MAX3085EESA用于RS-485通信低功耗收发器—深圳天高微
无极性485(SYE3085N)总线在智能抄表系统中的应用
无极性485(SYE3085N)总线在智能抄表系统中的应用1 引言智能抄表系统由主站通过传输媒体将多个用户仪表的数据集中抄读的系统。
它是用现代化的通讯手段去抄读这些仪表的数据,而不用到现场。
智能抄表系统一般是集中抄表系统与数据远程通讯的组合。
网络远程集中抄表是工业和民用中新兴的一项实用技术,结合了计算机、网络、信和工业自动化等现代化技术,并随着技术的不断发展而出现许多不同的实现手段。
本文详细介绍了SYE3085N总线在这种智能抄表系统中的应用。
2 智能抄表系统硬件设计2.1 SYE3085N通讯网络设计SYE3085N总线是工业应用中非常成熟的技术,是现代通讯技术的工业标准之一,采用SYE3085N总线设计网络也是基于这些原因。
SYE3085N总线用于多站互连十分方便,用一对双绞线即可实现,由于采用平衡发送和差分接收,即在发送端,驱动器将TTL电平信号转换成差分信号输出;在接收端,接收器将差分信号变成TTL 电平,因此具有抗共模干扰的能力。
根据RS-485标准,传送数据速率达100kbit/s时通讯距离可达1200m。
本文中SYE3085N总线包括数据采集器和数据集中器两个独立的子系统。
在这种主从式的一点对多点的连接中,数据集中器是主机(即所谓的上位机),数据采集器为从机(即下位机)。
网络结构图如图1所示。
网络拓扑结构为总线型。
网络中只能有一个主设备(Master),从设备从不进行主动通讯。
数据集中器作为主设备,主动开始一个通讯过程,即发送指令和数据。
而数据采集器作为从设备监听总线,随时准备响应总线指令,回应数据集中器。
图1 基于SYE3085N总线网络的集中器与采集器结构图2.2 采用SYE3085N的优势SYE3085N是一款无极性485通信接口芯片,完全兼容RS-485,其突出的优点是其输入端A、B没有正负极性的区分,无论输入端的两条接线如何连接,都不会影响正常的通信。
因此,在抄表系统中使用时,能够彻底杜绝由于接线的正负端与485的极性不符使通信不畅所带来的麻烦,大大提高工程质量和系统工作的稳定性和可靠性。
RS485总线隔离芯片IL3085
Functional DiagramsDEDRREISODEABIL3085-1XDEISOR(QSOP)DEDRREISODEABIL3085-3XDE(narrow-body)DEDRREISODEABIL3085(wide-body)•50 kV/μs typ.; 30 kV/μs min. common mode transient immunity•Low quiescent supply current•600 V RMS working voltage per VDE 0884•2500 V RMS isolation voltage per UL 1577•44000 year barrier life•7 kV bus ESD protection•Low EMC footprint•Thermal shutdown protection•−40°C to +85°C temperature range•Meets or exceeds ANSI RS-485 and ISO 8482:1987(E)•UL 1577 recognized; IEC 60747-5-5 (VDE 0884) certified•QSOP, 0.15" SOIC, and 0.3" True 8™ mm 16-pin SOIC packagesApplications•Factory automation•Industrial control networks•Building environmental controls•Equipment covered under IEC 61010-1 Edition 3•5 kV RMS rated IEC 60601-1 medical applicationsDescriptionThe IL3085 is a galvanically isolated, high-speed differential bustransceiver, designed for bidirectional data communication onbalanced transmission lines. The device uses NVE’s patented*IsoLoop spintronic Giant Magnetoresistance (GMR) technology.A unique ceramic/polymer composite barrier provides excellentisolation and virtually unlimited barrier life.The wide-body version provides true 8 mm creepage. Narrow-bodyand QSOP packages offer unprecedented miniaturization.The IL3085 delivers at least 1.5 V into a 27 Ω load for excellent dataintegrity over long cable lengths. The device is compatible with3.3 V input supplies, allowing interface to standard microcontrollerswithout additional level shifting.Current limiting and thermal shutdown features protect againstoutput short circuits and bus contention that may cause excessivepower dissipation. Receiver inputs feature a “fail-safe if open”design, ensuring a logic high R-output if A/B are floating.IsoLoop® is a registered trademark of NVE Corporation. REV. FAbsolute Maximum Ratings (11)ParameterSymbol Min. Typ. Max. Units Test Conditions Storage Temperature T S −55 150 °C Junction TemperatureT J −55 150 °C Ambient Operating Temperature T A −40 85 °C Voltage Range at A or B Bus Pins −8 12.5 V Supply Voltage (1) V DD 1, V DD 2 −0.5 7 VDigital Input Voltage −0.5 V DD + 0.5 V Digital Output Voltage −0.5 V DD + 1 V ESD (all bus nodes) 7 kV HBMRecommended Operating ConditionsParameterSymbol Min. Typ. Max. Units Test Conditions Supply VoltageV DD 1 V DD 2 3.0 4.5 5.55.5 VJunction TemperatureT J −40 100 °C Input Voltage at any Bus Terminal (separately or common mode) V I V IC 12−7VHigh-Level Digital Input Voltage V IH 2.4 3.0V DD 1 VV DD 1 = 3.3 VV DD 1 = 5.0 V Low-Level Digital Input Voltage V IL 0 0.8 V Differential Input Voltage (2)V ID +12 / −7 V High-Level Output Current (Driver) I OH 60 mA High-Level Digital Output Current (Receiver)I OH 8 mA Low-Level Output Current (Driver) I OL −60 mA Low-Level Digital Output Current (Receiver)I OL−8mAAmbient Operating TemperatureT A −40 85 °CDigital Input Signal Rise and Fall Times t IR , t IF DC StableInsulation SpecificationsParameterSymbol Min. Typ. Max. Units Test ConditionsCreepage Distance(external)IL3085-1E IL3085-3E IL3085E 3.2 4.0 8.03 8.3 mmPer IEC 60601Total Barrier Thickness (internal) 0.012 0.013 mmBarrier Resistance R IO >1014Ω 500 V Barrier Capacitance C IO 7 pF f = 1 MHz Leakage Current 0.2 μA RMS 240 V RMS , 60 Hz Comparative Tracking Index CTI ≥175 V Per IEC 60112 High Voltage Endurance (Maximum Barrier Voltage for Indefinite Life) AC DC V IO 1000 1500V RMSV DC At maximumoperating temperatureBarrier Life 44000 Years100°C, 1000 V RMS , 60%CL activation energyThermal CharacteristicsParameter Symbol Min. Typ. Max. Units Test ConditionsJunction–Ambient Thermal Resistance QSOP0.15" SOIC 0.3" SOIC θJA6060 60°C/W Soldered to double-sided board;free airJunction–Case (Top) Thermal Resistance QSOP0.15" SOIC 0.3" SOIC ΨJT1010 20°C/W Power Dissipation QSOP0.15" SOIC 0.3" SOICP D 675700 800mWSafety and ApprovalsIEC 60747-5-5 (VDE 0884) (File Number 5016933-4880-0001 for SOICs)•Working Voltage (V IORM) 600 V RMS (848 V PK); basic insulation; pollution degree 2•Transient overvoltage (V IOTM) and surge voltage (V IOSM) 4000 V PK•Each part tested at 1590 V PK for 1 second, 5 pC partial discharge limit•Samples tested at 4000 V PK for 60 sec.; then 1358 V PK for 10 sec. with 5 pC partial discharge limit•QSOP approval pendingSafety-Limiting Values Symbol Value UnitsSafety rating ambient temperature T S 180 °CSafety rating power (180°C) P S 270 mWSupply current safety rating (total of supplies) I S 54 mAIEC 61010-1(Edition 2; TUV Certificate Numbers N1502812; N1502812-101)Reinforced Insulation; Pollution Degree II; Material Group IIIPart No. Suffix Package Working VoltageV RMS150 -1 QSOPV RMS150 -3 SOICNone True 8™ Wide-body SOIC 300 V RMSUL 1577(Component Recognition Program File Number E207481)Each part tested at 3000 V RMS (4240 V PK) for 1 second; each lot sample tested at 2500 V RMS (3530 V PK) for 1 minuteSoldering ProfilePer JEDEC J-STD-020C, MSL 1RE V DD2R D ISODE GND 2ISOR DE XDE B NCV DD1AGND 1NC V DD2XIL3085-1RE VDD 2I GND 1DE GND 2R ISODE VDD 2X D B A XDE NCVDD 1NCNCIL3085-3RE VDD 2GND 1D GND 2R NC B DE A NC ISODE GND 1VDD 1GND 2NCIL3085Driver SectionElectrical Specifications (T min to T max and V DD = 4.5 V to 5.5 V unless otherwise stated)Parameter Symbol Min. Typ.(5)Max. UnitsTestConditionsOutput voltage VO VDDV IO= 0Differential Output Voltage(2) |VOD1| VDDV IO= 0Differential Output Voltage(2, 6) VOD3 1.5 2.3 5 VRL= 27 Ω, VDD= 4.5 VChange in Magnitude of Differential Output Voltage(7) Δ|VOD| ±0.01±0.2 VRL= 27 Ω or 50 ΩCommon Mode Output Voltage VOC 3 VRL= 27 Ω or 50 ΩChange in Magnitude of Common Mode Output Voltage(7) Δ|VOC| ±0.01±0.2 VRL= 27 Ω or 50 ΩOutput Current(4) IO1−0.8 mAOutput Disabled, V O = 12VO= −7High Level Input Current IIH 10μA V I = 3.5 VLow Level Input Current IIL−10 μA V I = 0.4 VAbsolute |Short-circuit Output Current| IOS 250mA−7 V < VO< 12 VSupply Current VDD1= 5 VVDD1= 3.3 VIDD1IDD14364mANo Load(Outputs Enabled)Notes (apply to both driver and receiver sections):1.All voltages are with respect to network ground except differential I/O bus voltages.2.Differential input/output voltage is measured at the noninverting terminal A with respect to the inverting terminal B.3.Skew limit is the maximum propagation delay difference between any two devices at 25°C.4.The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs andoutputs.5.All typical values are at VDD1,VDD2= 5 V or VDD1= 3.3 V and TA= 25°C.6.−7 V < VCM <12 V; 4.5 V < VDD< 5.5 V.7.Δ|VOD | and Δ|VOC| are the changes in magnitude of VODand VOC, respectively, that occur when the input is changed from one logic state tothe other.8.This applies for both power on and power off, refer to ANSI standard RS-485 for exact condition. The EIA/TIA-422-B limit does not applyfor a combined driver and receiver terminal.9.Includes 10 ns read enable time. Maximum propagation delay is 25 ns after read assertion.10.Pulse skew is defined as |tPLH – tPHL| of each channel.11.Absolute Maximum specifications mean the device will not be damaged if operated under these conditions. It does not guaranteeperformance.12.The relevant test and measurement methods are given in the Electromagnetic Compatibility section on p. 6.13.External magnetic field immunity is improved by this factor if the field direction is “end-to-end” rather than to “pin-to-pin” (see diagram on p. 6).Receiver SectionElectrical Specifications (T min to T max and V DD = 4.5 V to 5.5 V unless otherwise stated)Parameter Symbol Min. Typ.(5)Max. Units Test ConditionsPositive-going Input ThresholdVoltageV IT +0.2 V −7 V < V CM < 12 V Negative-going Input ThresholdVoltageV IT −−0.2 V −7 V < V CM < 12 V Hysteresis Voltage (V IT + − V IT −) V HYS 70 mV V CM = 0 V, T = 25°CHigh Level Digital Output Voltage V OH V DD – 0.2 V DD VV ID = 200 mVI OH = −20 μA Low Level Digital Output Voltage V OL 0.2 VV ID = −200 mVI OH = 20 μAHigh-impedance-state output current I OZ ±1 μA V O = 0.4 to (V DD 2−0.5) VLine Input Current (8)I I 1 mA V I = 12 V −0.8 mA V I = −7 V Input Resistance R I 12 k ΩSupply Current I DD 2 5 16 mANo load; Outputs Enabled; V DD 2Xconnected to V DD 2I if applicableSwitching CharacteristicsV DD1 = 5 V, V DD2 = 5 VParameter Symbol Min.Typ.(5)Max. Units Test Conditions Data Rate4Mbps R L = 54 Ω, C L = 50 pFPropagation Delay (2, 9) t PD 48 150 nsV O = −1.5 to 1.5 V,C L = 15 pFPulse Skew (2, 10)t SK (P) 6 15 nsV O = −1.5 to 1.5 V,C L = 15 pFOutput Enable Time To High Level t PZH 33 50 ns C L = 15 pF Output Enable Time To Low Level t PZL 33 50 ns C L = 15 pF Output Disable Time From High Level t PHZ 33 50 ns C L = 15 pF Output Disable Time From Low Level t PLZ 33 50 ns C L = 15 pFCommon Mode Transient Immunity (Output Logic High to Logic Low) |CM H |,|CM L | 30 50kV/μs V CM = 1500 V DCt TRANSIENT = 25 nsV DD1 = 3.3 V, V DD2 = 5 VParameter Symbol Min. Typ.(5)Max. Units Test ConditionsData Rate4 Mbps R L = 54 Ω, C L = 50 pFPropagation Delay (2, 9) t PD 48 150 nsV O = −1.5 to 1.5 V,C L = 15 pFPulse Skew (2, 10)t SK (P) 6 20 nsV O = −1.5 to 1.5 V,C L = 15 pFOutput Enable Time To High Level t PZH 33 50 ns C L = 15 pF Output Enable Time To Low Level t PZL 33 50 ns C L = 15 pFOutput Disable Time From High Levelt PHZ 33 50 ns C L = 15 pFOutput Disable Time From Low Level t PLZ33 50 ns C L = 15 pFCommon Mode Transient Immunity (Output Logic High to Logic Low)|CM H |,|CM L | 30 50kV/μs V CM = 1500 V DCt TRANSIENT = 25 nsMagnetic Field Immunity(12)V DD1 = 5 V, V DD2 = 5 V50Hz/60Hz3500 A/mPower Frequency Magnetic Immunity H PF 2800t p = 8µsPulse Magnetic Field Immunity H PM 4000 4500 A/mDamped Oscillatory Magnetic Field H OSC4000 4500 A/m 0.1Hz – 1MHzCross-axis Immunity Multiplier(13)K X 2.5V DD1 = 3.3 V, V DD2 = 5 V1500 A/m50Hz/60Hz Power Frequency Magnetic Immunity H PF 1000t p = 8µsPulse Magnetic Field Immunity H PM 1800 2000 A/mDamped Oscillatory Magnetic Field H OSC1800 2000 A/m 0.1Hz – 1MHzCross-axis Immunity Multiplier(13)K X 2.5Electrostatic Discharge SensitivityThis product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.Pinout Differences Between PackagesQSOP and narrow-body version (IL3085-1E and IL3085-3E) are designed for application flexibility and minimum board area in dense PCAs. The wide-body version (IL3085E) has redundant ground pins for layout flexibility.QSOP and narrow-body versions provide separate isolated DE output (ISODE) and Transceiver Device Enable (XDE) input. ISODE follows the Device Enable input (DE). XDE can be used to enable and disable the transceiver from the bus side, or connected to ISODE to enable and disable the transceiver from the DE controller-side input. The QSOP and narrow-body versions also provide separate bus-side power supply pins—V DD2X for the transceiver module and V DD2I for the isolation module. These should be externally connected for normal operation, but can be used separately for testing or troubleshooting. The QSOP version also has an “ISOR” output that is isolated with respect to the controller-side “R.” This pin is used for testing and normally not connected, but could be used for a bus-side data output under special circumstances.The wide-body version has internal connections between the isolated DE output and the Transceiver Device Enable input, and well as between the two V DD2 bus-side power supply pins. The two internally-connected GND pins for each supply side provide layout flexibility. The ISODE output can be used in PROFIBUS applications where the state of the isolated drive enable node needs to be monitored, or for testing or troubleshooting.Dynamic Power ConsumptionIsoLoop Isolators have low power consumption because data is transmitted across the isolation barrier only on edge transitions. Power consumption therefore varies with the data rate. Typical dynamic supply currents are as follows:Data Rate (Mbps) I DD1I DD2μA1 150μA 150μA 600μA4 600Table 2. Typical Dynamic Supply Currents.Power Supply DecouplingBoth V DD1 and V DD2 must be bypassed with 47 nF ceramic capacitors. These should be placed as close as possible to V DD pins for proper operation. Additionally, V DD2 should be bypassed with a 10 µF tantalum capacitor.Maintaining CreepageCreepage distances are often critical in isolated circuits. In addition to meeting JEDEC standards, NVE isolator packages have unique creepage specifications. Standard pad libraries often extend under the package, compromising creepage and clearance. Similarly, ground planes, if used, should be spaced to avoid compromising clearance. Package drawings and recommended pad layouts are included in this datasheet.DC CorrectnessThe IL3085 incorporates a patented refresh circuit to maintain the correct output state with respect to data input. At power up, the bus outputs will follow the Function Table shown on Page 1. The DE input should be held low during power-up to eliminate false drive data pulses from the bus. An external power supply monitor to minimize glitches caused by slow power-up and power-down transients is not required.Electromagnetic CompatibilityThe IL3085 is fully compliant with generic EMC standards EN50081, EN50082-1 and the umbrella line-voltage standard for Information Technology Equipment (ITE) EN61000. The IsoLoop Isolator’s Wheatstone bridge configuration and differential magnetic field signaling ensure excellent EMC performance against all relevant standards. NVE conducted compliance tests in the categories below:EN50081-1Residential, Commercial & Light IndustrialMethods EN55022, EN55014EN50082-2: Industrial EnvironmentMethods EN61000-4-2 (ESD), EN61000-4-3 (Electromagnetic Field Immunity), EN61000-4-4 (Electrical Transient Immunity),EN61000-4-6 (RFI Immunity), EN61000-4-8 (Power Frequency Magnetic Field Immunity)ENV50204Radiated Field from Digital Telephones (Immunity Test)Immunity to external magnetic fields is even higher if the field direction is “end-to-end” (rather than to “pin-to-pin”) as shown above.Application InformationFigures 1a, 1b, and 1c show typical connections to a bus and microcontroller for the three package versions. The schematics include typical termination and fail-safe resistors, and power supply decoupling capacitors:DD2BFigure 1a. Typical QSOP transceiver connections.DD2BFigure 1b. Typical narrow-body connections.DD2BFigure 1c. Typical wide-body connections.Receiver FeaturesThe receiver output “R” has tri-state capability via the active low RE input.Driver FeaturesThe RS-485 driver has a differential output and delivers at least 2.1 V across a 54 Ω load. Drivers feature low propagation delay skew to maximize bit width and minimize EMI. Drivers have tri-state capability via the active-high DE input.Receiver Data Rate, Cables and TerminationsThe IL3085 is intended for networks up to 4,000 feet (1,200 m), but the maximum data rate decreases as cable length increases. Twisted pair cable should be used in all networks since they tend to pick up noise and other electromagnetically induced voltages as common mode signals, which are effectively rejected by the differential receiver.Fail-Safe Operation“Fail-safe operation” is defined here as the forcing of a logic high state on the “R” output in response to an open-circuit condition between the “A” and “B” lines of the bus, or when no drivers are active on the bus.Proper biasing can ensure fail-safe operation, that is a known state when there are no active drivers on the bus. IL3000-Series Isolated Transceivers include internal pull-up and pull-down resistors of approximately 30 kΩ in the receiver section (R FS-INT; see figure below). These internal resistors are designed to ensure failsafe operation but only if there are no termination resistors. The entire V DD will appear between inputs “A” and “B” if there is no loading and no termination resistors, and there will be more than the required 200 mV with up to four RS-485 worst-case Unit Loads of 12 kΩ. Many designs operating below 1 Mbps or less than 1,000 feet are unterminated. Termination resistors may not be necessary for very low data rates and very short cable runs because reflections have time to settle before data sampling, which occurs at the middle of the bit interval.In busses with low-impedance termination resistors however, the differential voltage across the conductor pair will be close to zero with no active drivers. In this case the state of the bus is indeterminate, and the idle bus will be susceptible to noise. For example, with 120 Ω termination resistors (R T) on each end of the cable, and four Unit Loads (12 kΩ each), without external fail-safe biasing resistors the internal pull-up and pull-down resistors will produce a voltage between inputs “A” and “B” of only about 5 mV. This is not nearly enough to ensure a known state. External fail-safe biasing resistors (R FS-EXT) at one end of the bus can ensure fail-safe operation with a terminated bus. Resistors should be selected so that under worst-case power supply and resistor tolerances there is at least 200 mV across the conductor pair with no active drivers to meet the input sensitivity specification of the RS-485 standard.Using the same value for pull-up and pull-down biasing resistors maintains balance for positive- and negative going transitions. Lower-value resistors increase inactive noise immunity at the expense of quiescent power consumption. Note that each Unit Load on the bus adds a worst-case loading of 12 kΩ across the conductor pair, and 32 Unit Loads add 375 Ω worst-case loading. The more loads on the bus, the lower the required values of the biasing resistors.In the example with two 120 Ω termination resistors and four Unit Loads, 560 Ω external biasing resistors provide more than 200 mV between “A” and “B” with adequate margin for power supply variations and resistor tolerances. This ensures a known state when there are no active drivers. Other illustrative examples are shown in the following table:Package DrawingsRecommended Pad LayoutsOrdering Information and Valid Part NumbersBulk PackagingBlank = TubeTR7 = 7'' Tape and ReelTR13 = 13'' Tape and ReelPackageE = RoHS CompliantPackage TypeBlank = 0.3'' SOIC-3 = 0.15'' SOIC-1 = 0.15'' QSOPChannel Configuration85 = RS-485Base Part Number30 = Digital-In, 4 Mbps Transceiver Product FamilyIL = Isolators Valid Part NumbersIL3085EIL3085E TR13IL3085-3EIL3085-3E TR7IL3085-3E TR13IL3085-1EIL3085-1E TR7IL3085-1E TR13RoHSCOMPLIANTRevision HistoryISB-DS-001-IL3085-F June 2014 Change•Increased IL3085-1E (QSOP) creepage specification from 2.75 mm to 3.2 mm (p. 2).ISB-DS-001-IL3085-E Change•Added QSOP version (-1 suffix).•Revised and added details to thermal characteristic specifications (p. 2).•Added VDE 0884 Safety-Limiting Values (p. 3).ISB-DS-001-IL3085-D Change•IEC 60747-5-5 (VDE 0884) certification.•Upgraded from MSL 2 to MSL 1.ISB-DS-001-IL3085-C Change•Increased transient immunity specifications based on additional data.•Noted UL 1577 recognition, IEC 61010-1 approval, and VDE 0884 pending.•Added transient immunity specifications.•Added high voltage endurance specification.•Increased magnetic immunity specifications.•Updated package outline drawings and added recommended solder pad dimensions.ISB-DS-001-IL3085-B January 2013 Change•Added thermal characteristics (p. 2). •Finalized maximum data rate (4 Mbps). •Cosmetic changes.ISB-DS-001-IL3085-A December 2012 Change •Initial Release.Datasheet LimitationsThe information and data provided in datasheets shall define the specification of the product as agreed between NVE and its customer, unless NVE and customer have explicitly agreed otherwise in writing. All specifications are based on NVE test protocols. In no event however, shall an agreement be valid in which the NVE product is deemed to offer functions and qualities beyond those described in the datasheet.Limited Warranty and LiabilityInformation in this document is believed to be accurate and reliable. However, NVE does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.In no event shall NVE be liable for any indirect, incidental, punitive, special or consequential damages (including, without limitation, lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.Right to Make ChangesNVE reserves the right to make changes to information published in this document including, without limitation, specifications and product descriptions at any time and without notice. This document supersedes and replaces all information supplied prior to its publication.Use in Life-Critical or Safety-Critical ApplicationsUnless NVE and a customer explicitly agree otherwise in writing, NVE products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical devices or equipment. NVE accepts no liability for inclusion or use of NVE products in such applications and such inclusion or use is at the customer’s own risk. Should the customer use NVE products for such application whether authorized by NVE or not, the customer shall indemnify and hold NVE harmless against all claims and damages.ApplicationsApplications described in this datasheet are illustrative only. NVE makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.Customers are responsible for the design and operation of their applications and products using NVE products, and NVE accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NVE product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customers. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.NVE does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customers. The customer is responsible for all necessary testing for the customer’s applications and products using NVE products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customers. NVE accepts no liability in this respect.Limiting ValuesStress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the recommended operating conditions of the datasheet is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.Terms and Conditions of SaleIn case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NVE hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NVE products by customer.No Offer to Sell or LicenseNothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.Export ControlThis document as well as the items described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Automotive Qualified ProductsUnless the datasheet expressly states that a specific NVE product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NVE accepts no liability for inclusion or use of non-automotive qualified products in automotive equipment or applications.In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NVE’s warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NVE’s specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NVE for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NVE’s standard warranty and NVE’s product specifications.An ISO 9001 Certified CompanyNVE Corporation11409 Valley View RoadEden Prairie, MN 55344-3617 USATelephone: (952) 829-9217Fax: (952) 829-9189e-mail: iso-info@©NVE CorporationAll rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.ISB-DS-001-IL3085-FJune 2014。
MAX3085EESA用于RS-485通信低功耗收发器—深圳天高微
器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械 或装置部件使用。 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故 障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等, 请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。
8 脚塑封 DIP (+70°C 以上 -9.08mW/°C)........……………….…......… …………......... 725mW 8 脚 SO (+70°C 以上 -5.85mW/°C)...............…………….…............……………….…. 470mW 存贮温度范围.............................................................……….……….......…..... -65°C 至+160°C 工作温度范围.............................................................………………..…....…...... -40°C 至+85°C 焊锡温度(10 秒)...…….................................................…………………...….....……………..... +300°C
驱动开启到输出为 tZL 低
图 6,图 10,CL=100pF, S1 关闭
rs485的MAX3082芯片介绍
MAX3082芯片介绍RS-485是一种基于差分信号传送的串行通信链路层协议。
它解决了RS-232协议传输距离太近(15m)的缺陷,是工业上广泛采用的较长距离数据通信链路层协议。
RS-485收发器市场上的种类很多,MAX3082是其中最经常用到的一种。
MAX3082只适用于半双工通信,即同一时刻线路上只能进行数据的接收或发送它允许将主系统的RS-232接口的通信电缆长度延长至RS-485总线的 1200米的长度,并可以同时在总线上挂接若干个子系统,从而能够构成一个上位机可以同时控制若干个下位机的分布式控制系统。
MAX3082是具有给来自通信总线上的信号故障提供自动保护的RS-485收发器。
它有1个带3态输出的差分驱动器和1个带3态输入的差分接收器。
1/8单位负载的接收器输入阻抗,允许多达256个收发器接入总线。
在5V供电电源下数据传输速率可达115Kb/s。
当接收器输入为短路、开路或空闲时,真正的失效保护使接收器输出逻辑为高电平。
采用8引脚的SO型和DIP型封装并具有工业级产品的工作温度范围。
管脚图及主要引脚介绍MAX3082共有8个管脚其管脚排列如图3.4所示各管脚功能如下:RO:接收数据的TTL电平输出端;RE:接收允许端低电平有效;DE:发送允许端高电平有效;DI:发送数据的TTL电平输入端;A:485差分信号的正向端;B:485差分信号的反向端;VCC:电源端;GND:接地端。
图3.4 MAX3082管脚图系统中的作用及接线由于RS-485总线使用一对双绞线传送差分信号,属半双工通信,所以应用时需要进行接收和发送状态的转换。
在用MAX3082进行RS-485电路设计中,通常将RE和DE短接,用1根信号线来控制,这样可以保证收发的正常切换。
MAX3082通常处于接收状态。
当要发送数据时,由程序控制DE变为高电平,然后UART 单元发送数据,数据发送完毕后,程序再控制DE变为低电平,使MAX3082转换到数据接收状态。
rs485的MAX3082芯片介绍
rs485的MAX3082芯片介绍MAX308芯片介绍RS-485是一绍基于差分信绍送的串行通信绍路绍绍绍。
解了号它决RS-232绍绍绍绍距太近离;15m,的缺陷〜是工绍上泛采用的绍绍距据通信绍路绍绍绍。
广离RS-485收绍器市绍上的绍绍多〜很MAX308是其中最绍常用到的一绍。
MAX3082只适用于半工通信〜同一绍刻绍路上只能绍行据的接收或绍送允绍主系绍的双即数它将RS-232接口的通信绍绍绍度延绍至 RS-485绍绍的1200米的绍度〜可以同绍在绍绍上接若干子系绍〜而能绍并挂个从构成一上位机可以同绍控制若干下位机的分布式控制系绍。
个个MAX308是具有绍自通信绍绍上的信故障提供自绍保绍的来号RS-485收绍器。
有它 1 绍个 3绍绍出的差分绍绍器和 1 绍个 3绍绍入的差分接收器。
1/8 绍位绍绍的接收器绍入阻抗〜允绍多达256收个绍器接入绍绍。
在5V供绍绍源下据绍绍速率可数达115Kb/s。
接收器绍入绍短路、绍路或空绍绍〜当真正的失效保绍使接收器绍出绍绍绍高绍平。
采用8引脚的SO型和DIP型封具有工绍绍绍品的工装并作度范绍。
温管脚绍及主要引脚介绍MAX308共有8管脚其管脚排列如绍个3.4所示各管脚功能如下,RO接收据的数TTL绍平绍出端〜1R0卩疋2RE33■二DE A45RE,接收允绍端低绍平有效〜DE,绍送允绍端高绍平有效〜DI,绍送据的数TTL绍平绍入端〜A,485差分信的正向端〜号B,485差分信的反向端〜号VCC绍源端〜GND接地端。
绍3.4 MAX3082管脚绍系绍中的作用及接绍由于RS-485绍绍使用一绍绍绍绍送差分信〜半工通信〜所以绍用绍需要绍行接收和绍送双号属双状绍的绍绍。
在用 MAX3082召行RS-485绍路绍绍中〜通常将 RE和DE短接〜用1根信绍绍控号来制〜绍绍可以保绍收绍的正常切绍。
MAX3082S常绍于接收绍。
要绍送据绍〜由程序控制状当数DE绍绍高绍平〜然后UART召元绍送据〜据绍送完绍后〜程序再控制数数 DE绍绍低绍平〜使MAX3082绍绍到据接收绍。
MAX3070E-MAX3078E 及 MAX3075E 型号的 RS-485 RS-422 收发器
具有热插拔、失效保护、±16kV ESD保护的3.3V RS485收发器特性真正的失效保护接收器低功耗关断模式(MAX3071E/MAX3074E/MAX3077E除外)DE与RE采用热插拔输入结构+3.3V工作电压总线上允许挂接多达256个收发器具有摆率限制功能有助于实现无差错数据传输(MAX3076E/MAX3077E/MAX3078E除外)I/O口采用增强型ESD保护(±16kV IEC 61000-4-2模型)应用RS-422/RS-485 通讯数字电表水表工业控制,工业嵌入电脑和外设安防监控系统路由器和交换机仪器仪表电平转换对EMI敏感收发器应用概述MAX3070E –MAX3078E是+3.3V供电、具有±16kV ESD保护的RS-485/RS-422收发器。
具有失效保护电路,当接收器输入开路或短路、或者挂接在终端匹配总线上的所有发送器都禁用时,接收器将输出逻辑高电平。
全系列都具有热插拔功能,在上电或热插入时可以消除总线上的故障瞬变信号。
MAX3070E – MAX3075E具有低摆率驱动器,能够减小EMI和由于不恰当的终端匹配电缆所引起的反射,实现高达500kbps的无差错数据传输;MAX3076E/MAX3077E/MAX3078E驱动器的摆率不受限制,可实现高达16Mbps的传输速率。
MAX3072E/MAX3075E/MAX3078E用于半双工通信;MAX3070E/MAX3071E/MAX3073E/MAX3074E/MAX3076E/MAX3077E 用于全双工通信。
所有器件的接收器具有1/8单位负载输入阻抗,总线上可以挂接多达256个收发器。
MAX3071E/MAX3072E/MAX3074E/MAX3075E/MAX3077E/MAX3078E 采用8脚PDIP和8脚SO封装,MAX3070E/MAX3073E/MAX3076E采用14脚PDIP和14脚SO封装。
max485芯片
max485芯片MAX485是一种用于串行通讯的芯片,它可以实现半双工的通信,常用于RS-485网络中。
这款芯片具有低功耗、高速率、低电压、可靠性高等特点,被广泛应用于工业自动化、远程监控、数据采集等领域。
MAX485芯片采用了双绞四线制接口,可以实现长距离传输,通信距离可达1200米。
其通信速率可以高达2.5Mbps,同时还支持多点连接,可以连接最多32个驱动器和接收器。
MAX485芯片的工作电压范围为3.0V至5.25V,因此可以适应不同的工作环境。
在低功耗模式下,它的供电电流仅为1μA,非常适合电池供电的应用。
此外,MAX485还具有过温保护功能,可以保护芯片免受过热损坏。
MAX485芯片的架构采用了低功耗CMOS技术,具有自动接收释放和禁用保护电路,可以有效地降低功耗。
此外,它还配备了过电流保护和过电压保护电路,可以保护芯片免受电路故障的影响。
MAX485芯片的引脚功能如下:- A/B:差分传输线,用于发送和接收数据。
- RE/DE:接收使能/发送使能引脚,用于控制芯片的发送和接收功能。
- RO/RE:发送使能/接收使能引脚,用于选择芯片的发送和接收功能。
- VCC:供电引脚,具有3.0V至5.25V的宽工作电压范围。
- GND:地线引脚,用于接地连接。
MAX485芯片的工作原理如下:- 发送数据时,通过RE/DE引脚将芯片设置为发送模式,将发送的数据信号输入到A/B差分传输线上。
- 接收数据时,通过RE/DE引脚将芯片设置为接收模式,通过RO/RE引脚选择芯片的发送和接收功能。
接收到的数据信号经过差分收发线转换为通用串行总线信号。
- 在半双工通信时,A/B线上只能有一方发送数据,另一方只能接收数据。
总之,MAX485芯片是一款功能强大且灵活的串行通信芯片,具有高速率、低功耗、可靠性高等特点,被广泛应用于工业自动化、远程监控、数据采集等领域。
它的性能优越和稳定性使得它成为RS-485通信领域中的首选芯片。
MAX3082中文资料
開關特性與SRL = Unconnencted時MAX3082
(VCC = +5 V±一5=%T,MITN到TMA,X除非另有說明。 典型值是在VCC = +5 V和TA = +25℃)。
參數
SYMBOL 條件
MIN TYP
驅動器輸入到輸出
噸DPLH 噸DPHL
圖4和圖6中,R DIF=F54Ω, ÇL1= CL2= 100pF的
-7V≤VOUT≤VCC 0V≤VOUT≤12V 0V≤VOUT≤VCC
-7V≤VCM≤12 V
我Ø=4毫安,IDV=-50mV的 我Ø=4毫安,IDV=-200mV的 0.4V≤VØ≤2.4V -7V≤VCM≤12 V 0V≤VRO≤VCC
10 VCC-0.8 0.4Vcc
-75
-100 -250 ±25
VTH ΔVTH VOH VOL 我OZR ŕ IN 我海泉灣
DE,DI,
,TXP,RXP,內部的下拉
SRL
SRL(注3)
SRL
SRL = VCC
SRL = GND(注3)
DE = GND,
VIN = 12V的
VCC = GND或5.25VVIN = 7V
DE = GND,
VIN = 12V
VCC = GND或5.25VVIN = 7V
1
MAX3082/MAX3085/MAX3088
第2頁
DC電氣特性
(VCC = +5 V±5一%= ,TMTIN到TMA,X 除非另有說明。 典型值是在VCC = +5 V和T
一= +25℃)(注1)
參數
SYMBOL 條件
MIN TYP MAX 單位
广州智源电子有限公司RSM3485ECHT和RSM485ECHT增强型嵌入式隔离RS-485收发器说
产品应用————————————————◆工业通讯◆煤矿行业◆电力监控◆石油化工◆楼宇自动化◆PLC 与变频器的通信◆……产品特性—————————————————◆单一输入电源供电◆无隔离输出电源脚◆最多可连接256个节点◆电磁辐射EME 较低◆电磁抗干扰EMS 较高◆集成电源隔离、信号隔离和总线ESD 保护功能◆通过IEC62368、UL62368、EN62368认证参数符号 条件 最小值 典型值 最大值 单位 内置隔离输出电源电压 V O 标称输入电压4.955.15 5.35 VDC 差分输出电压(A-B ) V OD 标称输入电压,差分负载为54Ω1.5 -- V O 差分输出电流(A-B )I OD28----mA总线接口保护ESD 静电保护传输特性参数 条件 最小值 典型值 最大值 单位 内置上下拉电阻-- 120 -- kΩ 收发器输入阻抗 -7V ≤V CM ≤+12V96 -- -- 数据发送延时 -- 400 -- ns 数据接收延时 -- 150 -- 收发状态延时--25--μs真值表特性收发功能输入输出发送功能CONTXD A B 0 1 1 0 0 0 01接收功能CONV A -V B RXD 1 ≥-40mV 1 1 ≤-200mV0 1-200mV <V A -V B <-40mV不确定状态极限特性参数条件 最小值 典型值 最大值 单位 输入冲击电压(1)(1s ,max )RSM3485ECHT -0.7 -- 5 VDC RSM485ECHT-0.7 -- 7 引脚焊接温度焊点距离外壳1.5mm ,10秒----300℃热插拔不支持一般特性参数 条件最小值 典型值 最大值 单位 隔离电压 输入-输出,时间1分钟,漏电流小于1mA2500 -- -- VDC 绝缘电阻 输入-输出,绝缘电压500VDC1----GΩ 封装尺寸 19.90×16.90×7.10mm外壳材料 黑色阻燃塑胶外壳,符合UL94 V-0标准 安规认证 IEC62368-1:2014/ EN62368-1:2014/UL62368-1安全等级CLASS III环境特性参数 条件 最小值 典型值 最大值 单位工作温度 -40 -- +85 ℃ 存储温度 -55 -- +125 外壳温升 Ta=25℃ -- 15 25 存储湿度 无凝结----95% 冷却方式自然空冷EMI 辐射骚扰EN55032:2015 CLASS AEMS 静电放电抗扰度IEC/EN 61000-4-2 Contact ±4KV/Air ±8KV(裸机) (2)Perf.Criteria BIEC/EN 61000-4-2 Contact ±8KV/Air ±15KV(图2/图3) Perf.Criteria B脉冲群抗扰度IEC/EN 61000-4-4 ±2KV(2)Perf.Criteria B 雷击浪涌抗扰度IEC/EN 61000-4-5 共模±2KV(裸机)(2) Perf.Criteria BIEC/EN 61000-4-5 差模±2kV,共模±4KV(图2/图3) Perf.Criteria B 传导骚扰抗扰度IEC/EN 61000-4-6 3Vr.m.s(2)Perf.Criteria A 注:(1)输入电压不能超过所规定范围值,否则可能会造成永久性不可恢复的损坏;(2)此参数仅限于RS-485通信端口,A、B或RGND;测试均为RS-485端口浮地,通信状态下测试;(3)如没有特殊说明,本手册中的参数都是在25℃,湿度40%~75%,输入标称电压下测得。
RS485通讯芯片3085 SOP-8规格书
典型值 -
最大值 5.5 5 -
单位 V V V V V V V V uA
Vcc VOD1 VOD2 ∆VOD VOC ∆VOC VIH VIL IIN1
DE,RE ,DI
____
-
0.2 3
40 60
0.2 0.8 ±2 90
2 -
DE,RE ,DI
____
DE,RE ,DI DE=0V, Vcc=5V VIN=5V VIN=0V
输入电流(A,B)
IIN2
uA 100 3 / 10
SN3085.VER.1.2
SN3085
接收器差分输入阈值电 压 接收器输入迟滞 接收器输出高电平 接收器输出低电平 接收器端三态(高阻)输 出电流 接收器输入阻抗
VTH ∆VTH VOH VOL IOZR RIN
-7V ≤VCM≤+12V
-200 -
图6:驱
A/B + 50 0R
VID B
R DIFF
1/2Vcc
t DPHL
DE A
C L2
CL
1/2Vcc
RO
t RLZ VOL+0. 5V
VOL+0. 5V
VOH VOL
0V
t DZL
Vcc
t DLZ
1/2V O
RO
2. 3V
2. 3V
t RZL
输出 一般为 低
输出 一般为 低
A B
图3:驱动器开关特性测试负载
存储温度范围 工作温度范围 最大工作温度范围 8 脚塑封 DIP(+70℃以上) 8 脚塑封 SOP(+70℃以上) 焊锡温度(10 秒)
直流特性(如无特别说明 Vcc=5V±5%,T =25℃)(注 1):
无极性RS485接口电路SYE3085技术说明书
上海奢渝电气有限公司产品资料无极性RS485接口电路SYE3085N说明书SYE3085N是一款+5V、半双工、具有自适应总线极性、±20KV ESD应用于RS-485和RS-422通信系统的收发芯片,传输和接收的数据传输率可高达2.5Mbps。
SYE3085N 为半双工型,有驱动使能(DE)和接收使能(RE)管脚,当关闭时,驱动和接收输出为高阻。
相比传统485芯片,SYE3085N可以实现A,B反接通讯(总线A、B不分),同时,通讯速率必须大于25Hz。
●静电保护(ESD): L1、L2 ±20kV-人体模式(HBM)●三态输出●半双工●总线允许多达 256个收发器●可实现A,B反接通讯●完全兼容与其他485芯片●工业控制●电表●工业电机驱动●自动HVAC系统●RS485/RS422接口产品应用示意图供电电压(V CC) +6V控制输入电压(RE , DE) -0.5V 至 +6V 驱动输入电压(DI) -0.5V 至 +6V 驱动输出电压(A, B) -0.5V 至 +6V 接收输入电压(A, B) -7V 至 +12V 接收输出电压(RO) -0.5V 至 +6V 连续功率谱(TA = +70℃)8脚塑封 DIP (+70℃以上 -9.08mW/℃) 725mW 8脚塑封 SO (+70℃以上 -5.85mW/℃) 470mW 存贮温度范围 -65℃至+160℃工作温度范围 -40℃至+85℃焊锡温度(5秒) +300℃上海奢渝电气有限公司产品资料(如无特别说明Vdd=5V±5%,Ta= 25℃)驱动极性开关和接受极性开关的极性方向保持一致,在如下情况DE=RE=0V,并且RO为低,持续Ts时。
无极性RS485通信芯片
GS1485
单位
V V V V 地 V V V
联系人: 18620140156 刘生
第4页共8页
邮箱: lyf_gmdz@
GS1485
8、电气特性
参数
符号 条件
供电电压 VCC
LDO
Vreg
LDO 输 出 Ireg 电流
LDO 压降 Vdrop Iout=20mA,VCC=5 V
LDO 限流 Iclt
ቤተ መጻሕፍቲ ባይዱ自动判别使能
当 RE 悬空时,进入自动判定收发 模式,此模式下,RO 将默认为高。
A 与 B 输出
A,B 端口作为输出端口时候可以耐受 8000V 人体模型 ESD. 可以在-7 到 12V 共模 电压下正常通信
无极性模式
当 AB 接反时,只要等待 500ms 以上, 即可完成极性判断。在无极性模式下能正确 识别信号下限是 200Hz.
485 总线收发器 GS1485
1、产品简介
GS1485NE 芯片是用于 RS-485 通信的 低功耗收发器,芯片能在+5.5V~+28V 的 宽范围电源电压内正常工作,内部集成了 稳压器,具有极性判别功能。芯片具有一 个驱动器和一个接收器,输出驱动设计了 压摆率限制,使得芯片能够减小 EMI 和信 号反射效应,实现无差错数据传输。芯片 最高传输速率大于 500kbps。
比较迟滞 ΔVth -7V<VCM<12V
RO 拉电流 Isink VA-VB=-200mV
RO 高电平 Ioh
VA-VB=-50mV
RO 高 阻 漏 Iozr
电
发送端特性
差分输出 VOD 差分 RL=100Ω
差分 RL=54Ω
电容隔离式隔离型RS-485全双工收发器ISO3080、ISO3082、ISO3086、ISO3088
电容隔离式隔离型RS-485全双工收发器ISO3080、ISO3082、ISO3086、ISO3088
RS-485/RS-422的应用包括:过程控制网络,工业自动化,楼宇自动化,安防系统运动控制与电机控制,在工业与仪器仪表中,常常需要在距离很远的多个系统间传输数据,,RS-485总线标准是工业与仪器仪表中使用非常广泛的物理层总线设计标准之一。
在各个系统接入总线中往往需要在控制器与收发器中间进行隔离,保证系统的安全与可靠,因为在较远距离的传输时往往会有接地环路、瞬态电压等干扰,因此一个可靠的隔离设计非常重要,以往都是在控制器与收发器的中间接入一个光耦或数字隔离器进行隔离,这造成设计难度与产品体积的增加,尤其是配置成全双工通信时这种情况更为明显,
TI采用电容隔离式的隔离型RS-485全双工收发器ISO3080、ISO3082、ISO3086、ISO3088能有效的改善这两个问题,潮光光耦网有售,它将隔离通道与收发器集成在一个芯片上,省去了中间额外的设计环节并缩小体积。
下图为采用全双工总线配置连接的RS-485总线事例,此配置也称为采用多点主从/配置连线的四线式RS-485网络,能实现双向同时通信。
DPtech FW1000系列应用防火墙安装手册v2.01
DPtech FW1000 系列应用防火墙安装手册
2.2.4 抗干扰要求............................................................................................................................... 3 2.2.5 防雷击要求............................................................................................................................... 3 2.2.6 接地要求................................................................................................................................... 3 2.2.7 布线要求................................................................................................................................... 3 2.3 安装工具......................................................................................................................................4
杭州迪普科技有限公司为客户提供全方位的技术支持。 通过杭州迪普科技有限公司代理商购买产品的用户,请直接与销售 代理商联系;直接向杭州迪普科技有限公司购买产品的用户,可直 接与公司联系。
RS-485低功耗收发器MAX485E
RS-485低功耗收发器MAX485E
左森
【期刊名称】《电子世界》
【年(卷),期】2002(000)002
【摘要】@@ 单片机串行口的协议信号为RS-232信号,可以利用RS-232串行
通信协议直接进行串行通信。
但RS-232协议的支持的传输距离近,不超过50m。
RS-485串行通信协议支持的传输距离远,达1200m,且抗干扰能力强,数据传
输速率高,所以,将单片机串行口的RS-232协议信号转换为RS-485协议信号,便可实现单片机的远距离通信。
利用MAX485E芯片,可以将单片机串行口的
RS232协议信号转换为RS-485信号,进行远距离通信。
【总页数】1页(P41)
【作者】左森
【作者单位】无
【正文语种】中文
【中图分类】TN8
【相关文献】
1.德州仪器面向工业自动化与电池供电应用领域推出三款功能齐全的新型低功耗
RS-485收发器 [J],
2.TI推出三款新型低功耗RS-485收发器 [J],
3.TI推出三款新型低功耗RS-485收发器 [J], 无
4.ADI公司推出适合移动WiMAX应用的RF收发器——AD9354和AD9355射
频基带WiMAX收发器能够支持拇指尺寸的WiMAX终端,同时大幅降低功耗并简化产品设计 [J],
5.新型低功耗RS-485收发器 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
RS485通讯芯片3085 SOP-8规格书
____
输出 AXB >-50mV <-200mV 开路 短路 X X RO H L H H Z Z
RE L L L L H H
DE X X X X H L
SN3085.VER.1.2
2 / 10
SN3085
极限参数:
符号
VCC
参数
电源电压 控制输入电压(DE,RE) 驱动输入电压(DI) 驱动输出电压(A,B) 接收输入电压(A,B) 接收输出电压(RO)
输入电流(A,B)
IIN2
uA 100 3 / 10
SN3085.VER.1.2
SN3085
接收器差分输入阈值电 压 接收器输入迟滞 接收器输出高电平 接收器输出低电平 接收器端三态(高阻)输 出电流 接收器输入阻抗
VTH ∆VTH VOH VOL IOZR RIN
-7V ≤VCM≤+12V
-200 -
25 480 450 ±15
-50 0.4 1 600 600 95 -
mV mV V V uA kΩ uA uA mA kV
IO=-4mA IO=4mA 0.4V ≤Vo≤2.4V -7V ≤VCM≤+12V 无负载,RE
____
4 96 ±8
DE = Vcc DE=GND
无负载工作电流
ICC
=DI=GND 或 Vcc
传输延时
RO VOH VOL
1/2Vcc
t DLZ
VOL+0. 5V A
t RPHL
t RPLH
+1V -1V
般为 低
t RLZ t DHZ
VOL+0. 5V VOH-0.5V
B
详解 光伏电站常用的RS-485通讯
要搞清楚RS485通讯我们要先搞明白什么是通讯,通讯就是两个设备之间0、1代码的传递、0-低电平1-高电平。
全双工与半双工:全双工是通讯端口在发送数据的同时可以接收数据。
而半双工指的是同一时刻通讯端口要么只能发送数据,要么只能接收数据。
举例:全双工:打电话时双方都可以说。
半双工:对讲机-同一时刻只能一个人说另一个人听。
单双工:只能是设备发送数据,另一台设备只能接受设备,不具备发送(例如打印机)如图:通讯速率通讯速率也叫通讯波特率是1S内通讯端口发送0、1。
代码(或者说是高、低电平)的数量。
RS485通信速率快,最大传输速度可以达到10Mb/s以上。
举例:我们说通讯速率是9.6kbps,就表示通讯端口每秒发送9600个bit的数据,也就是每秒可以产生9600个高低电平(注意:是高低电平总共加起来9600个) RS485通信传输距离最远可以达到1200米左右,但是它的传输速率和传输距离是成反比的,只有在100Kb/s以下的传输速度,才能达到最大的通信距离,如果需要传输更远距离可以使用中继。
比特传输速率:每秒钟通过信道传输的信息量称为比特传输速率,记作rb。
单位是比特/秒(b/s),简称比特率。
主从通讯在一个通讯网络中一个站点是主站,其他站点作为从站。
主站和从站之间可以直接进行数据的传递,但是从站与从站之间不能直接进行数据的传递。
如果需要从站之间交换数据也必须要通过主站进行转发。
如下图所示:RS485的接口定义明白了通讯的基本概念后再理解485通讯就相对容易了,下面我们从通讯介质、通讯方式、通讯类型、物理层四个方面来介绍485通讯。
1.通讯介质:屏蔽双绞线屏蔽双绞线就是我们通常用的带有屏蔽层的两芯电缆(RVVP)如下图所示:2.通讯方式:半双工如下图所示:RS485的电气接口特性RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓扑结构。
MAX3085ESA+中文资料
PART MAX3080CSD MAX3080CPD MAX3080ESD MAX3080EPD
TEMP RANGE 0°C to +70°C 0°C to +70°C
-40°C to +85°C -40°C to +85°C
PIN-PACKAGE 14 SO 14 Plastic DIP 14 SO 14 Plastic DIP
Quiescent Transceivers
Current
On
(µA)
Bus
MAX3080
Full
0.115
Yes
Yes
Yes
375
256
MAX3081
Full
0.115
Yes
No
No
375
256
MAX3082
Half
0.115
Yes
Yes
Yes
ห้องสมุดไป่ตู้
375
256
MAX3083
Full
0.5
Yes
Yes
Yes
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
The MAX3080–MAX3089 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). The MAX3080/MAX3081/MAX3082 feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 115kbps. The MAX3083/MAX3084/MAX3085 offer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX3086/MAX3087/MAX3088’s driver slew rates are not limited, making transmit speeds up to 10Mbps possible. The MAX3089’s slew rate is selectable between 115kbps, 500kbps, and 10Mbps by driving a selector pin with a single three-state driver.
485接口电路HM3085EESA
HM3085
引脚描述
引脚 HM3085 半双工
1
2
3
名称 RO
RE
DE
功
能
接收器输出。当 RE 为低电平时,若 A-B≧-50mV,,RO 输出为高电平;若
A-B≦-200mV, RO 输出为低电平。
接收器输出使能。 RE 接低电平时 RO 输出有效;当 RE 接高电平时 RO 为高阻
态; RE 接高电平且 DE 接低电平时,器件进入低功耗关断模式
T DZL
图 6 和 8,CL=100pF S1 关 闭
从低到驱动器无效时间 从高到驱动器无效时间
T DLZ T DHZ
图 6 和 8,CL=15pF S1 关闭 图 6 和 8,CL=15pF S2 关闭
接收器输入到输出
T RPLH T RPHL
图 9 和 11, VID≦15ns 的上升和下降时 间
-200 -110 -50
30
VCC-1.5 0.4
±1
96
±7
±95
ICC ISHDN
无负载,/RE=DI= GND, DE=VCC
或 VCC
DE=GND
DE=GND,
, DI=VCC 或
GND
155 900 160 600
0.001 10
注释 1:进入器件的所有电流是正的,从器件输出的所有电流是负的;所有的电压,如果无例外说明都是对地的。
-7-
HM3085
总线上挂接 256 个收发器
标准RS-485 接收器的输入阻抗为12kΩ (1个单位负载),标准驱动器可最多驱动32个单位负载。 HM3085收发器的接收器具有1/8单位负载输入阻抗(96kΩ),允许最多256个收发器并行挂接在同一通信总 线上。这些器件可任意组合,或者与其它RS-485收发器进行组合,只要总负载不超过32个单位负载,都 可以挂接在同一总线上。
GEC WS3085 15kV ESD保护、失效安全、斜率限制的RS-485 RS-422传输器说明
产品概述WS3085是5V、半双工、±15kV ESD保护的RS-485/RS-422收发器电路,电路内部包含一路驱动器和一路接收器。
WS3085具有增强的摆率限制,有助于降低输出EMI以及不匹配的终端连接引起的反射,实现500kbps的无误码数据传输。
WS3085芯片接收器输入阻抗为1/8单位负载,允许多达256个收发器挂接在总线上,实现半双工通信。
所有驱动器输出提供±15kV人体模式ESD保护,采用8脚SO封装,工作于-40℃至+125℃温度范围。
产品特性●5V电源电压●增强摆率限制有助于降低输出EMI以及不匹配的终端连接引起的反射,实现500kbps的无误码数据传输●通信端口提供±15kV人体模式ESD保护●Fail-safe功能●具有1/8单位负载,多达256个收发器可挂接在同一总线上●采用8脚SO封装典型应用●隔离型RS-485接口●电表●工业控制●工业电机驱动●自动HVAC系统极限参数(所有电压参考点为地)供电电压…………………………………+7V DE,RE,DI……………………-0.3V to+7V A,B………………………………-9V to+14V 8管脚SO(-5.9mW/°C+70°以上)……471mW 工作温度范围……………-40°C to+125°C 结温……………………………………+150°C 存储温度范围……………-65°C to+150°C焊锡温度(10秒)……………………+300°C封装说明—直流特性(VCC=+5V±5%,环境温度为+25°C.)参数符号条件最小典型最大单位驱动器差分驱动输出(无负载)V OD1图15伏差分驱动输出V OD2图1,R=50Ω(RS-422) 2.0伏图1,R=27Ω(RS-485) 1.5差分输出幅值变化(注1)∆V OD图1,R=50ΩorR=27Ω0.2伏驱动器输出共模电平V OC图1,R=50ΩorR=27Ω13伏驱动器输出共模电平变化∆V OC图1,R=50ΩorR=27Ω0.2伏输入高电平V IH1DE,DI,RE 2.0伏输入低电平V IL1DE,DI,RE0.8伏输入迟滞V HYS DE,DI,RE100毫伏输入电流I IN1DE,DI,RE(注2)±2微安输入电流(A与B)I IN4DE=GND,V CC=GNDor5.25VV IN=12V125微安V IN=-7V-75驱动器输出短路电流I OD1-7V≤V OUT≤V CC-100毫安0V≤V OUT≤12V100毫安0V≤V OUT≤V CC±25毫安接收器接收器差分输入阈值电压V TH-7V≤V CM≤+12V-200-50毫伏接收器差分输入阈值电压迟滞∆V TH60毫伏接收器输出高电平V OH I O=-4mA,V ID=1V4伏接收器输出低电平V OL I O=4mA,V ID=-1V0.4伏注1:∆VOD和∆VOC是当DI改变时VOD和VOC的各自变化量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IIN1
DE ,RE, DI
IIN2
DE = 0V; VIN=
VCC = 5V 5V
VIN= 0
VTH ∆VTH VOH
IO = -4mA, VID 3.5 = 200mV
VOL
IO = 4mA,
VID = -200mV
IOZR
0.4V ≤ VO ≤
2.4V
RIN
ICC
RE、 DE=VCC
DI=0 DE=0
图 6 驱动时间测试电路
图 7 接收传输延时测试电路
图 8 驱动传输延时
7/9
图 9 接收传输延时
图 10 驱动开启和关闭时间
图 11 接收开启和关闭时间
8/9
图 12 典型双工 RS-485 网络
本资料内容,随产品的改进,可能会有未经预告之更改。 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其
责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾
器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械 或装置部件使用。 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故 障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等, 请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。
接收从高到关闭
t图 10,CL=100pF,
S1 关闭
图 6,图 10,CL=100pF,
S2 关闭
图 5,图 9,Rdiff=50Ω , 20
CL1=Cl2=100pF,
20
100 120 ns
90 110 ns
60 200 ns
40 200 ns
20
ns
图 4,图 11,CL=15pF,S2 关闭 图 4,图 11,CL=15pF,S1 关闭 图 4,图 11,CL=15pF,S2 关闭 图 4,图 11,CL=15pF,S1 关闭
±2 uA 150 uA
400
mV mV V
0.4 V
±1 uA
KΩ 1.6 mA 1.5
250 mA
250 mA
100 mA kV
开关特性
(如无特别说明 Vdd=5V±5%,Ta= TMIN to TMAX)(注 1,2)
PARAMETER
SYMBOL CONDITIONS
MIN TYP MAX UNITS
2/9
产品功能表
图 2 产品应用示意图
表 1 发送
RE
X X 0 1 X = 无关 High-Z = 高阻
表 2 接收
RE
0 0 0 1 X = 无关 High-Z = 高阻
输入 DE
1 1 0 0
输入 DE
0 0 0 0
输出
DI
Z
Y
1
0
1
0
1
0
X
High-Z
High-Z
X
High-Z
High-Z
名字 RO
RE DE
DI
GND A B VCC
功能 接收输出端: A 端电压比 B 端高 0V 时 RO 为高,A 端电压比 B 端低 300mV 时 RO 为低 接收使能端:低电平有效,RE 为高时,接收输出为高阻 发送使能端:高电平有效,DE 为低时,发送输出为高阻。 DE 为高电平时 芯片工作在发送状态,DE 为低电平且 RE 为低电平时芯片工作在接收状态。 发送数据输入端: DI 为低时,A 输出高电平 B 输出低电平,DI 为高时正好 相反。 地,电源负端 正向接收输入端也即正向发送输出端 反向接收输入端也即反向发送输出端 电源正端
2 3.6
MAX 5.5 5
0.2
3 0.2
2 2.8
0.8 1.6
UNITS V V V V
V V
V V V
4/9
输入电流 输入电流(A, B)
接收差分阈值电压 接收输入滞后 接收输出高电压 接收输出低电压 接收三态(高阻)输出电流 接收输入阻抗 无负载供电电流
驱动短路电流 (VO = High) 驱动短路电流 (VO = Low) 接收短路电流 ESD 保护
9/9
驱动输入到输出
驱动输出压摆到输 出
tPLH tPHL tSKEW
图 5,图 8,Rdiff=50Ω , 40 70 90 ns
CL1=Cl2=100pF,
10 40 60 ns
30
ns
驱动上升与下降时 tR
间
tF
驱动开启到输出为 tZH
高
图 6,图 10,CL=100pF, S2 关闭
40 60 ns 40 60 ns 50 70 ns
A-B
≥0 ≤-0.3 输入开路
X
输出 RO
1 0 1 High-Z
3/9
产品绝对最大额定值
供电电压(VCC)..……........................…..………………............….....………………....………………..…... +12V 控制输入电压(RE , DE).........……..........................……………………….....……...…...... -0.5V 至 +12V 驱动输入电压(DI)......................................………………….....………......……..…...…… -0.5V 至 +12V 驱动输出电压(A, B).………..................................…………………………......….....……… -0.5V 至 +12V 接收输入电压(A, B)......……................................….....…………………......….……….... -0.5V 至 +12V 接收输出电压(RO)...........……................................…………………..............…………. -0.5V 至 +12V 连续功率谱(TA = +70°C)
最大允许额定值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是 不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性, 所有的 电压的参考点为地。
产品直流电学特性
(如无特别说明 Vdd=5V±5%,Ta= TMIN to TMAX)(注 1,2)
PARAMETER
SYMBOL CONDITIONS
or
VCC
IOSD1
DE=RE=5V DI=0
VA=5V
IOSD2
DE=RE=5V DI=0
VB=0
IOSR
0V ≤ VO ≤ VCC
A, B, Y and Z pins, tested
using Human Body Model
60 180 -180 70 4.5 0.2
50 0.75 0.75
120 120 60 ±15
2.5
50 80 ns 60 90 ns 50 80 ns 60 90 ns
Mbps
注 1:所有典型情况指 vdd=5V,Ta=25℃; 注 2:所有输入到管脚的电流为正,所有从管脚输出的电流为负;如无特别指出,则电压指
对地电压;
产品测试电路
图 3 直流驱动测试电路
图 4 接收时间测试电路
6/9
图 5 驱动/接收时间测试电路
工作电压
Vcc
驱动差分输出(无负载) 驱动差分输出(带负载) 互补输出状态驱动差分输出电压的 变化幅度
VOD1 VOD2 ∆VOD
R=50Ω ,图 3
驱动共模输出电压 互补输出状态驱动共模输 出电压的变化幅度
VOC ∆VOC
输入高电压
VIH
DE ,RE
DI
输入低电压
VIL
DE ,RE
DI
MIN TYP 4.5 5
MMAX AX3085 产品说明书
RoHS 认证,绿色无铅封装 封装类型: DIP/SO
产品概述
产品特点
MAX3085 是一款+5.0V 工作电压,+15kV ESD 保护,RS-485 和 RS-422 通信系统的收发 芯片,包含一个发送器和一个接受器。 MAX3085传输和接收的数据传输率可高达 2.5Mbps,为半双工型。另外,MAX3085有 驱动使能(DE)和接收使能(RE)管脚,当关闭 时,驱动和接收输出为高阻。
8 脚塑封 DIP (+70°C 以上 -9.08mW/°C)........……………….…......… …………......... 725mW 8 脚 SO (+70°C 以上 -5.85mW/°C)...............…………….…............……………….…. 470mW 存贮温度范围.............................................................……….……….......…..... -65°C 至+160°C 工作温度范围.............................................................………………..…....…...... -40°C 至+85°C 焊锡温度(10 秒)...…….................................................…………………...….....……………..... +300°C