三角形的是 A .0.2,0.3,0.4B .,,C .3,4,5D .5,6,77.样本数据是3,6,10,4,2,则这个样本的方差是 A .8 B .5 C .3D .8.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是A .①②③B .②③④C .①③④D .①②③④二、填空题1.生物学家发现一种病毒的长度约为0.00000043mm ,•用科学记数法表示这个数的结果为 .2.若的值为零, 则的值是 .3.数据1,2,8,5,3,9,5,4,5,4的众数是_________,中位数是__________.4.若□ABCD 的周长为100cm ,两条对角线相交于点O ,△AOB 的周长比△BOC 的周长多10cm ,那么AB= cm ,BC= cm.5.若关于的分式方程无解,则常数的值为 .6.若函数是反比例函数,则的值为________________.7.已知等腰梯形的一个底角为600,它的两底边分别长10cm、16cm,则等腰梯形的周长是_____________________.8.如图,将矩形沿直线折叠,顶点恰好落在边上点处,已知,,则图中阴影部分面积为 __.三、解答题1.先化简,再取一个你认为合理的x值,代入求原式的值.2.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
福建初二初中数学期末考试带答案解析
福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、单选题1.已知函数在实数范围内有意义,则自变量x的取值范围是()A.B.C.D.2.下列式子中,表示y是x的正比例函数是()A.B.C.D.3.下列二次根式中不能够与合并的是()A.B.C.D.4.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()A.B.C.D.5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,甲说:“我们组成绩是88分的同学最多”,乙说:“我们组的11位同学成绩排在最中间的恰好也是88分”,上面两位同学的话能反映处的统计量分别是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=;B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:57.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当∠ABC=90°时,它是正方形8.如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=4,AO=3,则四边形DEFG的周长为()A. 6B. 7C. 8D. 129.在平面直角坐标系中,A(1,3),B(2,4),C(3,5),D(4,6)其中不与E(2,-3)在同一个函数图像上的一个点是()A.点A B.点B C.点C D.点D10.如图,点A、D分别在两条直线y=3x和y=x上,AD//x轴,已知B、C都在x轴上,且四边形ABCD是矩形,则的值是()A. B. C. D.二、填空题1.计算: =____________2.已知函数y=kx-2,请你补充一个条件_______,使y随x的增大而减小。
2023北京西城区初二(下)期末数学试题及答案
2023北京西城初二(下)期末数 学2023.7注意事项:1.本试卷共8页,共两部分,四道大題,26道小题.其中第一大题至第三大题为必做题,第四大道为选做道,计入总分,考试时间100分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将考试材料一并交回.第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)1. 下列各式中,是最简二次根式的是( )2. 以下列各组数为边长,能构成直角三角形的是( )A. 2,3,3B. 2,3,4C. 2,3,5D. 233. 下列计算,正确的是( )3=-=23=⨯2÷=4. 下列命题正确的是( )A. 对角线相等的四边形是平行四边形B. 对角线相等且互相平分的四边形是菱形C. 对角线垂直且互相平分的四边形是矩形D. 对角线垂直、相等且互相平分的四边形是正方形5. 在Rt ABC △中,90ACB ∠=︒,D 为斜边AB 的中点.若8AC =,6BC =,则CD 的长为( )A. 10B. 6C. 5D. 46. 小雨在参观故宫博物馆时,被太和殿窗棂的三交六椀菱花图案所吸引,他从中提取出一个含60︒角的菱形ABCD (如图1所示).若AB 的长度为a ,则菱形ABCD 的面积为( )C. 2a 27. 台风影响着人们的生产和生活.人们为研究台风,将研究条件进行一定的合理简化,把近地面风速画在一个以台风中心为原点,以台风半径为横轴,风速为纵轴的坐标系中,并在图中标注了该台风的12级、10级和7级风圈半径,如12级风圈半径是指近地面风速衰减至32.7m /s 时,离台风中心的距离约为150km .那么以下关于这场台风的说法中,正确的是( )A. 越靠近台风中心位置,风速越大B. 距台风中心150km 处,风速达到最大值C. 10级风圈半径约为280kmD. 在某个台风半径达到最大风速之后,随台风半径的增大,风速又逐渐衰减8. 在平面直角坐标系xOy 中,矩形OABC ,()0,3A ,()2,3B ,()2,0C ,点M 在边OA 上,1OM =.点P 在边AB 上运动,连接PM ,点A 关于直线PM 的对称点为A '.若PA x =,MA A B y +'=',下列图像能大致反映y 与x 的函数关系的是( ).A. B.C. D.第二部分 非选择题二、填空题9. 在实数范围内有意义,则实数x 的取值范围是______.10. 0=,则=a ______,b =______.11. 若ABC 的周长为6,则以ABC 三边的中点为顶点的三角形的周长等于______.12. 某商场招聘员工,现有甲、乙两人参加竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)和各项占比如下表所示,那么从甲、乙两人各自的平均成绩看,应该录取:______测试项目计算机语言商品知识在平均成绩中的占比50%30%20%甲的成绩708090乙的成绩90807013. 如图,直线y mx n =+与直线y kx b =+的交点为A ,则关于x ,y 的方程组,y mx n y kx b =+⎧⎨=+⎩的解是______.14. 小杰利用教材中的剪纸活动设计了一个魔术.他将一个长方形纸片对折两次,剪下一个45︒角(图1),展平后得到一个带正方形孔洞的魔术道具(图2),这个正方形孔洞ABCD 的边长为2cm (图4).他试图将一个直径为3cm 的圆形铁环(铁环厚度忽略不计)穿过这个孔洞,没有成功,于是他对这个道具进行折叠、旋转(图5、图6),并调整纸片产生一个新的“孔洞”(图3).请你计算调整前后的孔洞最“宽”处的“宽度”来说明魔术的效果.图4中的“宽度”BD =______cm ;图6中的“宽度”BD ''=______cm .15. 如图,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,CF 平分BCD ∠交AD 于点F ,BE 与CF 的交点在ABCD Y 内.若5BC =,3AB =,则EF =______.16. 在ABC 中,3BC =,BD 平分ABC ∠交AC 于点D ,DE BC ∥交AB 于点E ,EF AC ∥交BC 于点F .有以下结论:①四边形EFCD 一定是平行四边形;②连接DF 所得四边形EBFD 一定是平行四边形;③保持ABC ∠的大小不变,改变BA 的长度可使BF FC =成立;④保持BA 的长度不变,改变ABC ∠的大小可使BF FC =成立.共中所有的正确结论是:______.(填序号即可)三、解答题17. 计算:(1(2)+--.18. 在平面直角坐标系xOy 中,直线:26m y x =+与x 轴的交点为A ,与y 轴的交点为B ,将直线m 向右平移3个单位长度得到直线l .(1)求点A ,点B 的坐标,画出直线m 及直线l ;(2)求直线l 的解析式;(3)直线l 还可以看作由直线m 经过其他方式的平移得到的,请写出一种平移方式.19. 尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l 及直线l 外一点P .求作:直线m ,使得m l ∥,且直线m 经过点P .;作法:①在直线l 上取一点A ,连接AP ,以点A 为圆心,AP 的长为半径画弧,交直线l 于点B ;②分别以点P ,点B 为圆心,AP 的长为半径画弧,两弧交于点C (不与点A 重合);③经过P ,C 两点作直线m .直线m 就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BC .∵AP = = = ,∴四边形PABC 是(填“矩形”“菱形”或“正方形”)( )(填推理的依据).∴m l ∥( )(填推理的依据).20. 如图,在ABCD Y 中,AE BC ⊥于点E ,CF AD ⊥于点F .(1)求证:四边形AECF 是矩形;(2)连接BD ,若30CBD ∠=︒,5BC =,BD =DF 的长.21. 已知甲、乙两地相距60km ,小徐和小马两人沿同一条公路从甲地到乙地,小徐骑自行车3h 到达.小马骑摩托车比小徐晩1h 出发,骑行30km 时追上小徐,停留h n 后继续以原速骑行.在整个行程中,两人与甲地的距离y 与小徐骑行时间x 的对应关系分别如图中线段OA 和折线段BCDE 所示,DE 与OA 的交点为F .(1)线段OA 所对应的函数表达式为 ,相应自变量x 的取值范围是 ,线段BC 所对应的函数表达式为 ,相应自变量x 的取值范围是 ;(2)小马在BC 段的速度为 km/h ,n = ;(3)求小马第二次追上小徐时与乙地的距离.22. 某校为了解课外阅读情况,在初二年级的两个班中,各随机抽取部分学生调查了他们一周的课外阅读时长(单位:小时),并对数据进行了整理、描述和分析.下面给出了部分信息.a .甲班学生课外阅读时长(单位:小时):7,7,8,9,9,11,12b .乙班学生课外阅读时长的折线图:c .甲、乙两班学生阅读时长的平均数、众数、中位数:平均数中位数众数甲班m9t乙班9n9根据以上信息,回答下列问题:(1)写出表中m ,t ,n 的值;(2)设甲、乙两班数据的方差分别为21s ,22s ,则21s 22s (填“>”“=”或“<”).23. 在平面直角坐标系xOy 中,对于非零的实数a ,将点(),P x y 变换为,y P ax a ⎛⎫⎪⎝⎭'称为一次“a -变换”.例如,对点()2,3P 作一次“3-变换”,得到点()6,1P '.已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B .若对直线l 上的各点分别作同样的“a -变换”,点A ,B 变换后的对应点分别为A ',B '.(1)当2a =-时,点A '的坐标为 ;(2)若点B '的坐标为()0,6,则a 的值为 ;(3)以下三个结论:①线段AB 与线段A B ''始终相等;②BAO ∠与B A O ∠''始终相等;③AOB 与A OB ''△的面积始终相等.其中正确的是 (填写序号即可),并对正确的结论加以证明.24. 在菱形ABCD 中,60ABC ∠=︒,M ,N 两点分别在AB ,BC 边上,BM BN =.连接DM ,取DM 的中点K ,连接AK ,NK .(1)依题意补全图1,并写出AKN ∠的度数;(2)用等式表示线段NK 与AK 的数量关系,并证明;(3)若6AB =,AC ,BD 的交点为O ,连接OM ,OK ,四边形AMOK 能否成为平行四边形?若能,求出此时AM 的长;若不能,请说明理由.四、选做题25. 在单位长度为1的正方形网格中,如果一个凸四边形的顶点都是网格线交点,我们称其为格点凸四边形.如图,在平面直角坐标系xOy 中,矩形ORST 的四个顶点分别为()0,0O ,()0,5R,()8,0T ,()8,5S .已知点()2,4E ,()0,3F ,()4,2G .若点P 在矩形ORST 的内部,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6,所有符合题意的点P 的坐标为 .26. 在平面直角坐标系xOy 中,对于正方形ABCD 和它的边上的动点P ,作等边OPP '△,且O ,P ,P '三点按顺时针方向排列,称点P '是点P 关于正方形ABCD 的“友好点”.已知(),A a a -,(),B a a ,(),C a a -,(),D a a --(其中0a >).(1)如图1,若3a =,AB 的中点为M ,当点P 在正方形的边AB 上运动时,①若点P 和点P 关于正方形ABCD 的“友好点”点P '佮好都在正方形的边AB 上,则点P '的坐标为 ;点M 关于正方形ABCD 的“友好点”点M '的坐标为 ;②若记点P 关于正方形ABCD 的“友好点”为(),P m n ',直接写出n 与m 的关系式(不要求写m 的取值范围);(2)如图2,()1,1E --,()2,2F .当点P 在正方形ABCD 的四条边上运动时,若线段EF 上有且只有一个点P 关于正方形ABCD 的“友好点”,求a 的取值范围;(3)当24a ≤≤时,直接写出所有正方形ABCD 的所有“友好点”组成图形的面积.参考答案第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)题号12345678答案BDCDCBDA第二部分 非选择题二、填空题9. 2x ≥.10. 1,5-.11. 3.12.乙.13. 13x y =⎧⎨=⎩14. 4.15. 1.16.①③.三、解答题17. (1)2=+=+=.(2)+--225=--1=-.18. (1)解:对于直线:26m y x =+,当0x =时,6y =当0y =时,260x +=,解得3x =-,∴()30A -,,()06B ,,经过()30A -,,()06B ,两点的直线即为直线m ,然后将直线m 向右平移3个单位长度得到直线l ,所以m l ∥,且直线l 经过()00O ,;作出直线m 及直线l 的图象如图所示:(2)解:因为直线:26m y x =+向右平移3个单位长度得到直线l ,所以直线():236l y x =-+,即直线l 的解析式为2y x =;(3)解:∵直线:26m y x =+,直线:2l y x =,∴直线m 向下平移6个单位长度得到直线l (答案不唯一).19. (1)如图,直线m 即为所求作;(2)证明:连接BC ,∵AP AB PC BC ===,∴四边形PABC 是菱形.(四条边相等的四边形是菱形).∴m l ∥(菱形的对边平行).故答案为:AB ;PC ;BC ;菱形;四条边相等的四边形是菱形;菱形的对边平行.20. (1)证明:如图3.∵四边形ABCD 是平行四边形,∴AD BC ∥.∴180AEC EAF ∠+∠=︒,∵AE BC ⊥于点E ,CF AD ⊥于点F ,∴90AEC ∠=︒,90AFC ∠=︒.∴18090EAF AEC ∠=︒-∠=︒.∴90AEC EAF AFC ∠=∠=∠=︒.∴四边形AECF 是矩形.(2)如图4,作DG BC ⊥,交BC 的延长线于点G .∵在Rt DBG △中,90DGB ∠=︒,30DBG ∠=︒,BD =,∴2BDDG ==6BG ==.∵5BC =,∴1CG BG BC =-=.同理可得四边形FCGD 是矩形.∴1DF CG ==.21. (1)解:由题意得,线段OA 是小徐的函数图象,折线段BCDE 是小马的函数图象,∴小徐的骑行速度为60320km /h ÷=,∴线段OA 所对应的函数表达式为20y x =,其中相应自变量x 的取值范围是03x ≤≤;在20y x =中,当2030y x ==, 1.5x =,∴在小徐出发1.5h 时,小马追上小徐,∴小马的骑行速度为3060km/h 1.51=-,∴线段BC 所对应的函数表达式为()6016060y x x =-=-,其中相应自变量x 的取值范围是1 1.5x ≤≤;故答案为:20y x =,03x ≤≤,6060y x =-,1 1.5x ≤≤;(2)解:由(1)得小马在BC 段的速度为60km/h ,2 1.50.5n =-=,故答案为:60,0.5;(3)解:设小马在小徐出发t 小时后第二次追上小徐,由题意得,()2030602t t =+-,解得 2.25t =,∴小马在小徐出发2.25小时后第二次追上小徐,∴小马第二次追上小徐时与乙地的距离为60 2.252015km -⨯=.22. (1)平均数1(778991112)97=++++++=,故9m =,出现次数最多的有7和9,故7,9t =;由图知,乙班中位数为9,故9n =.(2)222222221122(79)(79)(89)(99)(99)(119)(129)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦222222222146(59)(79)(99)(99)(99)(109)(149)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦∴2212S S <.23. (1)直线24y x =-+与x 轴交于点A ,令0y =,即240x -+=,解得2x =,(2,0)A ∴,当2a =-时,点A '的坐标为0(22,)2-⨯-,即(4,0)-;故答案为(4,0)-(2)直线24y x =-+与y 轴交于点B ,令0x =时,4y =,(0,4)B ∴,若点B '的坐标为()0,6,即4(0,)a a ⨯,46a ∴=,解得23a =,经检验23a =是分式方程的解,则a 的值为23;故答案为23(3)③正确,理由如下:证明:∵直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,∴()2,0A ,()0,4B .∵点A ,B 变抰后的对应点分别为A ',B ',∴()2,0A a ',40,B a ⎛⎫⎪⎝⎭'.∵12442AOB S =⨯⨯=△,14242A OB S a a ''=⨯⨯=△,∴A OB AOB S S ''= ,即③正确.故答案为③24. (1)解:补全图形如图所示:.延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,∵AK EK =,∴NK AE ⊥,即90AKN ∠=︒.(2)解:NK ,证明如下:延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.∵K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,MAN CNE ∠=∠.∵ANC ABC BAN ∠=∠+∠,ANC ANE CNE ∠=∠+∠,∴60ANE ABC ︒∠=∠=∴ANE 为等边三角形,60NAK ∠=︒,在Rt ANK △中,90AKN ∠=︒,60NAK ∠=︒,可得30ANK ∠=︒,∴2AN AK=∴NK ==.(3)解:如图:四边形AMOK 能成为平行四边形,理由如下:∵菱形ABCD 的对角线AC ,BD 的交点为O ,∴BO OD =.∵DM 的中点为K ,∴OK 为DMB 的中位线.∴2BM OK =.∵四边形AMOK 为平行四边形,∴AM OK =.∴23AB AM BM AM OK AM =+=+=.∵6AB =,∴123AM AB ==.四、选做题25. 解:如图,111421214223222EFG S =⨯-⨯⨯-⨯⨯-⨯⨯=V ,113232P EG S =⨯⨯= ,∴11336EFG P EG P EFG S S S =+=+=四边形 ,此时,格点1P 的坐标为()5,4,过格点1P 作EG 的平行线,过格点23,P P ,则有:2313P EG P EG P EG S S S === ,∴26P EFG S =四边形,36P EFG S =四边形,∴()26,3,P ()37,2,P 又()411112422213,222P FG S =⨯+⨯-⨯⨯-⨯⨯= ∴41336EFG P FG P EFG S S S =+=+=四边形 ∴()42,1,P 所以,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6的点P 有四处,坐标为()()()()6,3,5,4,7,2,2,1,故答案为:()()()()6,3,5,4,7,2,2,1.26. (1)①);32⎫⎪⎪⎭;如图,OP OP PP ''==∴PM P M '=,3OM =,30MOP MOP ¢Ð=Ð=°∴2OP MP ¢¢=∴Rt OMP ¢ 中,222OM MP OP ¢¢+=,2223(2)MP MP ¢¢+=,解得MP '=∴P ;如图,过点M '作M F x '⊥轴,垂足为F ,则90OFM ¢Ð=°,3OM ¢=,∴9030M OF MOM ¢¢Ð=°-Ð=°∴1322M F OM ¢¢==∴OF ===∴32M ⎫'⎪⎪⎭②6n +.如图,直线P M ''交x 轴于点G ,∵60POP MOM ¢¢Ð=Ð=°∴POP MOP MOM MOP ¢¢¢¢Ð-Ð=Ð-Ð即POM P OM ¢¢Ð= 又,OP OP OM OM ¢¢==∴POM P OM ¢¢@ ∴90OM P OMP ¢¢Ð=Ð=°∵906030M OG ¢Ð=°-°=°,∴90903060OGM M OG ¢¢Ð=°-Ð=°-°=°,点(,)P m n '在直线M G '上,设直线解析式为(0)y kx b k =+≠,则332b b +=+=解得6k b ⎧=⎪⎨=⎪⎩∴6n +;(2)如上图,由(1)知若 (),A a a -,则OM OM a ¢==,Rt OM G ¢ 中,12M G OG ¢=,2221()2a OG OG +=,解得OG =,即点,0)G ,由(1)知点P 在线段AB 上时,直线P M ''与x 轴相交锐角为60︒,可设直线M G '为y q =-+,代入,0)G a ,解得2q a =,故点P '在直线2y a =-+上,即A B ''解析式为2y a =-+;如下图所示,同理可得,直线C D ''解析式为2y a =-,经过()1,1E --,则1(1)2a -=--,解得a =;如下图所示时,直线A B ''的解析式为2y a =+,经过()2,2F,则222a =+解得1a =+.1a <+.(3)如图,当2a =时,点P '轨迹所在四边形A B C D ''''的面积为2(22)16´=,当4a =时,点P '轨迹所在四边形的面积为2(24)64´=,故24a ≤≤时,正方形ABCD 的所有“友好点”组成图形的面积为641648-=.。
福建初二初中数学期末考试带答案解析
福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.不等式的解集在数轴上表示正确的是()2.如果,那么下列各式中正确的是()A.B.C.D.3.下列调查适合作普查的是()A.了解一批圆珠笔笔芯的使用寿命B.了解你们班同学的身高C.了解龙年春节晚会的收视率D.了解我市居民对废电池的处理情况4.下列命题是真命题的是()A.相等的角是对顶角B.两直线被第三条直线所截,内错角相等C.若D.所有的等边三角形都相似5.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为3米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米6.若分式的值为零,则x等于()A.2B.-2C.±2D.07.已知△ABC∽△DEF,如果∠A=55º,∠B=100º,则∠F=()A.55ºB.100ºC.25ºD.30º8.在方差的计算公式s=[(x-20)+(x-20)+……+(x-20)]中,数字10和20分别表示的意义可以是()A.数据的个数和平均数B.平均数和数据的个数C.数据的个数和方差D.数据组的方差和平均数9.如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),由B、O、C组成的三角形与ΔAOB相似,下列满足条件的点C是()A.(3,0)B.(2,0)C.(1,0) D(-2,0)10.一次函数的图象如图所示,当-3 < < 3时,的取值范围是()A.>4B.0<<2C.0<<4D.2<<4二、填空题1.计算:.2.因式分解:= .3.某学习小组各成员期中数学测试成绩分别是90分,98分,87分,78分,65分。
这次测试成绩的极差是分.4.如图,AB∥CD,∠A=400,∠C=∠E,则∠C的度数是.5.如图,三角尺在灯泡的照射下在墙上形成影子,.现测得则这个三角尺的面积与它在墙上所形成影子图形的面积之比是.6.已知,则= .7.某公司打算至多用1000元印刷广告单。
山西初二初中数学期末考试带答案解析
山西初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.若直角三角形两直角边长分别为6和8,则它的斜边长为.2.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是.3.当x时,式子有意义.4.如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为______________.5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.6.有两棵树,一棵高6米,另一棵高2米,两树相距3米,小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.二、单选题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等2.已知x=2是一元二次方程x2﹣mx+2=0的一个解,则m的值是()A.﹣3B.3C.0D.0或33.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8B.12C.16D.184.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm B.8cm C.10cm D.12cm5.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.三、解答题1.计算:(1)(+)(-)(2)(3)2.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.3.如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)4.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.5.某服装柜发现,某童装平均每天可售出20件,每件盈利40元,商城决定采取适当的降价措施,扩大销售量.经过调查发现,每件童装降价4元,平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装降价多少?6.甲、乙两船同时从港口A出发,甲船以3海里/时的速度向北偏东35°航行,乙船向南偏东55°航行。
河北初二初中数学期末考试带答案解析
河北初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.如果有意义,那么字母x 的取值范围是( ) A .x >1 B .x≥1C .x≤1D .x <12.下列计算正确的是( ) A .﹣= B .3+=4C .÷=6D .×(﹣)=33.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( )A .甲B .乙C .丙D .丁4.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数 B .方差 C .平均数 D .中位数5.下列各组数据中能作为直角三角形的三边长的是( ) A .1,2,2 B .1,1,C .4,5,6D .1,,26.菱形ABCD 的对角线AC=5,BD=10,则该菱形的面积为( ) A .50B .25C .D .12.57.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等C .对角线互相平分D .两组对角分别相等8.能使等式成立的x 的取值范围是( )A .x≠2B .x≥0C .x >2D .x≥29.已知a 为实数,那么等于( ) A .aB .﹣aC .﹣1D .010.若一次函数y=x+4的图象上有两点A (﹣,y 1)、B (1,y 2),则下列说法正确的是( ) A .y 1>y2B .y 1≥y 2C .y 1<y 2D .y 1≤y 211.已知k<0,b>0,则直线y=bx﹣k的图象只能是如图中的()A.B.C.D.12.如图,菱形ABCD中,∠ADC=110°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD=()A.50°B.60°C.70°D.80°13.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169二、填空题1.计算:= .2.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.三、解答题1.(1)计算:+﹣(+2)(2)当x=﹣1时,求代数式x2﹣5x﹣6的值.2.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值是 ; (Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.3.如图,在平行四边形ABCD 中,点E 、F 分别在BC 、AD 上,且∠BAE=∠DCF .(1)求证:△ABE ≌△CDF ;(2)若AC ⊥EF ,试判断四边形AECF 是什么特殊四边形,并证明你的结论.4.已知直线y=kx+b 经过点A (5,0),B (1,4).(1)求直线AB 的解析式;(2)若直线y=2x ﹣4与直线AB 相交于点C ,求点C 的坐标; (3)根据图象,写出关于x 的不等式2x ﹣4>kx+b 的解集.5.如图1,矩形纸片ABCD 的边长AB=4cm ,AD=2cm .同学小明现将该矩形纸片沿EF 折痕,使点A 与点C 重合,折痕后在其一面着色(如图2),观察图形对比前后变化,回答下列问题:(1)GF FD :(直接填写=、>、<) (2)判断△CEF 的形状,并说明理由; (3)小明通过此操作有以下两个结论: ①四边形EBCF 的面积为4cm 2 ②整个着色部分的面积为5.5cm 2运用所学知识,请论证小明的结论是否正确.6.A 、B 两村生产雪花梨,A 村有雪花梨200吨,B 村有雪花梨300吨,现将这些雪花梨运动C 、D 两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C 、D 两处的费用分别为40元/吨和45元/吨;从B 村运往C 、D 两处的费用分别为25元/吨和32元/吨.设从A 村运往C 仓库的雪花梨为x 吨,A 、B 两村往两仓库运雪花梨的运输费用分别为y A 元、y B 元.(1)请填写下表,并求出y A 、y B 与x 之间的函数关系式; (2)当x 为何值时,A 村的运输费用比B 村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.CD总计河北初二初中数学期末考试答案及解析一、选择题1.如果有意义,那么字母x的取值范围是()A.x>1B.x≥1C.x≤1D.x<1【答案】B【解析】由题意得:x﹣1≥0,解得x≥1,故选B.【考点】二次根式有意义的条件.2.下列计算正确的是()A.﹣=B.3+=4C.÷=6D.×(﹣)=3【答案】B【解析】A.﹣不能计算,故错误;B.3+=4,故正确;C.÷==,故错误;D.×(﹣)=﹣3,故错误;故选B.【考点】二次根式的混合运算.3.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()A.甲 B.乙 C.丙 D.丁【答案】B【解析】由于乙的方差较小、平均数较大,故选乙.故选B.【考点】1.方差;2.算术平均数.4.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数【答案】D【解析】由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,只需知道中位数就可以了.故选D.【考点】统计量的选择.5.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,1,C.4,5,6D.1,,2【答案】D【解析】A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故正确.故选D.【考点】勾股定理的逆定理.6.菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A.50B.25C.D.12.5【答案】B【解析】菱形的面积=AC•BD=×5×10=25.故选B.【考点】菱形的面积.7.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等【答案】B【解析】A、矩形与菱形的两组对边都分别平行,故错误;B、矩形的对角线相等,菱形的对角线不一定相等,故正确;C、矩形与菱形的对角线都互相平分,故错误;D、矩形与菱形的两组对角都分别相等,故错误.故选B.【考点】1.矩形的性质;2.菱形的性质.8.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【答案】C【解析】由题意可得,,解得x>2.故选C.【考点】1.二次根式的乘除法;2.二次根式有意义的条件.9.已知a为实数,那么等于()A.a B.﹣a C.﹣1D.0【答案】D【解析】根据非负数的性质a 2≥0,根据二次根式的意义,﹣a 2≥0, 故只有a=0时,有意义,所以,=0. 故选D .【考点】 二次根式的性质与化简.10.若一次函数y=x+4的图象上有两点A (﹣,y 1)、B (1,y 2),则下列说法正确的是( ) A .y 1>y2B .y 1≥y 2C .y 1<y 2D .y 1≤y 2【答案】C【解析】∵k=1>0,∴y 随x 的增大而增大,∵-<1,∴y 1<y 2.故选C .【考点】 一次函数的性质.11.已知k <0,b >0,则直线y=bx ﹣k 的图象只能是如图中的( )A .B .C .D .【答案】B【解析】∵k <0,b >0,∴﹣k >0,∴直线y=bx ﹣k 的图象经过一、二、三象限. 故选B .【考点】 一次函数图象与系数的关系.12.如图,菱形ABCD 中,∠ADC=110°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CFD=( )A .50°B .60°C .70°D .80°【答案】C【解析】连接BF ,∵四边形ABCD 是菱形,∠ADC=110°,∴∠DAB=70°,AD=AB ,∠DAC=∠BAC=∠BAD=×70°=35°,在△ADF 和△ABF 中,,∴△ADF ≌△ABF (SAS ),∴∠ABF=∠ADF ,∵AB 的垂直平分线交对角线AC 于点F ,E 为垂足,∴AF=BF ,∴∠ABF=∠BAC=35°,∴∠DAF=∠ADF=35°,∴∠CFD=70°.故选C .【考点】1.菱形的性质;2.线段垂直平分线的性质;3.全等三角形的判定与性质.13.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169【答案】C【解析】(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【考点】勾股定理.二、填空题1.计算:= .【答案】4【解析】原式=()2﹣12=5﹣1=4.【考点】二次根式的乘除法.2.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.【答案】①②④.【解析】过点P作PN⊥AB,垂足为点N,延长AP,交EF于点M,∵四边形ABCD是正方形,∴∠ABP=∠CBD=45°,∴△DFP为等腰直角三角形,∴DF=PF,又AN=DF,∴AN=FP,又∵NP⊥AB,PE⊥BC,∴四边形BNPE是正方形,∴NP=EP,又∵AP=PC,四边形PECF为矩形,∴EF=PC,∴AP=EF,故①正确;在△ANP≌△FPE中,,则△ANP≌△FPE(SSS),∴∠PFE=∠BAP,故④正确;△APN与△FPM中,∠APN=∠FPM,∠NAP=∠PFM,∴∠PMF=∠ANP=90°,∴AP⊥EF,故②正确;P是BD上任意一点,因而△APD不一定是等腰三角形,故③错误;∵在Rt△PDF中,PD>PF,在矩形PECF中,PF=EC,∴PD>EC,故⑤错误;故答案为:①②④.【考点】1.正方形的性质;2.全等三角形的判定与性质;3.矩形的判定与性质.三、解答题1.(1)计算:+﹣(+2)(2)当x=﹣1时,求代数式x2﹣5x﹣6的值.【答案】(1)原式=+2;(2)当x=﹣1时,∴x2﹣5x﹣6=5﹣7.【解析】(1)先化成最简二次根式,再合并同类二次根式即可;(2)先分解因式,再代入,再利用乘法即可.试题解析:(1)原式=2+4﹣﹣2=+2;(2)x2﹣5x﹣6=(x-6)(x+1)∵x=﹣1,∴x2﹣5x﹣6=(x-6)(x+1)=(﹣1-6)(﹣1+1)=(-7)=5﹣7.【考点】二次根式的化简求值.2.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50人,m=32;(2)平均数为16,众数为10,中位数为15;(3)该校本次活动捐款金额为10元的学生约有608名.【解析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.试题解析:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15+15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.【考点】1.条形统计图;2.扇形统计图;3.加权平均数、中位数与众数;4.用样本估计总体.3.如图,在平行四边形ABCD中,点E、F分别在BC、AD上,且∠BAE=∠DCF.(1)求证:△ABE≌△CDF;(2)若AC⊥EF,试判断四边形AECF是什么特殊四边形,并证明你的结论.【答案】(1)证明见解析;(2)四边形AECF是菱形,证明见解析.【解析】(1)由平行四边形ABCD可得∠B=∠D,AB=CD,根据已知给出的∠BAE=∠DCF,可证明两个三角形全等.(2)可先确定四边形AECF中对角线的关系,再根据AC⊥EF,从而判断出到底是什么特殊的四边形.试题解析:(1)∵在平行四边形ABCD中,∴∠B=∠D,AB=CD,又∵∠BAE=∠DCF.∴△ABE≌△CDF;(2)四边形AECF是菱形.证明如下:∵△ABE≌△CDF,∴BE=DF,∴BC﹣BE=AD﹣FD,∴EC=AF,∵AD∥BC,∴∠FAC=∠ECA,∠CEF=∠AFE,∴△AOF≌△COE,∴AO=CO,EO=FO,又∵AC⊥EF,∴四边形AECF是菱形.【考点】 1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.菱形的判定.4.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【答案】(1)直线AB的解析式为:y=﹣x+5;(2)点C(3,2);(3)x>3.【解析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.试题解析:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)由图象可得x>3.【考点】 1.待定系数法;2.一次函数与一元一次不等式;3.两条直线相交或平行问题.5.如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C重合,折痕后在其一面着色(如图2),观察图形对比前后变化,回答下列问题:(1)GF FD:(直接填写=、>、<)(2)判断△CEF的形状,并说明理由;(3)小明通过此操作有以下两个结论:①四边形EBCF的面积为4cm2②整个着色部分的面积为5.5cm2运用所学知识,请论证小明的结论是否正确.【答案】(1)=;(2)△CEF是等腰三角形,理由见解析;(3)论证见解析.【解析】(1)根据翻折的性质解答;(2)根据AB//CD可得∠AEF=∠CFE,由翻折可得∠AEF=∠FEC,从而得到∠CFE=∠FEC,从而可得CE=CF,从而得解;(3)①由翻折的性质可得AE=EC,从而可得AE=CF,再根据图形的面积公式列式计算即可得解;②设GF=x,表示出CF,然后在Rt△CFG中,利用勾股定理列式求出GF,根据三角形的面积公式求出S,然GFC后计算即可得解.试题解析:(1)由翻折的性质,GD=FD;(2)△CEF是等腰三角形.∵矩形ABCD,∴AB∥CD,∴∠AEF=∠CFE,∵∠AEF=∠FEC,∴∠CFE=∠FEC,∴CF=CE,故△CEF为等腰三角形;(3)①由翻折的性质,AE=EC,∵EC=CF,∴AE=CF,∴S=(EB+CF)•BC=AB•BC=×4×2×=4cm2;四边形EBCF②设GF=x,则CF=4﹣x,∵∠G=90°,∴x2+22=(4﹣x)2,解得x=1.5,∴S=×1.5×2=1.5,GFC=1.5+4=5.5;S着色部分综上所述,小明的结论正确.【考点】1.翻折变换(折叠问题);2.矩形的性质;3.等腰三角形的判定;4.勾股定理.6.A 、B 两村生产雪花梨,A 村有雪花梨200吨,B 村有雪花梨300吨,现将这些雪花梨运动C 、D 两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C 、D 两处的费用分别为40元/吨和45元/吨;从B 村运往C 、D 两处的费用分别为25元/吨和32元/吨.设从A 村运往C 仓库的雪花梨为x 吨,A 、B 两村往两仓库运雪花梨的运输费用分别为y A 元、y B 元.(1)请填写下表,并求出y A 、y B 与x 之间的函数关系式; (2)当x 为何值时,A 村的运输费用比B 村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.【答案】(1)B 村运往C 仓库为(240﹣x )吨;A 村运往D 仓库(200﹣x )吨;B 村运往D 仓库为(60+x )吨; y A =﹣5x+9000; y B =7x+7920;(2)当90<x≤200吨时,A 村的运输费用比B 村少;(3)A 村的雪花梨200吨全部运往D 仓库,B 村的雪花梨运往C 仓库240吨、运往D 仓库60吨时, 运输费用W 最小,其最小值为16920元.【解析】(1)根据题意容易得出B 村运往C 仓库、A 村运往D 仓库、运往D 仓库的吨数;容易得出y A 、y B 与x 之间的函数关系式;(2)根据题意得出不等式,解不等式即可;(3)根据题意得出A 、B 两村的运输费用之和为x 的一次函数,即可得出结果.试题解析:(1)∵A 村运到C 仓库x 吨,C 仓库可储存240吨,∴B 村运往C 仓库为(240﹣x )吨; 故答案为:240﹣x ;∵A 村有雪花梨200吨,已放C 仓库x 吨,∴运往D 仓库(200﹣x )吨; 故答案为:200﹣x .∵B 村有雪花梨300吨,已运往C 仓库(240﹣x )吨,∴运往D 仓库为(60+x )吨; 故答案为:60+x ;∵A 村运往C 、D 两处的费用分别为40元/吨和45元/吨, ∴y A =40x+45(200﹣x )=﹣5x+9000;∵从B 村运往C 、D 两处的费用分别为25元/吨和32元/吨, ∴y B =25(240+x )+32(60+x )=7x+7920; (2)∵A 村的运输费用比B 村少,∴﹣5x+9000<7x+7920,解得x >90, ∵A 村有雪花梨200吨,∴90<x≤200吨时,A 村的运输费用比B 村少;(3)A 村的雪花梨200吨全部运往D 仓库,B 村的雪花梨运往C 仓库240吨、运往D 仓库60吨时, 运输费用W 最小,其最小值为16920元.理由如下:A 、B 两村的运输费用之和为:W=﹣5x+9000+7x+7920=2x+16920, ∵2>0,∴运输费用W 随x 的增大而增大, ∵0≤x≤200,∴当x=0时,运输费用W 最小,即调运方式:A 村的雪花梨200吨全部运往D 仓库,B 村的雪花梨运往C 仓库240吨、运往D 仓库60吨时,运输费用W 最小,其最小值为16920元.【考点】1.一次函数的应用;2.一次函数的性质;3.解一元一次不等式.。
福建初二初中数学期末考试带答案解析
福建初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.的值等于()A.0B.1C.2013D.﹣20132.在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.94.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.65.下列式子成立的是()A.B.C.D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD二、填空题1.= .2.用科学记数法表示:0.000004= .3.数据2,4,5,7,6的极差是.4.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.5.命题“同位角相等,两直线平行”的逆命题是:.6.甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差=3.2,乙同学的方差=4.1,则成绩较稳定的同学是(填“甲”或“乙”).7.已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).8.如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG= .9.如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形(2013)的直角顶点的坐标是.10.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60708090(1)填空:①x= ;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.11.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.三、解答题1.(16分)①计算:②解方程:.2.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)3.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.4.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.5.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH ⊥DG ;②当AE=时,求线段BH 的长(精确到0.1).6.(13分)已知:直线l 1与直线l 2平行,且它们之间的距离为2,A 、B 是直线l 1上的两个定点,C 、D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=5,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(1)求四边形ABDC 的面积.(2)当A 1与D 重合时,四边形ABDC 是什么特殊四边形,为什么? (3)当A 1与D 不重合时①连接A 1、D ,求证:A 1D ∥BC ;②若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值.四、计算题(8分)如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:△ABE ≌△ACD .福建初二初中数学期末考试答案及解析一、选择题1.的值等于() A .0B .1C .2013D .﹣2013【答案】B【解析】本题根据任何非0数的0次幂都等于1进行计算. 【考点】零指数幂2.在平面直角坐标系中,点(1,2)所在的象限是() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】A【解析】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 【考点】点的坐标3.已知函数y=3x ﹣1,当x=3时,y 的值是() A .6 B .7 C .8 D .9【答案】C【解析】本题只需要把x=3代入函数关系式就可以求出y 的值. 【考点】函数值4.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是() A .9 B .8 C .7D .6【答案】B【解析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9,9,8,8,7,6,5是从大到小排列的,处于最中间的数是8,则这组数据的中位数是8.点评:此题考查了中位数,.【考点】中位数5.下列式子成立的是()A.B.C.D.【答案】D【解析】利用分式的基本性质,以及分式的乘方法则即可判断.A、,选项错误;B、当m=1时,=4,故选项错误;C、,故选项错误;D、正确.【考点】分式的混合运算.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【答案】B【解析】∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);【考点】全等三角形的判定二、填空题1.= .【答案】【解析】根据幂的负整数指数运算法则计算.原式==.【考点】负整数指数幂.2.用科学记数法表示:0.000004= .【答案】4×【解析】科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【考点】科学记数法—表示较小的数3.数据2,4,5,7,6的极差是.【答案】5【解析】极差就是用这组数据的最大值减去最小值.【考点】极差.4.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.【答案】(3,-4)【解析】关于原点对称的点,两点的横坐标与纵坐标都互为相反数.根据这个性质可以得出答案.【考点】关于原点对称的点的坐标5.命题“同位角相等,两直线平行”的逆命题是:.【答案】两直线平行,同位角相等.【解析】两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”【考点】命题与定理.6.甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差=3.2,乙同学的方差=4.1,则成绩较稳定的同学是(填“甲”或“乙”).【答案】甲【解析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题4.1>3.2,则甲比较稳定.【考点】方差.7.已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).【答案】y=-【解析】对于反比例函数y=,当k>0时,在每个象限内,y随着x的增大而减小;当k<0时,在每个象限内,y随着x的增大而增大.【考点】反比例函数的性质8.如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG= .【答案】2.5【解析】M为BC中点,CM=2,∴BC=4,BM=2,∵四边形ABCD是正方形,∴∠B=90°,AB=BC=4,在Rt△ABM中,由勾股定理得:AM==2,∵AM的垂直平分线GH,∴AO=OM=AM=,∠AOG=∠B=90°,∵∠GAO=∠MAB,∴△GAO∽△MAB,∴=,∴=,∴AG=2.5,【考点】正方形的性质;线段垂直平分线的性质;勾股定理.9.如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形(2013)的直角顶点的坐标是.【答案】6;(8052,0).【解析】根据点A、B的坐标求出OA、OB,再根据三角形的面积列式计算即可得解;观察不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商是671可知三角形是第671个循环组的最后一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.【考点】坐标与图形变化-旋转;三角形的面积10.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:(1)填空:①x= ;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.【答案】(1)①2;②90;(2)79分.【解析】用总人数减去得60分、70分、90分的人数,即可求出x的值;根据众数的定义即一组数据中出现次数最多的数,即可得出答案;根据平均数的计算公式分别进行计算即可.试题解析:(1)①∵共有10名学生,∴x=10﹣1﹣3﹣4=2;②∵90出现了4次,出现的次数最多,∴此学习小组10名学生成绩的众数是90;(2)此学习小组的数学平均成绩是:=(60+3×70+2×80+4×90)=79(分).【考点】众数;加权平均数11.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.【答案】(1)30-x;(2)y=4x+240;最大值为360,最小值为240.【解析】根据一共准备购买30本笔记本作为奖品,可知购买B种笔记本的数量=30﹣购买A种笔记本的数量;先由购买这两种笔记本共花费的钱数=购买A种笔记本花费的钱数+购买B种笔记本花费的钱数,求出y元与x的函数关系式,再由自变量的取值范围,根据一次函数的增减性,即可求得答案.试题解析:(1)∵某校举行英语演讲比赛,准备购买30本笔记本作为奖品,其中购买A种笔记本x本,(2)y=12x+8(30﹣x)=4x+240,∵k=4>0,∴y随x的增大而增大,又∵0≤x≤30,∴当x=0时,y的最小值为240,当x=30时,y的最大值为360.【考点】一次函数的应用三、解答题1.(16分)①计算:②解方程:.【答案】2;x=-4【解析】利用同分母分式的减法法则计算,约分即可得到结果;分式方程首先进行去分母转化为整式方程,求出整式方程的解得到x的值,然后将解代入分式方程进行检验,得出分式方程的解.试题解析:①原式===2;②方程两边同乘以5x(x﹣6),得10x=4x﹣24,解得x=﹣4,经检验x=﹣4是分式方程的解.【考点】解分式方程;分式的加减法2.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)【答案】见解析【解析】分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN就是所求的直线;以点C为圆心,任意长为半径画弧,交AC,BC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线CE交AB于D即可.试题解析:如图所示:【考点】作图—复杂作图3.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.【答案】k=2,b=1【解析】把已知点的坐标代入函数y=kx+b解析式,可以列出关于系数k、b的二元一次方程组,通过解该方程组可以求得它们的值.试题解析:设该一次函数解析式为y=kx+b(k≠0).由题意,得解得,即k和b的值分别是2和1.【考点】待定系数法求一次函数解析式4.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.【答案】(1)y=;(2)4.5【解析】把A的坐标代入反比例函数的解析式求出即可;把B的坐标代入反比例函数的解析式求出B的坐标,设平移后的直线的解析式为y=x+b,把B的坐标代入求出即可.试题解析:(1)y=;(2)点B(6,m)在反比例函数的图象上,m=1.5,平移后的直线的解析式为y=x+b,y=x+b的图象过点B,把B的坐标代入得:1.5=6+b,解得:b=﹣4.5,∴平移的距离为4.5.【考点】反比例函数与一次函数的交点问题;一次函数图象与几何变换5.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).【答案】(1)16;(2)见解析;(3)①见解析;②5.1【解析】根据正方形的周长定义求解;根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S=△DEG GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.试题解析:(1)解:正方形ABCD 的周长=4×4=16;(2)证明:∵四边形ABCD ,AEFG 都是正方形, ∴AB=AD ,AE=AG , ∵将正方形AEFG 绕点A 逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ, 在△BAE 和△DAG ,, ∴△BAE ≌△DAG (SAS ), ∴BE=DG ;(3)①证明:∵△BAE ≌△DAG ,∴∠ABE=∠ADG ,又∵∠AMB=∠DMH ,∴∠DHM=∠BAM=90°,∴BH ⊥DG ;②解:连结GE 交AD 于点N ,连结DE ,如图,∵正方形AEFG 绕点A 逆时针旋转45°, ∴AF 与EG 互相垂直平分,且AF 在AD 上,∵AE=,∴AN=GN=1, ∴DN=4﹣1=3, 在Rt △DNG 中,DG==; ∴BE=, ∵S △DEG =GE•ND=DG•HE , ∴HE==,∴BH=BE+HE=+=≈5.1.【考点】四边形综合题6.(13分)已知:直线l 1与直线l 2平行,且它们之间的距离为2,A 、B 是直线l 1上的两个定点,C 、D 是直线l 2上的两个动点(点C 在点D 的左侧),AB=CD=5,连接AC 、BD 、BC ,将△ABC 沿BC 折叠得到△A 1BC .(1)求四边形ABDC 的面积.(2)当A 1与D 重合时,四边形ABDC 是什么特殊四边形,为什么? (3)当A 1与D 不重合时①连接A 1、D ,求证:A 1D ∥BC ;②若以A 1,B ,C ,D 为顶点的四边形为矩形,且矩形的边长分别为a ,b ,求(a+b )2的值. 【答案】(1)10;(2)菱形;(3)①见解析;②45或49.【解析】根据平行四边形的判定方法可得到四边形ABCD 为平行四边形,然后根据平行四边形的面积公式计算;根据折叠的性质得到AC=CD ,然后根据菱形的判定方法可判断四边形ABDC 是菱形;①连结A 1D ,根据折叠性质和平行四边形的性质得到CA 1=CA=BD ,AB=CD=A 1B ,∠1=∠CBA=∠2,可证明△A 1CD ≌△A 1BD ,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A 1D ∥BC ;②讨论:当∠CBD=90°,则∠BCA=90°,由于S △A1CB =S △ABC =5,则S 矩形A1CBD =10,即ab=10,由BA 1=BA=5,根据勾股定理得到a 2+b 2=25,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,从而得出答案. 试题解析:(1)∵AB=CD=5,AB ∥CD ,∴四边形ABCD 为平行四边形,∴四边形ABDC 的面积=2×5=10; (2)∵四边形ABDC 是平行四边形,∵A 1与D 重合时,∴AC=CD ,∵四边形ABDC 是平行四边形, ∴四边形ABDC 是菱形;(3)①连结A 1D ,如图,∵△ABC 沿BC 折叠得到△A 1BC ,∴CA 1=CA=BD ,AB=CD=A 1B , 在△A 1CD 和△A 1BD 中∴△A 1CD ≌△A 1BD (SSS ),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4, ∴∠1=∠4, ∴A 1D ∥BC ;②当∠CBD=90°,∵四边形ABDC 是平行四边形,∴∠BCA=90°,∴S △A1CB =S △ABC =×2×5=5, ∴S 矩形A1CBD =10,即ab=10,而BA 1=BA=5,∴a 2+b 2=25,∴(a+b )2=a 2+b 2+2ab=45; 当∠BCD=90°时,∵四边形ABDC 是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b )2=(2+5)2=49,∴(a+b)2的值为45或49.【考点】四边形综合题四、计算题(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【答案】见解析【解析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.试题解析:证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【考点】全等三角形的判定.。
海南初二初中数学期末考试带答案解析
海南初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、解答题1.(11·兵团维吾尔)(10分)某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P(个)与每个书包销售价x(元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?2.(11·兵团维吾尔)(10分)如图,在等腰梯形AB CD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD 向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.3.(11·曲靖)(8分)先化简,再求值.4.(11·曲靖)(9分)如图,在梯形ABCD中,AD∥BC,E、F分别是两腰AB、DC的中点,AF、BC的延长线交于点G.(1) 求证:△ADF≌△GCF.(2) 类比三角形中位线的定义,我们把EF叫做梯形ABCD的中位线.阅读填空:在△ABG中:∵E中AB的中点由(1)的结论可知F是AG的中点,∴EF是△ABG的_______线因此,可将梯形中位线EF与两底AD,BC的数量关系用文字语言表述为______________.5.(11·曲靖)(9分)甲乙两个工程队合修一条公路,甲工程队比乙工程队每天多修50米,甲工程队修900米所用时间和乙工程队修600米所用时间相等,问甲乙两个工程队每天分别修多少米?6.(11·曲靖)(9分)在三张完全相同的卡片上分别标注:A“一雨水”、B“大地”、C“生机”,放入一个不透明的的口袋中,随机从中抽出一张放入“□给□带来□”左边“□”内;第二次抽出一张放入中间的“□”内;第三次抽出一张放入右边的“□”内(每次卡片抽出后不放回)。
初二期末数学考试卷附答案
初二期末数学考试卷附答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25的平方根是A.5B.-5C.±5D.±52.下列图形中,是中心对称图形的是3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7B.8,7.5C.7,7.5D.8,6.54.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为A.4B.8C.16D.645.化简2x2-1÷1x-1的结果是A.2x-1B.2xC.2x+1D.2(x+1)6.不等式组x-1≤02x+4>0的解集在数轴上表示为7.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是A.a<0B.a<-1C.a>1D.a>-18.实数a在数轴上的位置如图所示,则(a-4)2+(a-11)2化简后为A.7B.-7C.2a-15D.无法确定9.若方程Ax-3+Bx+4=2x+1(x-3)(x+4)那么A、B的值A.2,1B.1,2C.1,1D.-1,-110.已知长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A.6B.8C.10D.1211.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于A.2-2B.1C.2D.2-l12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边内△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是A.Sl=S2=S3B.S1=S2<S3C.Sl=S3<S2D.S2=S3<Sl第II卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:8一2=______________.14.分解因式:a2-6a+9=______________.15.当x=______时,分式x2-9(x-1)(x-3)的值为0.16.已知a+b=3,a2b+ab2=1,则ab=____________?17.如图,一只蚂蚁沿着边长为2的正方体表面从点4出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的是长为__________________.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为______________.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(1)18+22-3(2)a+2a-2÷1a2—2a20.(本小题满分6分)(1)因式分解:m3n―9mn.(2)求不等式x-22≤7-x3的正整数解21.(本小题满分8分)(1)解方程:1-2__-2=2+32-x(2)解不等式组4x―3>__+4<2x一1,并把解集在数轴上表示出来22.(本小题满分10分)(1)如图1,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.(2)一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?23.(本小题满分8分)济南与北京两地相距480千米,乘坐高铁列车比乘坐普通快车能提前4小时到达.已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.24.(本小题满分6分)标签:先化简再求值:(x+1一3x-1)__-1x-2,其中x=-22+225.(本小题满分10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲__乙__丙__(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.26.(本小题满分12分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22.(1)求CD的长:(2)求四边形ABCD的面积27.(本小题满分12分)已知,点D是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,己知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是_______________②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.一、选择题题号____答案__ACADA二、填空题13.14.(a-3)215.-316.17.18.三.解答题:19.解:(1)=1分=2分=13分(2)=5分=6分20.解:(1)m3n-9mn.=1分=2分=3分(2)解:3(x-2)≤2(7-x)4分3x-6≤14-2x5x≤20x≤45分∴这个不等式的正整数解为1、2、3、4.6分21.(1)1分2分3分经检验是增根,原方程无解4分(2),解:解不等式①得:x>1,5分解不等式②得:x>5,6分∴不等式组的解集为x>5,7分在数轴上表示不等式组的解集为:.8分22.(1)解:∵正△ABC沿直线BC向右平移得到正△DCE∴BE=2BC=4,BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°2分∴∠DBE=∠DCE=30°3分∴∠BDE=90°4分在Rt△BDE中,由勾股定理得5分(2)解:设小明答对了x道题,6分4x-(25-x)≥858分x≥229分所以,小明至少答对了22道题.10分23.解:设普通快车的速度为xkm/h,由题意得:1分3分=44分x=805分经检验x=80是原分式方程的解6分3x=3×80=2407分答:高铁列车的平均行驶速度是240km/h.8分24.解:=1分=2分=3分=4分当=时5分原式==6分25.解:(1)=(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81.3分从高到低确定三名应聘者的排名顺序为:甲,丙,乙;4分(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰,5分乙成绩=85×60%+80×30%+75×10%=82.5,7分丙成绩=80×60%+90×30%+73×10%=82.3,9分标签:∴乙将被录取.10分26解:(1)过点D作DH⊥AC,1分∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,3分∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,5分又∵∠DCE=30°,∠DHC=90°,∴DC=26分(2)∵在Rt△DHC中,7分∴12+HC2=22,∴HC=,8分∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,9分∴AC=2+1+=3+,10分∴S四边形ABCD=S△BAC+S△DAC11分=×2×(3+)+×1×(3+)=12分27.解:(1)①90°.2分②线段OA,OB,OC之间的数量关系是.3分如图1,连接OD.4分∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB.∴△OCD是等边三角形,5分∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.6分在Rt△ADO中,∠DAO=90°,∴.(2)①如图2,当α=β=120°时,OA+OB+OC有最小值.8分作图如图2,9分如图2,将△AOC绕点C按顺时针方向旋转60°得△A’O’C,连接OO’.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OCO′是等边三角形.10分∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小.11分②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=.12分。
浙江初二初中数学期末考试带答案解析
浙江初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在下列几何体中,主视图是圆的是( )2.若2,3,x, 5,这四个数的平均数是4,则x=()A. 4B. 5C. 6D. 73.在平面直角坐标系中,点P(-1,2)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,点在上,,∠B=80°,,则的度数为()A.40°B.C.50°D.5.满足不等式的最小整数是()A.-1B.1C.2D.36.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( ).A.3B.4C.5D.67.如图,把矩形沿对折后使两部分重合,若,则=()A.110°B.115°C.120°D.130°8.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,•每支钢笔5元,那么小明最多能买()支钢笔.A.11B.12C.13D.149.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( )A .0B .1C .2D .3二、其他1.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃ B .5℃~8℃ C .3℃~5℃ D .1℃~8℃2..如图,每个小正方形的边长为1,则∠ABC 的度数是 .3.(本题8分)某蔬菜研究所培养番茄种子,共试种了1.2万株番茄,种子成熟后,为统计种子数量,科研人员随机抽取了15株番茄作为样本进行计算统计,统计结果如下:每株番茄结籽质量(g)2627282930(1)表中数据的众数是 ;(2)计算样本中每株番茄的平均结籽质量;(3)已知每1g 结籽质量有50颗种子,请估计研究所共育得番茄种子多少颗?三、填空题1..如图,若EF ∥AB ,∠1=40°,则∠2的度数是 .2.将如图形状的纸片折成一个立方体,数字 在与数字2所在平面相对的平面上.3.点M(-3,-1)向右平移3个单位后,得到点M′的坐标为( , ).4.若一次函数y=3x+k 经过点A (1,7),则k= .5.已知一个几何体的三视图如图所示,根据图中数据计算它的表面积为 .6.如图,△ABC中,∠ACB = 90°,AC=BC=1,取斜边中点,向斜边做垂线,画出一个新的等腰直角三角形,此时这个三角形的斜边与BC垂直.如此继续下去,直到所画直角三角形的斜边再次与△ABC的BC边垂直为止,此时这个三角形的直角边长为 .(第18题)四、解答题1.关于的不等式3一2≤一2的解集如图所示,则=_______.2.(本题6分)解不等式组:3.(本题8分)在平面直角坐标系中,,,.(1)求出的面积.(2)在图中作出关于轴的对称图形.4.(本题8分)如图,是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9min内的平均速度是;(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式.5.(本题8分)数学课上,老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况•探索结论当点E 为AB 的中点时,如图1,确定线段AE 与的DB 大小关系.请你直接写出结论: AE DB (填“>”,“<”或“=”). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填 “>”,“<”或“=”).理由如下:如图2,过点E 作EF ∥BC ,交AC 于点F.(请你完成以下解答过程) (3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若△ABC 的 边长为1,AE=2,求CD 的长(请你直接写出结果) .6.(本题8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k 1x+b 1(k 1≠0)的图象为直线L 1,一次函数y=k 2x+b 2(k 2≠0)的图象为直线L 2,若k 1=k 2,且b 1≠b 2,我们就称直线L 1与直线L 2互相平行.解答下面的问题:(1)求过点P (1,4),且与直线y=-2x -1平行的直线L 的函数解析式,并画出直线L 的图象;(2)设直线L 分别与y 轴,x 轴交于点A ,B ,如果直线m :y=kx+t (t >0)与直线L 平行,且交x 轴于点C ,求出△ABC 的面积S 关于t 函数解析式.浙江初二初中数学期末考试答案及解析一、选择题1.在下列几何体中,主视图是圆的是( )【答案】D【解析】本题考查了视图的相关知识。
八年级上册数学期末考试卷及答案【含答案】
八年级上册数学期末考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在一个比例尺为1:1000的地图上,甲乙两地的实际距离为20km,那么在地图上甲乙两地的距离是多少cm?A. 200cmB. 2000cmC. 20000cmD. 200000cm4. 若一个等差数列的首项为2,公差为3,那么第10项是多少?A. 29B. 30C. 31D. 325. 下列图形中,哪一个图形的面积是12cm²?A. 一个边长为4cm的正方形B. 一个半径为2cm的圆C. 一个长为6cm,宽为2cm的长方形D. 一个底边为4cm,高为3cm的三角形二、判断题(每题1分,共5分)6. 两条平行线的同位角相等。
()7. 一个等边三角形的周长是它的任意一边长的三倍。
()8. 任何两个奇数相加的结果都是偶数。
()9. 一个正方形的对角线长度等于它的边长的根号2倍。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 一个正方形的边长为5cm,那么它的面积是____cm²。
12. 若一个等差数列的第3项为7,第6项为16,那么这个等差数列的公差是____。
13. 两个互质的数的最小公倍数是它们的____。
14. 在直角坐标系中,点(3, 4)到原点的距离是____。
15. 一个圆锥的底面半径为4cm,高为3cm,那么它的体积是____cm³。
16. 请简要解释等差数列和等比数列的定义。
17. 请简要解释勾股定理及其应用。
18. 请简要解释平行线的性质及其应用。
八年级上学期期末考试数学试卷(附带答案)
八年级上学期期末考试数学试卷(附带答案)一.单选题。
(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,沿x轴每秒1个单位长度的速度向右移动,且过点P的直线y=﹣x+b也随之平移,设移动时间为t秒,若直线与线段BM 有公共点,则t的取值范围是()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤5(第10题图)二.填空题。
重庆初二初中数学期末考试带答案解析
重庆初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列交通标志图案是轴对称图形的是( )A .B .C .D .2. P 是∠AOB 内一点,分别作点P 关于直线OA 、OB 的对称点P 1、P 2,连接OP 1、OP 2,则下列结论正确的是( )A .OP 1⊥OP 2B .OP 1=OP 2C .OP 1⊥OP 2且OP 1=OP 2D .OP 1≠OP 23.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 94.如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A .90°﹣αB .90°+αC .D .360°﹣α5.使分式有意义,则x 的取值范围是( ) A .x≠1 B .x=1 C .x≤1 D .x≥16.下列说法正确的是( )A .﹣3的倒数是B .﹣2的绝对值是﹣2C .﹣(﹣5)的相反数是﹣5D .x 取任意实数时,都有意义7.化简的结果是( ) A .x+1 B .x ﹣1 C .﹣x D .x8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是(C )A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°=7,DE=2,AB=4,则AC长是()9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABCA.3B.4C.6D.510.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1二、填空题1.计算:82014×(﹣0.125)2015= .2.要使分式有意义,则x的取值范围是.3.计算:÷= .4.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.5.如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC和AD上的动点,则CQ+PQ的最小值是.三、计算题1.化简:(a+b)(a﹣b)+2b2.2.先化简,再求值:,其中.四、解答题1.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.2.一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
八年级期末考试(数学)试题含答案
八年级期末考试(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分24分)1.(3分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.(3分)2. 如图,小手盖住的点的坐标可能为( )A .(5,2)B .(-6,3)C .(46)--,D .(34)-,3.(3分)3.最“接近”1)的整数是( )A. 0B. 1C.2D.34.(3分)4.下列四组数中,哪一组数是勾股数( )A .1.5,2,2.5B .3,4,5C .4,5,6D .1,2,35.(3分)5.一次函数y =3x -4的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.(3分)6.到三角形三个顶点距离相等的点是( )A .三条角平分线的交点B .三条中线的交点C .三条高所在直线的交点D .三边垂直平分线的交点 7.(3分)7.如图,正方形网格中的每个小正方形边长都是1.已知A 、B 是两格点,若△ABC 为等腰三角形,且S △ABC =1,则满足条件的格点C 有( )A .2个B .3个C .4个D .5个8.(3分)8.如图①,在矩形中,动点从点出发,沿着方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图②所示,下列说法不正确的是()A .当时,B .矩形的周长是18C .当时,D .当时,二、 填空题 (本题共计10小题,总分30分)9.(3分)9.25的算术平方根是 .10.(3分)10.等腰三角形中一个角是140°,则底角为 度.11.(3分)11.新冠疫情期间我国第一时间就向联合国卫生组织捐款2000 0000美元,其他物资不计其数,为世界防疫工作作出了巨大贡献,将2000 0000用科学记数法表示为 .12.(3分)12.点A (-3,3)关于y 轴的对称点A '的坐标为 .13.(3分)13.若点()3,1M m m -+在平面直角坐标系的x 轴上,则点M 的坐标是 .14.(3分)14.如果将直线y =2x ﹣3的图像向下平移3个单位,那么平移后所得直线的表达式是 .15.(3分)15.如图,函数y 1=ax+b 和y 2=kx 的图象交于点P ,则根据图象可得,方程ax+b ﹣kx =0的解是 .16.(3分)16.如图,在Rt △ABC 中,∠B =90°,AC 边的垂直平分线ED 分别交ACMNPQ R N N P Q M →→→M R x MNR ∆y y x 2x =5y =MNPQ 6x =10y =8y =10x =第15题于点D,交BC于点E.已知AB=6,AC=10,则BE为.17.(3分)17.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为.18.(3分)18.如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,ABC∆为等腰直角三角形,D为斜边BC上的中点.若OD=a b+=.三、解答题(本题共计9小题,总分96分)19.(10分)19.(本题满分10分,每小题5分)(1)计算:2020312716)(-+-(1)()()205352-+---π20.(10分)20.(本题满分10分,每小题5分)(2)求x的值:(1)812-22=)(x(2)()6423-=-x21.(8分)21.(本题满分8分)第18题第17题第16题ADCB如图,已知//DE AB ,DAE B ∠=∠,2DE =,4AE =,C 为AE 的中点.求证:△ABC ≌△EAD .22.(8分)22.(本题满分8分)画出函数y =2x+4的图象,利用图象:(1)求方程2x+4=0的解;(2)求不等式2x+4<0的解;(3)若﹣2≤y ≤6,求x 的取值范围.23.(10分)23.(本题满分10分)已知,在如图所示的网格中建立平面直角坐标系后,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (2,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在图中找一点P ,使得P 到AB 、AC 的距离相等,且PA =PB ;②在x 轴上找一点Q ,使得△QAB 的周长最小。
2024年人教版初二数学下册期末考试卷(附答案)
一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。
A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。
()2. 任何数乘以1都等于它本身。
()3. 0既不是正数也不是负数。
()4. 两个锐角相加一定大于90度。
()5. 任何数都有相反数。
()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。
2. 任何数乘以______都等于它本身。
3. 两个负数相乘,结果是______。
4. 两个锐角相加一定______90度。
5. 任何数都有______数。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等边三角形的性质。
3. 简述矩形的性质。
4. 简述平行四边形的性质。
5. 简述勾股定理。
五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。
2. 已知等边三角形的周长为18,求它的面积。
3. 已知矩形的周长为20,求它的面积。
4. 已知平行四边形的面积为30,求它的周长。
5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。
六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。
2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。
吉林省油田第十二中学2023—2024学年度第一学期期末考试 初二数学试卷(含答案)
吉林油田第十二中学2023—2024学年度第一学期期末考试初二数学试卷(试卷满分120分,时间120分钟)一、单项选择题(每小题2分,共12分)1.下面四幅画分别是体育运动长鼓舞,武术,举重、摔跤抽象出来的简笔画,其中是轴对称图形的是()A .B .C .D .2.我们知道,一些较大的数适合用科学记数法表示,小于1的正数也可以用科学记数法表示.则0.0000257用科学记数法表示为()A .2.57×105B .25.7×10﹣4C .2.57×10﹣5D .2.57×10﹣63.下列运算正确的是()A .a 2•a 3=a 6B .(﹣a 2)3=a 6C .(3ab 2)2=9a 2b 4D .4.我国传统工艺中,油纸伞制作非常巧妙,其中蕴含着数学知识.如图是油纸伞的张开示意图,AE =AF ,GE =GF ,则△AEG ≌△AFG 的依据是()A .SASB .ASAC .AASD .SSS5.下列约分正确的是()A .B.C.D.6.如图,在△ABC 中,∠C =84°,点D 为图中所作直线和射线与AC 的交点,根据图中尺规作图痕迹,判断以下结论错误的是()A .AD =BDB .∠A =∠CBDC .∠ABD =32°D .CD =GD二、填空题(每小题3分,共24分)7.计算:4ab•2a 2b=.8.因式分解a 3b ﹣ab =.9.正五边形的每一个内角都等于°10.若分式有意义,则x 应满足的条件为.11.如图,在△ABC 中,∠A =90°,∠B =40°.点D 和点E 分别在AC 和BC 的延长线上,并且CD =CE ,连接DE .则∠D 的度数为.12.有下列方程:①﹣=1,②﹣2=5,③=﹣6(m 为不等于2的常数),其中,属于分式方程的有.(填序号).13.若(x+2)(x ﹣3)=x 2+bx+c ,其中b ,c 为常数,则点P (b ,c )关于y 轴的对称点的坐标为.14.如图,等边三角形ABC 的边长为4cm ,点D ,E 分别在边AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在△ABC 的外部A'处.则整个阴影部分图形的周长为cm .三、解答题(每小题5分,共20分)15.(5分)计算:(12a 3﹣6a 2+3a )÷3a+(﹣2a )(2a+1)16.(5分)计算:(a+1)2+(3﹣a )(3+a )17.(5分)计算:18.(5分)解方程:+2=学校班级姓名密封线第11题图第14题图第4题图第6题图四、解答题(每小题7分,共28分)19.(7分)先化简,再求值:,x 在1,2,﹣3中选取合适的数.20.(7分)如图,△ABC 是等边三角形,点E 在AC 边上,连接BE ,以BE 为一边作等边△BED ,连接AD .(1)求证:CE =AD ;(2)若BC =8cm ,BE =7cm ,求△ADE 的周长.21.(7分)△ABC 在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上.(1)作出△ABC 关于x 轴对称的△A 1B 1C 1;(2)写出点A 1,B 1,C 1的坐标;(3)△ABC 的面积为.22.(7分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果购进第二批用了6300元,(1)那么购进第一批书包的单价是多少元?(2)若商店两次购进书包的售价均为100元,那么这两批书包全部售出后,商店共盈利_____元.五、解答题(每小题8分,共16分)23.(8分)如图,ED ⊥AB ,FC ⊥AB ,垂足分别为D ,C ,并且AC =BD ,AE =BF ,连接CE .(1)求证:AE ∥FB ;(2)若DC =DE ,∠A =25°,求∠AEC 的度数;(3)若DC =DE ,∠A =m ,则∠AEC =.(用含m 的式子表示).24.(8分)【教材呈现】人教版八年级上册数学教材第112页的第7题:已知a+b =5,ab =3,求a 2+b 2的值.【例题讲解】老师讲解了这道题的两种方法:方法一方法二∵a+b =5,∴(a+b )2=25.∴a 2+2ab+b 2=25.∵ab =3,∴a 2+b 2=25﹣2ab =25﹣6=19.∵(a+b )2=a 2+2ab+b 2,∵a 2+b 2=(a+b )2﹣2ab ,∵a+b =5,ab =3,∴a 2+b 2=25﹣6=19.【方法运用】请你参照上面两种解法,解答以下问题.(1)已知a ﹣b =1,a 2+b 2=9,求ab 的值;(2)已知a+=4,求(a ﹣)2的值.【拓展提升】如图,在六边形ABCDEF 中,对角线BE 和CF 相交于点G ,当四边形ABGF 和四边形CDEG 都为正方形时,若BE =8,正方形ABGF 和正方形CDEG 的面积和为36,直接写出阴影部分的面积.六、解答题(每小题10分,共20分)25.(10分)【问题背景】在学习了等腰三角形等有关知识后,数学活动小组发现:当角平分线遇上平行线时一般可得等腰三角形.如图1,P 为∠AOB 的角平分线OC 上一点,常过点P 作PD ∥OB 交OA 于点D ,易得△POD 为等腰三角形.(1)【基本运用】如图2,把长方形纸片ABCD 沿对角线AC 折叠,使点B 落在点B'处,则重合部分△ACE 的形状是_____________.(2)【类比探究】如图3,△ABC 中,内角∠ABC 与外角∠ACG 的角平分线交于点O ,过点O 作DE ∥BC 分别交AB 、AC 于点D 、E ,试探究线段BD 、DE 、CE 之间的数量关系并说明理由;(3)【拓展提升】如图4,四边形ABCD 中,AD ∥BC ,E 为CD 边的中点,AE 平分∠BAD ,连接BE ,求证:AE ⊥BE.26.(10分)已知,在平面直角坐标系中,直线AB 分别交x 轴、y 轴于A (m ,0),B (0,n ),m 、n 满足m 2+n 2+2m ﹣4n+5=0,点P 是坐标平面内任意一点.(1)求m 、n 的值;(2)如图1,若点P 在y 轴上,当∠BPA =45°时,求点P 的坐标;(3)当△ABP 是以AB 为底边的等腰直角三角形时,请直接写出点P 的坐标.吉林油田第12中学2023-2024学年八年级(上)期末数学试卷参考答案一、选择题(每小题2分,共12分)1.C2.C3.C4.D5.A6.D二、填空题(每小题3分,共24分)7.8a3b28.ab(a+1)(a﹣1)9.10810.x≠﹣211.65°12.②13.(1,-6)14.12三、解答题(每小题5分,共20分)15.(5分)计算:(12a3﹣6a2+3a)÷3a+(﹣2a)(2a+1).解:原式=4a2﹣2a+1﹣4a2﹣2a-----------------------------------------------2分=﹣4a+1----------------------------------------------------------------5分16.(5分)计算:(a+1)2+(3﹣a)(3+a)解:原式=a2+2a+1+9﹣a2---------------------------------------------------------2分=2a+10--------------------------------------------------------------------5分17.(5分)计算:.解:原式=------------------------------------------------2分=--------------------------------------------------3分=-----------------------------------------------------5分18.解:去分母得,3+2(x﹣1)=x---------------------------------------------------------1分解得,x=﹣1------------------------------------------------------------3分检验,把x=﹣1代入x-1=-2≠0---------------------------------------------4分∴原分式方程的解为:x=﹣1--------------------------------------------------5分四、解答题(每小题7分,共28分)197123----------------------------2=•-----------------------------3分=-------------------------------------------------5分∵x≠1和﹣3,∴选取x=2,原式==﹣---------------------------7分20.(1)证明:∵△ABC和△BED都是等边三角形,∴BC=BA,BE=BD,∠ABC=∠DBE=60°∴∠ABC﹣∠3=∠DBE﹣∠3∴∠1=∠2---------------------------------------------------------2分在△BCE和△BAD中∴△BCE≌△BAD(SAS)∴CE=AD----------------------------------------------------------------------4分(2)∵△ABD≌△CBE∴AD=CE∵BC=8,BE=7∴AC=8,DE=7---------------------------------------------------------------5分∴△ADE的周长为AD+AE+DE=CE+AE+DE=AC+DE=8+7=15----------7分21.(7分)解:(1)如图所示:△A1B1C1即为所求-------------------------------------------------------2分2124111132---------------------------------53 2.5--------------------------------------------------------------------------------722.(7分)解:(1)设购进第一批书包的单价是x元,则购进第二批书包的单价是(x+4)元由题意得:------------------------------------------------------------------------1分×3=-----------------------------------------------------------------------3分解得:x=80---------------------------------------------------------------------------5分经检验,x=80是原方程的解-----------------------------------------------------------------6分答:购进第一批书包的单价是80元(2)1700-----------------------------------------------------------------------7分五、解答题(每小题分,共16分)23.(8分)(1)证明:∵AC=BD∴AC+CD=BD+CD即AD=BC---------------------------------------------------------------------------1分在Rt△ADE和Rt△BCF中,∴Rt△ADE≌Rt△BCF(HL)----------------------------------------------------------2分∴∠A=∠B∴AE∥FB------------------------------------------------------------------------3分(2)解:∵ED⊥AB∴∠ADE=90°∵∠A=25°∴∠AED=65°∵DC=DE-----------------------------------------------------------------4分∴∠CED=45°∴∠AEC=∠AED—∠CED=65°—45°=20°-------------------------------6分(3)45°﹣m-----------------------------------------------------------------------8分24.81121化简得:a2+b2﹣2ab=1---------------------------------------------------------1分将a2+b2=9代入得:9﹣2ab=1----------------------------------------------------2分解得:ab=4---------------------------------------------------------------3分(2)把a+=4两边平方得:(a+)2=16化简得:a2++2=16,即a2+=14---------------------------------------------4分则原式=a2+﹣2=14﹣2=12------------------------------------------------5分【拓展提升】设BG=a,EG=b,则有a+b=8,a2+b2=36把a+b=8两边平方得:(a+b)2=64化简得:a2+b2+2ab=64将a2+b2=36代入得:36+2ab=64解得:ab=14则S=2×ab=ab=14---------------------------------------------------8分阴影六、解答题(每小题10分,共20分)25.(10分)(1)4-t2t-8---------------------------------------------3分-------------------------------------------------6分-----------------------8--------------------------1026.(10分)解:(1)∵m 2+n 2+4m ﹣4n+5=0∴(m 2+2m+1)+(n 2﹣4n+4)=0∴(m+1)2+(n ﹣2)2=0∵(m+1)2≥0,(n ﹣2)2≥0∴(m+1)2=0,(n ﹣2)2=0∴m+1=0,n ﹣2=0∴m =﹣1,n =2-------------------------------------------------------3分(2)解:由(1)得B (0,2)-----------------------------------------------------------------6∴OB =2∵∠BPA =45°,∠A OP =90°∴∠PAO =45°=∠BPA ∴OP =OA =1∴P (0,-1)分(3)P (-3/2,3/2)或(1/2,1/2)---------------------------------------------10分注:学生答题如用其他方法,可酌情给分。
初二数学下册期末考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 4x + 13. 在直角坐标系中,点(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是()A. 60cm²B. 78cm²C. 84cm²D. 90cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 两个等腰直角三角形的面积一定相等。
()8. 一次函数的图像是一条直线。
()9. 二次函数的图像是一个抛物线。
()10. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则这个圆的面积是______。
12. 一次函数y = 3x 5的图像与y轴的交点是______。
13. 二次函数y = x² 4x + 4的顶点坐标是______。
14. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高是______。
15. 两个相同的数相乘,结果是这个数的______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 什么是等腰三角形?请给出一个例子。
18. 请解释一次函数的图像是一条直线的原理。
19. 什么是二次函数的顶点?如何找到它?20. 请解释无理数的概念,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长度是10cm,宽度是5cm,求这个长方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学期末考试卷带答案一、选择题(共8小题,每小题3分,满分24分)1.49的平方根是()A.7B.±7C.﹣7D.49考点:平方根.专题:存在型.分析:根据平方根的定义进行解答即可.解答:解:∵(±7)2=49,∴49的平方根是±7.故选B.点评:本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.(﹣3)2的算术平方根是()A.3B.±3C.﹣3D.考点:算术平方根.专题:计算题.分析:由(﹣3)2=9,而9的算术平方根为=3.解答:解:∵(﹣3)2=9,∴9的算术平方根为=3.故选A.点评:本题考查了算术平方根的定义:一个正数a的正的平方根叫这个数的算术平方根,记作(a>0),规定0的算术平方根为0.3.在实数﹣,0,﹣π,,1.41中无理数有()A.1个B.2个C.3个D.4个考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无理数,故选:A.点评:本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.4.在数轴上表示1、的对应点分别为A、B,点B关于点A的对称点C,则点C表示的实数为()A.﹣1B.1﹣C.2﹣D.﹣2考点:实数与数轴.分析:首先根据已知条件结合数轴可以求出线段AB的长度,然后根据对称的性质即可求出结果.解答:解:∵数轴上表示1,的对应点分别为A、B,∴AB=﹣1,设B点关于点A的对称点C表示的实数为x,则有=1,解可得x=2﹣,即点C所对应的数为2﹣.故选C.点评:此题主要考查了根据数轴利用数形结合的思想求出数轴两点之间的距离,同时也利用了对称的性质.5.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EFB.已知AB∥EFC.假定CD不平行于EFD.假定AB不平行于EF考点:反证法.分析:根据要证CD∥EF,直接假设CD不平行于EF即可得出.解答:解:∵用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.∴证明的第一步应是:从结论反面出发,故假设CD不平行于EF.故选:C.点评:此题主要考查了反证法的第一步,根据题意得出命题结论的反例是解决问题的关键.6.如图,直线l过等腰直角三角形ABC顶点B,A、C两点到直线l的距离分别是2和3,则AB的长是()A.5B.C.D.考点:全等三角形的判定与性质;勾股定理;等腰直角三角形.专题:计算题;压轴题.分析:由三角形ABC为等腰直角三角形,可得出AB=BC,∠ABC 为直角,可得出∠ABD与∠EBC互余,在直角三角形ABD中,由两锐角互余,利用等角的余角相等得到一对角相等,再由一对直角相等,及AB=BC,利用AAS可得出三角形ABD与三角形BEC全等,根据全等三角形的对应边相等可得出BD=CE,由CE=3得出BD=3,在直角三角形ABD中,由AD=2,BD=3,利用勾股定理即可求出AB的长.解答:解:如图所示:∵△ABC为等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABD+∠CBE=90°,又AD⊥BD,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∴∠CBE=∠DAB,在△ABD和△BCE中,,∴△ABD≌△BCE,∴BD=CE,又CE=3,∴BD=3,在Rt△ABD中,AD=2,BD=3,根据勾股定理得:AB==.故选D点评:此题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及勾股定理,利用了转化的数学思想,灵活运用全等三角形的判定与性质是解本题的关键.7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC ≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA 证明△ABC≌△DEC,故此选项不合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,一架长25米的梯子,斜立在一竖直的墙上,这时梯子的底部距离墙底端7分米,如果梯子的顶端下滑4分米,那么梯子的底部平滑的距离为()A.9分米B.15分米C.5分米D.8分米考点:勾股定理的应用.分析:在直角三角形AOC中,已知AC,OC的长度,根据勾股定理即可求AO的长度,解答:解:∵AC=25分米,OC=7分米,∴AO==24分米,下滑4分米后得到BO=20分米,此时,OD==15分米,∴CD=15﹣7=8分米.故选D.点评:本题考查了勾股定理在实际生活中的应用,考查了勾股定理在直角三角形中的正确运用,本题中两次运用勾股定理是解题的关键.二、填空题(共6小题,每小题3分,满分18分)9.计算:=﹣2.考点:立方根.专题:计算题.分析:先变形得=,然后根据立方根的概念即可得到答案.解答:解:==﹣2.故答案为﹣2.点评:本题考查了立方根的概念:如果一个数的立方等于a,那么这个数就叫a的立方根,记作.10.计算:﹣a2b•2ab2=﹣2a3b3.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:﹣a2b•2ab2=﹣2a3b3;故答案为:﹣2a3b3.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.11.计算:(a2)3÷(﹣2a2)2=a2.考点:整式的除法.分析:根据幂的乘方和积的乘方进行计算即可.解答:解:原式=a6÷4a4=a2,故答案为a2.点评:本题考查了整式的除法,熟练掌握幂的乘方和积的乘方是解题的关键.12.如图是2014~2015学年度七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是5人.考点:扇形统计图.专题:计算题.分析:根据参加外语兴趣小组的人数是12人,所占百分比为24%,计算出总人数,再用1减去所有已知百分比,求出绘画的百分比,再乘以总人数即可解答.解答:解:∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组人数的人数共有:12÷24%=50(人),∴绘画兴趣小组的人数是50×(1﹣14%﹣36%﹣16%﹣24%)=5(人).故答案为:5.点评:本题考查了扇形统计图,从图中找到相关信息是解此类题目的关键.13.如图,△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为12,AE=5,则△ABC的周长为22.考点:线段垂直平分线的性质.分析:由AC的垂直平分线交AC于E,交BC于D,根据垂直平分线的性质得到两组线段相等,进行线段的等量代换后结合其它已知可得答案.解答:解:∵DE是AC的垂直平分线,∴AD=DC,AE=EC=5,△ABD的周长=AB+BD+AD=12,即AB+BD+DC=12,AB+BC=12∴△ABC的周长为AB+BC+AE+EC=12+5+5=22.△ABC的周长为22.点评:此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本的关键.14.如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC 于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为65°.考点:全等三角形的判定与性质;直角三角形的性质;作图—复杂作图.分析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.解答:解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.点评:本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键.三、解答题(共9小题,满分78分)15.分解因式:3x2y+12xy2+12y3.考点:提公因式法与公式法的综合运用.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=3y(x2+4xy+4y2)=3y(x+2y)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.先化简,再求值3a﹣2a2(3a+4),其中a=﹣2.考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地2015年中考的常考点.17.已知a2﹣b2=15,且a+b=5,求a﹣b的值.考点:因式分解-运用公式法.专题:计算题.分析:已知第一个等式左边利用平方差公式分解,把a+b=5代入求出a﹣b的值即可.解答:解:由a2﹣b2=(a+b)(a﹣b)=15,a+b=5,得到a﹣b=3.点评:此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.18.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E 分别是AB、AC边上的点,且BD=CE.求证:MD=ME.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM ≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.19.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;若CD=2,求DF的长.考点:等边三角形的判定与性质;含30度角的直角三角形.专题:几何图形问题.分析:(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解答:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.20.如图已知,CE⊥AB,BF⊥AC,BF交CE于点D,且BD=CD.(1)求证:点D在∠BAC的平分线上;若将条件“BD=CD”与结论“点D在∠BAC的平分线上”互换,成立吗?试说明理由.考点:全等三角形的判定与性质.分析:(1)根据AAS推出△DEB≌△DFC,根据全等三角形的性质求出DE=DF,根据角平分线性质得出即可;根据角平分线性质求出DE=DF,根据ASA推出△DEB≌△DFC,根据全等三角形的性质得出即可.解答:(1)证明:∵CE⊥AB,BF⊥AC,∴∠DEB=∠DFC=90°,在△DEB和△DFC中,,∴△DEB∽△DFC(AAS),∴DE=DF,∵CE⊥AB,BF⊥AC,∴点D在∠BAC的平分线上;解:成立,理由是:∵点D在∠BAC的平分线上,CE⊥AB,BF⊥AC,∴DE=DF,在△DEB和△DFC中,,∴△DEB≌△DFC(ASA),∴BD=CD.点评:本题考查了全等三角形的性质和判定,角平分线性质的应用,解此题的关键是推出△DEB≌△DFC,注意:角平分线上的点到角两边的距离相等,反之亦然.21.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C 级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D 级的学生数.解答:解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.点评:此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某号台风的中心位于O地,台风中心以25千米/小时的速度向西北方向移动,在半径为240千米的范围内将受影响、城市A在O 地正西方向与O地相距320千米处,试问A市是否会遭受此台风的影响?若受影响,将有多少小时?考点:二次根式的应用;勾股定理.分析:A市是否受影响,就要看台风中心与A市距离的最小值,过A点作ON的垂线,垂足为H,AH即为最小值,与半径240千米比较,可判断是否受影响;计算受影响的时间,以A为圆心,240千米为半径画弧交直线OH于M、N,则AM=AN=240千米,从点M 到点N为受影响的阶段,根据勾股定理求MH,根据MN=2MH计算路程,利用:时间=路程÷速度,求受影响的时间.解答:解:如图,OA=320,∠AON=45°,过A点作ON的垂线,垂足为H,以A为圆心,240为半径画弧交直线OH于M、N,在Rt△OAH中,AH=OAsin45°=160<240,故A市会受影响,在Rt△AHM中,MH===80∴MN=160,受影响的时间为:160÷25=6.4小时.答:A市受影响,受影响时间为6.4小时.点评:本题考查了二次根式在解决实际问题中的运用,根据题意,构造直角三角形,运用勾股定理计算,是解题的关键.23.感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE 于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D 在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为6.考点:全等三角形的判定与性质;等腰三角形的性质;正方形的性质.专题:压轴题.分析:拓展:利用∠1=∠2=∠BAC,利用三角形外角性质得出∠4=∠ABE,进而利用AAS证明△ABE≌△CAF;应用:首先根据△ABD与△ADC等高,底边比值为:1:2,得出△ABD与△ADC面积比为:1:2,再证明△ABE≌△CAF,即可得出△ABE与△CDF的面积之和为△ADC的面积得出答案即可.解答:拓展:证明:∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,∴,∴△ABE≌△CAF(AAS).应用:解:∵在等腰三角形ABC中,AB=AC,CD=2BD,∴△ABD与△ADC等高,底边比值为:1:2,∴△ABD与△ADC面积比为:1:2,∵△ABC的面积为9,∴△ABD与△ADC面积分别为:3,6;∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,∴,∴△ABE≌△CAF(AAS),∴△ABE与△CAF面积相等,∴△ABE与△CDF的面积之和为△ADC的面积,∴△ABE与△CDF的面积之和为6,故答案为:6.点评:此题主要考查了三角形全等的判定与性质以及三角形面积求法,根据已知得出∠4=∠ABE,以及△ABD与△ADC面积比为:1:2是解题关键.。