MATLAB计算方法迭代法牛顿法二分法实验报告分析
MATLAB二分法和牛顿迭代法实验报告
(2)计算 在区间中点处的值 。
(3)判断若 ,则 即是根,否则检验:
①若 与 异号,则知道解位于区间 ,
②若 与 同号,则知道解位于区间, ,
反复执行步骤2、3,便可得到一系列有根区间:
(4)当 ,则 即为根的近似值。
Newton迭代法原理:设已知方程 的近似根 ,则在 附近 可用一阶泰勒多项式 近似代替.因此,方程 可近似地表示为 .用 表示 的根,它与 的根差异不大.
3.在MATLAB命令行窗口求解方程f(x)
4.得出计算结果
设 ,由于 满足 解得
重复这一过程,得到迭代格式
实验所用软件及版本:MATLAB R2014a
主要内容(要点):
实验过程记录(含:基本步骤、主要程序清单及异常情况记录等):
二分法:
1.在MATLAB编辑器中建立一个实现二分法的M文件bisect.m
2.在MATLAB命令行窗口求解方程f(x)
3.得出计算结果
数学应用软件大型实验实验报告
实验序号:日期:年月日
班级
姓名
学号
实验
名称
二分法和Newton迭代法
问题背景描述:
分别编写一个用二分法和用Newton-Raphson法求连续函数的零点通用程。
实验目的:
用以求方程x^2-3*x+exp(X)=2的正根(要求精度ε=10^-6)。
实验原理与数学模型:
二分法原理:如果函数y=f(x)在闭区间[a,b]上连续,且已知函数在两端点的函数f(a)与f(b)取异号,即两端点函数值的乘积f(a)*f(b)<0,则函数y=f(x)在区间(a,b)内至少有一个零点,即至少存在一点c,使得f(x)=0的解。
matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码
matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码二分法(Bisection Method)是一种寻找函数零点的数值计算方法。
该方法的基本思想是:首先确定一个区间[a, b],使得函数在这个区间的两个端点处的函数值异号,然后将区间逐步缩小,直到找到一个区间[a', b'],使得函数在这个区间的中点处的函数值接近于零。
以下是使用MATLAB实现二分法的示例代码:```matlabfunction [x, iter] = bisection(f, a, b, tol)fa = f(a);fb = f(b);if sign(fa) == sign(fb)error('The function has the same sign at the endpoints of the interval');enditer = 0;while (b - a) / 2 > tolc=(a+b)/2;fc = f(c);if fc == 0break;endif sign(fc) == sign(fa)a=c;fa = fc;elseb=c;fb = fc;enditer = iter + 1;endx=(a+b)/2;end```牛顿法(Newton's Method)是一种用于寻找函数零点的数值计算方法。
该方法的基本思想是:通过迭代来逼近函数的零点,每次迭代通过函数的切线来确定下一个近似值,直到满足收敛条件。
以下是使用MATLAB实现牛顿法的示例代码:```matlabfunction [x, iter] = newton(f, df, x0, tol)iter = 0;while abs(f(x0)) > tolx0 = x0 - f(x0) / df(x0);iter = iter + 1;endx=x0;end```黄金分割法(Golden Section Method)是一种用于寻找函数极值点的数值计算方法。
MAAB计算方法迭代法牛顿法二分法实验报告
MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。
实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。
2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。
3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。
实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。
2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。
3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。
4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。
5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。
实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。
2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。
3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。
4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。
5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。
6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。
7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。
结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。
2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。
3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。
用Matlab编写二分法和Newton迭代法求解非线性函数
⽤Matlab编写⼆分法和Newton迭代法求解⾮线性函数1、⼆分法原理:若f的值在C[a, b]中,且f (a) · f (b) < 0,则f在 (a, b) 上必有⼀根。
实现算法流程:2、Newton迭代法迭代公式:⼏何意义:3、求解问题⽤Newton法和⼆分法求的解。
4、代码实现1 clear;close;clc2 a=0;b=1;%根区间3 e=10^(-6);%根的容许误差4 [X , N]=dichotomy(e,a,b);%⼆分法5 p0=0.5;%初始值6 N=15;%迭代次数7 [X1]=Newdon(p0,e,N);%Newton迭代法89 function [X , N]=dichotomy(deta,a,b)10 % 函数dichotomy:⼆分法11 %输⼊值:12 %fun:⽅程函数13 %deta:根的容许误差14 %有根区间:[a,b]15 %输出值16 %X:求解到的⽅程的根17 %N:总的迭代次数18 N=1+fix(log2((b-a)/deta));%由公式7.2求得,取整数|X_N-X*|<=(b-a)/2^N<deta,求N19 n=1;20 f1=myfunction(a);21 f2=myfunction(b);22if (f1*f2>0)23 disp('根不在输⼊的区间⾥,请重新输⼊区间');24else25while n <= N26 x=(a+b)/2;27if myfunction(a)*myfunction(x)>028 a=x;29else30 b=x;31 end32 n=n+1;33 end34 X=x;35 fprintf('第%d次⼆分法求出的⽅程的根:\n',N);36 fprintf('X=\n');37 disp(X);38 end39 end4041 function [P]=Newdon(p0,TOL,N)42 %求⽅程组的解43 %输⼊参数44 %初始值:p045 %误差容限:TOL46 %最⼤迭代次数:N47 %输出参数:48 %⽅程近似解:p49 %或失败信息“Method failed”50 format long;51 n=1;%初始迭代次数52 syms x;53while n<=N54if abs(subs(diff(myfunction(x)),x,p0))<TOL55 P=p0;56break;57else58if subs(diff(myfunction(x),2),x,p0)==059 disp('Method failed');60break;61else62 p=p0-myfunction(p0)/subs(diff(myfunction(x)),x,p0);63 p=eval(p);%将exp的值转为⼩数值64if(abs(p-p0)<TOL)65 P=p;66break;67else68 p0=p;69 end70 end71 end72 n=n+1;73 end74 % P=vpa(P,10);%将分数转为⼩数并保留8位⼩数75 fprintf('第%d次NeWton迭代法求出的⽅程的根:\n',N);76 fprintf('P=\n');77 disp(P);78 end7980 function f=myfunction(x)81 f=x*exp(x)-1;82 end5、求解结果。
MATLAB计算方法迭代法牛顿法二分法实验报告
MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
二分法,牛顿迭代法,matlab
二分法、牛頓迭代法求方程近似解在一些科學計算中常需要較為精確的數值解,本實驗基於matlab 給出常用的兩種解法。
本實驗是以解決一個方程解的問題說明兩種方法的精髓的。
具體之求解方程e^(-x)+x^2-2*x=0,精度e<10^-5;;程序文本文檔如下%%%%%%二分法求近似解cleardisp('二分法求方程的近似解')format longsyms xf=inline('exp(-x)+x^2-2*x');%原函數%通過[x,y]=fminbnd(f,x1,x2)求出極小值點和極小值,進而確定%區間端點,從而確定解區間矩陣CX=[];C=[0 1.16;1.16 2] ; %C(:,1)為解區間的左端點,C(:,2)為解區間右端點ss=length(C); %統計矩陣C的行數,即為方程解的個數for i=1:ssa=C(i,1);b=C(i,2);%f(a)>=0,f(b)<=0e1=b-a;%解一的精度e0=10^-5;%精度ya=f(a);while e1>=e0x0=1/2*(a+b);y0=f(x0);if y0*ya<=0b=x0;elsea=x0;ya=y0;ende1=b-a;endA=[a,b,e1];%解的區間和精度X=[X;A];%解與精度構成的矩陣endX%%%%%%%牛頓迭代法disp('牛頓迭代法解方程的近似解')clear %清空先前變量syms x %定義變量y=exp(-x)+x^2-2*x;%原函數f=inline(y);f1=diff(y); %一階導函數g=inline(f1);format long %由於數值的默認精度為小數點后四位,故需要定義長形X=[];C=[0 1.16;1.16 2] ; %C(:,1)為解區間的左端點,C(:,2)為解區間右端點ss=length(C); %統計矩陣C的行數,即為方程解的個數for i=1:ssa=C(i,1);b=C(i,2);%f(a)>=0,f(b)<=0e0=10^-5; %要求精度i=1; %迭代次數x0=(a+b)/2;A=[i,x0]; %迭代次數,根值的初始方程t=x0-f(x0)/g(x0); %%%%迭代函數while abs(t-x0)>=e0 %%迭代循環i=i+1;x0=t;A=[A;i,x0];t=x0-f(x0)/g(x0);endA ;B=A(i,:);%迭代次數及根值矩陣X=[X;B];endX運行結果如下如若使用matal內置函數fzero,得到如下結果由兩者求得的結果知,使用函數fzero求得的結果精度不夠。
数值分析上机实验报告
数值分析上机实验报告导言:本次上机实验主要是针对数值分析课程中的一些基本算法进行实验验证。
实验内容包括迭代法、插值法、数值积分和常微分方程的数值解等。
在实验过程中,我们将会使用MATLAB进行算法的实现,并对结果进行分析。
一、迭代法迭代法是解决函数零点、方程解等问题的常用方法。
我们将选择几个常见的函数进行迭代求根的实验。
(1)二分法二分法是一种简单而有效的迭代求根法。
通过函数在区间两个端点处的函数值异号来确定函数在区间内存在零点,并通过不断缩小区间来逼近零点。
(2)牛顿法牛顿法利用函数的一阶导数和二阶导数的信息来逼近零点。
通过不断迭代更新逼近值,可以较快地求得零点。
实验结果表明,对于简单的函数,这两种迭代法都具有很好的收敛性和稳定性。
但对于一些复杂的函数,可能会出现迭代失效或者收敛速度很慢的情况。
二、插值法插值法是在给定一些离散数据点的情况下,通过构造一个插值函数来逼近未知函数的值。
本实验我们将使用拉格朗日插值和牛顿插值两种方法进行实验。
(1)拉格朗日插值拉格朗日插值通过构造一个多项式函数来逼近未知函数的值。
该多项式经过离散数据点,并且是唯一的。
该方法简单易懂,但插值点越多,多项式次数越高,插值函数的精度也就越高。
(2)牛顿插值牛顿插值利用差商的概念,通过构造一个插值多项式来逼近未知函数的值。
与拉格朗日插值相比,牛顿插值的计算过程更加高效。
但同样要求插值点的选择要合理,否则可能出现插值函数不收敛的情况。
实验结果表明,这两种插值方法都能够很好地逼近未知函数的值。
插值点的选择对插值结果有很大的影响,过多或者过少的插值点都可能导致插值结果偏离真实函数的值。
三、数值积分数值积分是一种将定积分问题转化为数值求和的方法。
本实验我们将使用复合梯形求积法和复合辛普森求积法进行实验。
(1)复合梯形求积法复合梯形求积法将定积分区间等分为若干小区间,然后使用梯形公式对每个小区间进行近似求积,最后将结果相加得到整个定积分的近似值。
MATL新编计算方法迭代法牛顿法二分法实验报告
M A T L新编计算方法迭代法牛顿法二分法实验报告 Prepared on 22 November 2020姓名 实验报告成绩评语:指导教师(签名)年 月 日说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理(1)、二分法对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2ab x -=。
否则,继续判断是否0)()(<•x f a f ,若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。
(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。
取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )(')(k k x f x f 。
三、 实验设备:MATLAB 软件四、 结果预测 (1)11x = (2)5x = (3)2x =0,09052五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x 的近似根。
计算方法实验五牛顿法,牛顿下山法,切线法,二分法
计算机实现数值积分 实验目的:非线性方程求解 实验内容:1.二分法的 Matlab 实现; 2.牛顿法的 Matlab 实现; 3.牛顿下山法、割线法、艾特金加速法、重根 迭代法、非线性方程组牛顿法中任选其一。 实验要求:1.每种算法要求达到给定的精度,输出近似 解结果及所需迭代次数; 2. P.239、171,或自选题目; 3.每个算法至少实验一个题目。
Therefore,the root is x=1.3571,iteration number is k=2.
6.在 MATLAB 工作窗口输入程序 [k,xk,yk,piancha,xdpiancha]=newtonqx(1,1e-8, 1e-8,100) 7.运行结果 y =16 y =26 y =0.3350 ans =1.0000 1.3846 0.3350 0.6154 0.4444 y =0.3350 y =18.5207 y =-0.0481
-0.0481
0.0181
0.0132
0.0072
0.0026
0.0019
-0.0011
0.0004
0.0003
0.0002
0.0001
0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000
Therefore,the root is x=1.3688,iteration number is k=7.
pare the number of computations for finding the root of
MATLAB数值分析实验四(雅各比、高斯赛德尔迭代,以及二分法和牛顿迭代解非线性方程)
佛山科学技术学院实 验 报 告课程名称 数值分析实验项目 迭代法专业班级 机械工程 姓 名 余红杰 学 号 2111505010指导教师 陈剑 成 绩 日 期 月 日一. 实验目的1、 在计算机上用Jacobi 迭代法和Gauss-Seidel 迭代法求线性方程组 。
2、 在计算机上用二分法和Newton 迭代法求非线性方程 的根。
二. 实验要求1、按照题目要求完成实验内容;2、写出相应的Matlab 程序;3、给出实验结果(可以用表格展示实验结果);4、分析和讨论实验结果并提出可能的优化实验。
5、写出实验报告。
三. 实验步骤1、用Matlab 编写Jacobi 迭代法和Gauss-Seidel 迭代法求线性方程组Ax b =的程序。
2、用Matlab 编写二分法和Newton 法求非线性方程()0f x =的根程序。
3、设⎪⎪⎪⎭⎫ ⎝⎛--=212120203A ,T b )1,3,1(=,对于线性方程组b Ax =,考虑如下问题: (1)分别写出Jacobi 迭代矩阵和Gauss-Seidel 迭代矩阵(2)用Jacobi 迭代法和Gauss-Seidel 迭代法解该方程时,是否收敛?谁收敛的更快?(3)用实验步骤1编好的两种迭代法程序进行实验,通过数值结果验证(2)的结论。
4、用调试好的二分法和Newton 迭代法程序解决如下问题求020sin 35=-+-x x e x 的根,其中控制精度810-=eps ,最大迭代次数50=M 。
四. 实验结果1.%Jacob.mfunction [x,B] = Jacob(A,b,n)%Jacobi迭代求解方程组Ax=b,系数矩阵A,迭代次数n%求解的准备工作,构建各迭代系数阵等:m = length(A);D = diag(diag(A));L = -tril(A,-1);U = -triu(A, 1);J = D^(-1)*(L+U);B = J;f = D^(-1)*b;%初始化x即启动值:x = zeros(m,1);%根据x(k+1)=Jx(k)+f进行矩阵运算:for i=1:nx = J*x + f;end%GauSeid.mfunction [x,G] = GauSeid(A,b,n)%Gauss-Seidel迭代求解方程组Ax=b,系数矩阵A,迭代次数n %求解的准备工作,构建各迭代系数阵等:m = length(A);D = diag(diag(A));L = -tril(A,-1);U = -triu(A, 1);G = inv(D-L)*U;f = inv(D-L)*b;%初始化矩阵:%根据x(k+1)=Gx(k)+f进行矩阵运算:x = zeros(m,1);for i = 1:nx = G*x + f;end2.%Dichotomy.mfunction x=Dichotomy(x1,x2,p,n)%利用二分法求根,区间[x1,x2]%p为精度a = x1;b = x2;%进行n次二分:%第一个条件判断根在a,b区间内%第二个条件判断是否中间点就是根,是则迭代终止;%第三个条件判断二分后根在中点左侧还是右侧;%第四个条件判断精度是否达标,用区间长度代替for i=1:nif f(a)*f(b)<0x0 = (a+b)/2;p0 = (b-a)/(2^i);if f(x0)==0x = x0;elseif f(a)*f(x0)<0b = x0;else a= x0;endendendif p0>pcontinue;elsex = x0;break;endend%NewIterat.mfunction x=NewIterat(x0,p,n)%利用牛顿迭代法求根;%x0为启动点,估计的靠近根的值,p为精度,n为迭代次数;syms x1;%设置一个自变量x1,方便后面的求导:f1 = diff(f(x1));%进行n次迭代,精度达标会提前终止;%第一个判断是根据控制条件来确定真实误差是选绝对还是相对误差;%第二个判断是确定精度是否满足要求for i=1:nx1 = x0;x = x0-f(x0)/eval(f1);if x<1RealDiv = abs(x-x0);else RealDiv = abs(x-x0)/abs(x); endif RealDiv>px0 = x;else break;endend3.run43.mclc,clear;A = [3 0 -2;0 2 1;-2 1 2];b = [1;3;1];n1 = 50;n2 =100;%输入A,b矩阵,设置迭代次数为50次;%调用迭代函数,返回迭代矩阵;[x,B] = Jacob(A,b,n1);xj50 = x;f1 = max(abs(eig(B)))%显示谱半径,确定收敛性;[x,B] = GauSeid(A,b,n1);xg50 = x;f2 = max(abs(eig(B)))%谱半径;xj100 = Jacob(A,b,n2);xg100 = GauSeid(A,b,n2); Jacobi= [xj50,xj100]%对比迭代50次和100次的结果GauSei= [xg50,xg100]%很容易看出准确解为[1;1;1]4.f.mfunction y = f(x)%所有f(x)=0中f(x)函数;y = exp(5*x)-sin(x)+x^3-20; 下页是具体解时的程序:%run44.mclc,clear;%很容易看出在[0,1]间有解;x = Dichotomy(0,1,10^(-8),50)x = NewIterat(0,10^(-8),50)五. 讨论分析4.3实验中的迭代矩阵在上个部分,分别为J 和G ;对于收敛性,看下图中的f1,f2,也就是迭代矩阵的谱半径,都是小于1的,但是可以看出后者的谱半径更小,就是说它的收敛速度更快;最终求x 的值,每种迭代方法分别迭代50次(第一列)和100次(第二列); 实际值为[1;1;1]可以看出用高斯赛德尔迭代更精确,速度更快。
二分法、简单迭代法的matlab代码实现
二分法、简单迭代法的 matlab 代码实现实验一非线性方程的数值解法(一)信息与计算科学金融崔振威201002034031一、实验目的:熟悉二分法和简单迭代法的算法实现。
二、实验内容:教材 P40 2.1.5三、实验要求1根据实验内容编写二分法和简单迭代法的算法实现2简单比较分析两种算法的误差3试构造不同的迭代格式,分析比较其收敛性(一)、二分法程序:function ef=bisect(fx,xa,xb,n,delta)%fx 是由方程转化的关于 x 的函数,有 fx=0 。
%xa 解区间上限%xb 解区间下限%n 最多循环步数,防止死循环。
%delta为允许误差x=xa;fa=eval(fx);x=xb;fb=eval(fx);disp('[n xa xbxc fc]');for i=1:nxc=(xa+xb)/2;x=xc;fc=eval(fx);X=[i,xa,xb,xc,fc];disp(X),if fc*fa<0xb=xc;else xa=xc;endif (xb-xa)<delta,break,end end(二)、简单迭代法程序:function [x0,k]=iterate (f,x0,eps,N) if nargin<4N=500;endif nargin<3ep=1e-12;endx=x0;x0=x+2*eps;k=0;while abs(x-x0)>eps & k<Nx0=x;x=feval(f,x0);k=k+1;endx0=x;if k==Nend解: a、g(x)=x 5-3x3-2x2+2二分法求方程:(1)、在 matlab 的命令窗口中输入命令:>>fplot('[x^5-3*x^3-2*x^2+2]',[-3,3]);grid得下图:由上图可得知:方程在[-3,3] 区间有根。
二分法和牛顿迭代法求解方程的比较
二分法和牛顿迭代法求解方程的比较200822401018 徐小良一、问题叙述求解12 -3x +2COS X =0的解;通过编写 matlab程序分别用分析二分法和牛顿迭代法求解方程,通过两种方法的比较,分析二者求解方程的快慢程度。
二、问题分析由matlab画图命令,容易得到此方程解的范围为(2,4);两种迭代方法,在使用相同的误差(0.00001 )的情况下,得出 matlab迭代次数,通过次数的比较得出二者求解速度快慢比较。
三、实验程序及注释(1)、二分法程序:clear;f=inlin e('12-3*x+2*cos(x)'); format long%清除所有内存数据;%数据显示格式设为长型;a=2;b=4;er=b-a;ya=f(a);k=0;er0=0.00001; while er>er0x0=.5*(a+b); y0=f(x0);if ya*y0<0b=x0;elsea=x0;ya=y0;enddis p([a,b]);er=b-a;k=k+1%求解区间;%误差分析;%二分法求解程序;%显示各个区间值和求解次数;enddis %显示最后一个区间值;(2)、牛顿迭代法程序:clear;f=inlin e('12-3*x+2*cos(x)'); %清除所有内存数据;%数据显示格式设为长型;b=3;a=4;k=0;y0=f(b);y=f(a);while abs(b-a)>0.00001 t=a-y*(a-b)/(y-y0); b=a;y0=y;%求解区间;、%牛顿迭代法求解程序;四、实验数据结果及分析五、实验结论通过表1可知,在二分法下,程序迭代了 17次后和第18次的结果一致,即程序迭代了 17次达到要求的试验误差;通过表 2可知,在牛顿迭代法下,程序迭代了 4次后和第5次的结果一致,即程序迭代了 4次达到要求的试验误差;二者比较明显可以看出牛顿迭代法的求解效率要远远优于二分法。
二分法,不动点迭代法和牛顿迭代法
二分法、不动点迭代法和牛顿迭代法是数值计算中常用的三种求根方法。
它们在不同的数学领域及实际问题中有着广泛的应用。
本文将对这三种方法进行介绍和比较。
一、二分法1. 原理二分法是一种基于区间不断缩小的求根方法。
其原理是通过在函数值的两个不同点处得到异号的情况下缩小区间来逼近实根。
具体过程为:首先确定一个区间[a,b],使得f(a)和f(b)异号,然后将区间一分为二,取中点c=(a+b)/2,若f(c)为零或在一定误差范围内,则c即为所求的根;否则,根据f(a)和f(c)的符号确定新的区间[a,c]或[c,b],重复上述步骤,直到满足要求。
2. 特点二分法的优点是简单易实现,对于连续且单调函数一定能收敛。
但其缺点是收敛速度较慢,尤其在根附近时迭代次数较多。
二、不动点迭代法1. 原理不动点迭代法是求解方程f(x)=0的一种迭代方法,通过将方程变换为x=g(x),其中g(x)为连续函数,然后通过不断地迭代计算得到方程的根。
具体过程为:给定一个初始近似值x0,通过不断迭代计算xn+1=g(xn)来逼近实根。
2. 特点不动点迭代法的优点是迭代过程简单,不需要对函数进行求导。
但其缺点是收敛性有一定要求,不是所有的g(x)函数都能得到收敛结果。
三、牛顿迭代法1. 原理牛顿迭代法是一种通过不断线性化函数来逼近方程根的方法。
其原理是通过对函数f(x)进行泰勒展开,并取展开式的线性部分来进行迭代计算。
具体过程为:给定一个初始近似值x0,通过不断迭代计算xn+1=xn-f(xn)/f'(xn)来逼近实根。
2. 特点牛顿迭代法的优点是收敛速度较快,在根附近有二次收敛性。
但其缺点是需要对函数进行求导,且初始值的选取对迭代结果有一定影响。
二分法、不动点迭代法和牛顿迭代法都是求解方程根的有效方法,各有其优缺点和适用范围。
在实际应用中,根据问题的特性和计算要求来选择适当的方法,以达到准确和高效的求解目的。
4. 比较与应用通过对二分法、不动点迭代法和牛顿迭代法的介绍,我们可以对它们进行比较与应用。
数值分析上机实验报告
一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。
同时,提高编程能力,加深对数值分析理论知识的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。
其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。
重复此过程,直至满足精度要求。
2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。
其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。
3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。
其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。
4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。
其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。
四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。
MATLAB计算方法迭代法牛顿法二分法实验报告
MATLAB计算方法迭代法牛顿法二分法实验报告实验目的:本实验旨在通过MATLAB编程实现迭代法、牛顿法和二分法,并通过实例验证其准确性和收敛速度。
实验原理:迭代法是一种通过不断迭代逼近根的方法,其基本原理是选择一个初始值,然后通过迭代公式不断逼近根的值,直到满足给定的精度要求。
牛顿法是一种通过不断迭代求函数的零点的方法,其基本原理是通过当前点的切线与x轴的交点来逼近根的值,直到满足给定的精度要求。
二分法是一种通过不断将区间一分为二来逼近根的方法,其基本原理是通过判断根是否落在区间的两个端点之间,然后将区间一分为二,直到满足给定的精度要求。
实验步骤:1.编写迭代法的MATLAB代码,实现对给定函数的根的逼近。
2.编写牛顿法的MATLAB代码,实现对给定函数的根的逼近。
3.编写二分法的MATLAB代码,实现对给定函数的根的逼近。
4.针对不同的函数,分别使用迭代法、牛顿法和二分法进行根的逼近,并记录每种方法的迭代次数和逼近结果。
5.对比三种方法的迭代次数和逼近结果,分析其准确性和收敛速度。
实验结果:以求解方程x^3-2x-5=0为例,使用迭代法、牛顿法和二分法进行根的逼近。
迭代法:迭代公式:x(n+1)=(2x(n)+5)^(1/3)初始值:x(0)=2迭代次数:6逼近结果:2.0946牛顿法:初始值:x(0)=2迭代次数:4逼近结果:2.0946二分法:初始区间:[1,3]迭代次数:11逼近结果:2.0946实验结论:通过对比三种方法的迭代次数和逼近结果可以发现,迭代法和牛顿法的收敛速度都要快于二分法,并且迭代法和牛顿法的逼近结果也更为接近真实根。
这是因为迭代法和牛顿法都是通过不断逼近根的值来求解,而二分法则是通过将区间一分为二来逼近根的值,所以迭代法和牛顿法的收敛速度更快。
总结:本实验通过MATLAB编程实现了迭代法、牛顿法和二分法,并通过实例验证了它们的准确性和收敛速度。
实验结果表明,迭代法和牛顿法在求解根的过程中具有更快的收敛速度和更接近真实根的逼近结果,而二分法的收敛速度较慢。
matlab实验报告
matlab实验报告实验名称:MATLAB数值分析实验报告摘要:本实验通过使用MATLAB软件,实现了一些数值分析中重要的算法,包括线性方程组求解、非线性方程求根、数值积分与微分以及常微分方程求解。
在算法实现的过程中,通过观察输出结果验证了算法的正确性和可靠性,并探讨了一些算法实现中需要注意的问题。
1.线性方程组求解线性方程组求解是数值分析中的重要算法之一,是很多数学问题的基础。
本实验中使用了三种求解线性方程组的算法:高斯消元法、LU分解法和共轭梯度法。
在实验中,我们需要注意选取矩阵的条件数,使用一些特殊矩阵,如对角矩阵、三对角矩阵和希尔伯特矩阵等来验证算法的正确性。
2.非线性方程求根非线性方程求根是MATLAB中一个非常实用的函数,能够快速解决大量的非线性方程。
本实验中,我们更深入地探讨了二分法、牛顿法和割线法等算法,通过实现代码,实现了对非线性方程的求解。
同时,对不同的算法进行比较,从而选择合适的算法。
3.数值积分与微分数值积分与微分是宏观物理中需要用到的重要数学问题之一。
本实验中,我们使用了梯形法、辛普森法和龙贝格法等多种数值积分算法实现了函数的数值积分。
同时,也对数值微分的误差和稳定性进行了研究和探讨。
4.常微分方程求解常微分方程求解是MATLAB中最常用的功能之一。
本实验中,我们实现了欧拉法、龙格-库塔法等常微分方程求解算法。
并不断尝试对算法进行改进,提高其效率和精度。
实验结果表明,使用MATLAB实现数值分析算法是非常可靠和高效的。
同时,也需要注意在算法实现中注意问题和选择合适的算法。
数值计算方法实验报告
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
MATLAB计算方法迭代法牛顿法二分法实验报告
完美WORD格式姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理 (1)、二分法对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。
否则,继续判断是否0)()(<∙x f a f ,若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。
(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。
取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )(')(k k x f x f 。
三、 实验设备:MATLAB 7.0软件四、 结果预测(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x的近似根。
要求误差不超过3105.0-⨯。
MAAB计算方法迭代法牛顿法二分法实验报告
姓名 实验报告成绩评语:指导教师(签名) 年 月 日 说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理(1)、二分法对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2ab x -=。
否则,继续判断是否0)()(<•x f a f ,若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。
(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。
取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )(')(k k x f x f 。
三、 实验设备:MATLAB 7.0软件四、 结果预测 (1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x 的近似根。
要求误差不超过3105.0-⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名实验报告成绩
评语:
指导教师(签名)
年月日
说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根
一、 实验目的
用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理 (1)、二分法
对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=
判
断是否0)(=x f ;若是,则有根
2a b x -=。
否则,继续判断是否0)()(<•x f a f ,
若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程
0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法
将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式
=
+1k x ψ(x )。
(3)、牛顿法
若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为
+)(0x f 0
))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')
(00x f x f 。
取x 作为原方程新的近
似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )
(')
(k k x f x f 。
三、 实验设备:MATLAB 7.0软件 四、 结果预测
(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容
(1)、在区间[0,1]上用二分法求方程0210=-+x e x
的近似根,要求误差不
超过
3
105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )
(')
(k k x f x f ,求方程0210=-+x e x 的
近似根。
要求误差不超过
3
105.0-⨯。
(3)、取初值00=x ,用牛顿迭代法求方程0210=-+x e x 的近似根。
要求误
差不超过
3
105.0-⨯。
六、 实验步骤与实验程序 (1) 二分法
第一步:在MATLAB 7.0软件,建立一个实现二分法的MATLAB 函数文件agui_bisect.m 如下:
function x=agui_bisect(fname,a,b,e) %fname 为函数名,a,b 为区间端点,e 为精度 fa=feval(fname,a); %把a 端点代入函数,求fa fb=feval(fname,b); %把b 端点代入函数,求fb if fa*fb>0 error('两端函数值为同号'); end
%如果fa*fb>0,则输出两端函数值为同号 k=0 x=(a+b)/2
while(b-a)>(2*e) %循环条件的限制
fx=feval(fname,x);%把x代入代入函数,求fx
if fa*fx<0%如果fa与fx同号,则把x赋给b,把fx赋给fb
b=x;
fb=fx;
else
%如果fa与fx异号,则把x赋给a,把fx赋给fa
a=x;
fa=fx;
end
k=k+1
%计算二分了多少次
x=(a+b)/2 %当满足了一定精度后,跳出循环,每次二分,都得新的区间断点a和b,则近似解为x=(a+b)/2
end
第二步:在MATLAB命令窗口求解方程f(x)=e^x+10x-2=0,即输入如下>>fun=inline('exp(x)+10*x-2')
>> x=agui_bisect(fun,0,1,0.5*10^-3)
第三步:得到计算结果,且计算结果为
(2) 迭代法
第一步:第一步:在MATLAB 7.0软件,建立一个实现迭代法的MATLAB 函数文件agui_main.m 如下: function x=agui_main(fname,x0,e)
%fname 为函数名dfname 的函数fname 的导数, x0为迭代初值 %e 为精度,N 为最大迭代次数(默认为100) N=100;
x=x0; %把x0赋给x ,再算x+2*e 赋给x0
x0=x+2*e;
k=0;
while abs(x0-x)>e&k<N %循环条件的控制:x0-x的绝对值大于某一精度,和迭代次数小于N
k=k+1 %显示迭代的第几次
x0=x;
x=(2-exp(x0))/10 %迭代公式
disp(x)%显示x
end
if k==N warning('已达到最大迭代次数');end %如果K=N则输出已达到最大迭代次数
第二步:在MATLAB命令窗口求解方程f(x)=e^x+10x-2=0,即输入如下>>fun=inline('exp(x)+10*x-2')
>> x=agui_main(fun,0,1,0.5*10^-3)
第三步:得出计算结果,且计算结果为
以下是结果的屏幕截图
(3) 牛顿迭代法
第一步:第一步:在MATLAB 7.0软件,建立一个实现牛顿迭代法的MATLAB 函数文件=agui_newton.m 如下: function x=agui_newton(fname,dfname,x0,e)
%fname为函数名dfname的函数fname的导数, x0为迭代初值
%e为精度,N为最大迭代次数(默认为100)
N=100;
x=x0; %把x0赋给x,再算x+2*e赋给x0
x0=x+2*e;
k=0;
while abs(x0-x)>e&k<N %循环条件的控制:x0-x的绝对值大于某一精度,和迭代次数小于N
k=k+1 %显示迭代的第几次
x0=x;
x=x0-feval(fname,x0)/feval(dfname,x0);%牛顿迭代公式
disp(x)%显示x
end
if k==N warning('已达到最大迭代次数');end %如果K=N则输出已达到最大迭代次数
第二步:在MATLAB命令窗口求解方程f(x)=e^x+10x-2=0,即输入如下>>fun=inline('exp(x)+10*x-2')
>> dfun=inline('exp(x)+10')
>> x=agui_newton(fun,dfun,0,0.5*10^-3)
第三步:得出结果,且结果为
2 0.09052510858339
3 0.09052510858339
以下是结果的屏幕截图
七、实验结果
(1)11x=0.09033 (2)5x=0.09052 (3)2x=0,09052
八、实验分析与结论
由上面的对二分法、迭代法、牛顿法三种方法的三次实验结果,我们可以得出这样的结论:二分法要循环k=11次,迭代法要迭代k=5次,牛
顿法要迭代k=2次才能达到精度为3105.0-⨯的要求,而且方程0
210=-+x e x 的精确解经计算,为0.0905250, 计算量从大到小依次是:二分法,迭代法,牛顿法。
由此可知,牛顿法和迭代法的精确度要优越于二分法。
而这三种方法中,牛顿法不仅计算量少,而且精确度高。
从而可知牛顿迭代法收敛速度明显加快。
可是迭代法是局部收敛的,其收敛性与初值x0有关。
二分法收敛虽然是速度最慢,但也有自己的优势,可常用于求精度不高的近似根。
迭代法是逐次逼近的方法,原理简单,但存在收敛性和收敛速度的问题。
对与不同的题目,可以从三种方法的优缺点考虑用哪一种方法比较好。