高中数学必修一集合测试题

合集下载

(典型题)高中数学必修一第一单元《集合》测试题(含答案解析)

(典型题)高中数学必修一第一单元《集合》测试题(含答案解析)

一、选择题1.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-22.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b cB .()(),,c a b dC .(][),,a c d bD .()(),,c a d b3.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .()4,110+D .()1,110+4.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A .63B .127C .255D .5115.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个6.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .47.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅8.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .19.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,111.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,, D .{}12, 12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.14.非空集合G 关于运算⊕满足:①对任意,a b G ∈,都有a b G +∈;②存在e G ∈使得对于一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合与运算:①G 是非负整数集,⊕:实数的加法;②G 是偶数集,⊕:实数的乘法;③G 是所有二次三项式构成的集合,⊕:多项式的乘法;④{}2,,G x x a b a b Q ==+∈,⊕:实数的乘法;其中属于融洽集的是________(请填写编号)15.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________.16.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________17.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.18.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x B m n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)19.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________20.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.三、解答题21.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围.22.已知集合{}13A x x =<<,{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B B ⋃=,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.23.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.24.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q∧为真,求a 的取值范围.25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 26.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.2.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.3.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=,所以{(011,1A x x =<-<=, 依题意{}2R2940B x x x =-+<, ()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.4.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N =--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3, 故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.5.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.6.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

高中数学必修1集合测试题及答案

高中数学必修1集合测试题及答案

高中数学集合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ150分;考试时间90分钟.第Ⅰ卷(选择题;共60分)一、选择题:本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.1.已知集合M={x N|4-x N}∈∈;则集合M 中元素个数是( ) A .3 B .4 C .5 D .62.下列集合中;能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4;*x N ∈} C .{y||y |<4;y N ∈} D .{连续三个自然数} 3. 已知集合{}1,0,1-=A ;则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ;}31{<≤-=x x B ;那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ;则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=;则a 的值为( ) A .-3或1 B .2 C .3或1 D .17. 若集合}8,7,6{=A ;则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 定义A —B={x|x A x B ∈∉且};若A={1;3;5;7;9};B={2;3;5};则A —B 等于( ) A .A B .B C .{2} D .{1;7;9}9.设I 为全集;1S ;2S ;3S 是I 的三个非空子集;且123S S S I ⋃⋃=;则下面论断正确的是( )A .()I 123(C S )S S ⋂⋃= φB .()1I 2I 3S [C S )(C S ]⊆⋂C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅D .()1I 2I 3S [C S )(C S ]⊆⋃ 10.如图所示;I 是全集;M ;P ;S 是I 的三个子集;则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()I (C )M P S ⋂⋂D .()I (C )M P S ⋂⋃11. 设},2|{R x y y M x ∈==;},|{2R x x y y N ∈==;则( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-;若M N ≠∅;则有( ) A .1a <- B .1a >- C . 1a ≤- D .1a ≥-第Ⅱ卷(非选择题 共90分)二、填空题:本大题6小题;每小题5分;共30分. 把正确答案填在题中横线上13.用描述法表示右侧图中阴影部分的点(含边界上的点)组成的集合M 是___________________________.14. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ;}5,4{)()(=⋂B C A C U U ;}6{=⋂B A ;则A 等于_________15. 若集合{}2,12,4a a A --=;{}9,1,5a a B --=;且{}9=B A ;则a 的值是________; 16.设全集{|230}U x N x =∈≤≤;集合*{|2,,15}A x x n n N n ==∈≤且;*{|31,,9}B x x n n N n ==+∈≤且;C={x|x 是小于30的质数};则[()]U C A B C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且;则实数a 的取值范围是________________18.某城市数、理、化竞赛时;高一某班有24名学生参加数学竞赛;28名学生参加物理竞赛;19名学生参加化学竞赛;其中参加数、理、化三科竞赛的有7名;只参加数、物两科的有5名;只参加物、化两科的有3名;只参加数、化两科的有4名;若该班学生共有48名;则没有参加任何一科竞赛的学生有____________名三、解答题:本大题共5小题;共60分;解答应写出文字说明;证明过程或演算步骤.19. 已知:集合{|A x y ==;集合2{|23[03]}B y y x x x ==-+∈,,; 求A B (本小题8分)20.若A={3;5};2{|0}B x x mx n =++=;A B A =;{5}A B =;求m 、n 的值。

高中数学必修一《集合》测试题 (1000)

高中数学必修一《集合》测试题 (1000)

34.已知集合 A = x 1<x 6 , B = x 2 x 9
(1)求 A B , (CRA ) B
(2)已知 C = x a x a +1 ,若 C B ,求实数 a 的取值范围。
35.已知集合 A= x x2 − 2x − 8 = 0 ,B= x x2 + ax + a2 −12 = 0 ,且 B A,求 a 的取
2.设集合 M ={x|x2+x-6<0},N ={x|1≤x≤3},则 M∩N =( ) (A)[1,2) (B)[1,2] (C)( 2,3] (D)[2,3] (2011 山东理 1) 3.设集合 U={1,2,3,4,5,6}, M={1,2,4 },则 CuM= A.U B. {1,3,5} C.{3 B 的所有元素之和为

23.已知集合 A = −1,0 ,则满足 A B = −1,0,1 的集合 B 的个数是 ▲ .
24.已知集合 M = {−1,1}, N = {x 1 2x+1 4, x Z},则 M N = ▲ . 2
25 . 设 全 集 U = 0,1, 2,3, 4 , 集 合 A = 0,1, 2,3 , B = 2,3, 4 , 则(CU A) B =
11 . 设 集 合 A = (x, y) y = ax +1 , B = (x, y) y = x + b , 且 A B = (2,5) , 则
a = __________,b = _________
12. 已知全集U = (−, 3] ,集合 A = [−1, 2] ,则 CU A=___ (−, −1) (2,3] ____
4.集合 M, N, P 满足 M N = N, N P = N ,则————————( ) (A) M = P (B) M P (C) M P (D) M P

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案

《集合》练习一一、选择题 :( 每小题 5分共 60分)1. 下列命题正确的有()( 1)很小的实数可以构成 集合;( 2)集合 y | y x 2 1 与集合 x, y | y x 2 1 是同一个集合 ;(3)1,3,6,1,0.5 这些数组成 的集合有 5 个元素;2 42( 4)集合 x, y | xy0, x, y R 是指第二和第 四象限内的点集。

A . 0 个B .1个C .2个D .3个2. 若全集 U0,1,2,3 且 C U A 2 ,则集合 A 的真子集共有()A .3个B .5个C . 7个D . 8个3. 若集合 A{ 1,1} , B { x | mx 1},且 ABA ,则 m 的值为()A . 1B . 1C . 1或 1D . 1或 1或 04. 若集合 M( x, y) x y 0 , N( x, y) x 2 y 2 0, xR, y R ,则有()A .M N MB .M N NC .M N MD .M Nxy 1B . 5, 4C .5,4 D . 5, 4 。

5. 方程组y 2的解集是() A . 5,4x 296. 下列式子中,正确的是( )A . RR B .Zx | x 0, xZ C .空集是任何集合 的真子集 D .7. 下列表述中错误的是()A .若 A B,则AB A B .若 A B B ,则A BC . (A B)A (A B)D .C U A BC U A C U B8. 若集合 X{ x | x1} ,下列关系式中成立的为()A .0 XB . 0 XC . XD .0X9. 已知集合 Ax | x 2mx 1 0,若A R ,则实数 m 的取值范围是()A . m 4B . m 4C . 0 m 4D . 0 m 410.下列说 法中, 正确的是( )A. 一个集合必有两个子集;B. 则 A, B 中至少有一个为C.集合必有一个真子集;D. 若 S 为全集,且 AB S, 则 A B S,11.若 U 为全集,下面三个命题中真命题的个数是()(1)若A B ,则C U AC U B U(2)若A B U,则 C U AC U B(3)若A B ,则 A BA.0个 B.1个 C.2个 D.3个12.设集合M { x | x k 1 Z},N k 1, k Z},则()2,k { x | x24 4. M N .M N . NM. M NA B C D二、填空题 ( 每小题 4 分, 共 16 分 )13.某班有学生55 人,其中体育爱好者43 人,音乐爱好者34 人,还有4 人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人_______。

高一数学必修一集合测试卷

高一数学必修一集合测试卷

高中数学必修一集合测试卷【第一套】试卷满分150分 测试时间60分钟考生姓名: 考试成绩: .一、单选题(每题5分,共50分)1.已知集合{}{}0,11,A x x B x x x =≥=-≤≤∈Z ∣∣,则A B =( )A .[]0,1B .{}1,2C .{}0,1D .[]1,22.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( ) A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤3.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则)(B A C U ⋂=( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,54.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( ) A .{01234},,,, B .{123},, C .[0,4] D .[1,3]5.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( )A .{}1,2N ⊆,B .{}2M ⊇C .M N ⋃={}1,2,3,5D .}3{=N M6.已知集合{}2,0,2A =-,{}0B x x =≥,则A B =( )A .{}0,2B .{}2C .{}2,2-D .2,0,27.已知集合()(){}160M x x x =--<,{}1,2,3,5N =,则MN =( ) A .{}1,2,3,5B .{}3,5C .{}2,3,5D .{}1,3,58.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3}B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}9.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆; ⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤10.集合{}{}Z 2,1,0,1|,2,3A x x B =∈<=-,则AB =( ) A .1,0,1,2 B .{}1,0,1?- C .{}0,1 D .{}1二、填空题(每题5分,共40分) 11.已知集合{}2|210A x axx =+-=,若集合A 中只有一个元素,则实数a 的取值的集合是______12.若集合{}{}220,10M x xx N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.13.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是_______.14.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x<-1或x>4},若A B ⊆,则实数a 的取值范围是________.15.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为_______.16.已知集合{}{}35,10A x Z x B y y =∈-<<=+>∣∣,则A B 的元素个数为_______.17.已知集合2{|2}30A x x x =--<,{|0}B x x a =-<,且B A ⊆,则a 的取值范围为________.18.若集合{}2A xx =<,101B x x ⎧⎫=>⎨⎬+⎩⎭,则A B =______.三、解答题(每题20分,共60分)19(本小题满分20分).已知集合{}36A x x =≤<,{}|131B x m x m =-≤≤-(1)当2m =时,分别求A B 、()R C B A ;(2)若A B A ⋃=,求实数m 的取值范围.20(本小题满分20分).已知A ={x|2a ≤x ≤a +3},B ={x|x<-1或x>5},若A ∩B =Ø,求a 的取值范围.21(本小题满分20分).设集合{}25140P x x x =--=,{}10Q x mx =+=.(1)若12m =,试判断集合P 与Q 的关系; (2)若Q P ⊆,求实数m 的所有可能取值构成的集合T .。

(必考题)高中数学必修一第一单元《集合》测试卷(包含答案解析)

(必考题)高中数学必修一第一单元《集合》测试卷(包含答案解析)

一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .0B .1-C .1D .1或1-3.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个4.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,35.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,16.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]28.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.设集合{}21xA y y ==-,{}1B x x =≥,则()R AC B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________15.已知{|}A x x =>,{|(3)(3)0}B x x x x =-+>,则A B =________ 16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.17.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____. 18.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______19.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设{}{},1,05U R A x x B x x ==≥=<<,求()U A B 和()U A B ∩22.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤(1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围. 23.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.24.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求U B A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.25.已知集合{|123}A x a x a =+≤≤+,{}2|7100B x x x =-+-≥. (1)已知3a =,求集合()R A B ;(2)若B A ⊆,求实数a 的范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.2.B解析:B【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.4.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=,所以{(011,1A x x =<-<=, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.6.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.7.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.8.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B.【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,A B =∅,符合题意.当0a >时,由于AB =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-. 故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20xx >-≥⎪⎩,解得1x <,则{}|1A x x =<,因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<, 故答案为:{|30}-<<x x 【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式16.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.17.96【分析】对分三种情况讨论求出X1+X2+X3取最小值39X1+X2+X3取最大57即得解【详解】由题意集合M ={x ∈N*|1≤x≤15}={123456789101112131415}当A1={解析:96 【分析】对123,,A A A 分三种情况讨论,求出X 1+X 2+X 3取最小值39,X 1+X 2+X 3取最大57,即得解. 【详解】由题意集合M ={x ∈N*|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57, ∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96. 【点睛】本题主要考查集合新定义的理解和应用,意在考查学生对这些知识的理解掌握水平.18.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案.【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾;②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}B x x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}--【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.19.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x -≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤≤组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 22.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.23.(1)254个;(2)2m =-;(3)2m =-或12m -【分析】(1)利用指数函数的性质化简集合A ,再利用子集个数公式求解即可;(2)由由B =∅,223210x mx m m -+--<无解,则其对应的方程的0∆≤ (3)讨论三种情况,分别化简集合B ,利用包含关系列不等式求出m 的范围,综合三种情况可得结果.【详解】解:化简集合{|25}A x x =-≤≤,集合{}|(1)(21)0B x x m x m =-+--<.(1){},2,1,0,1,2,3,4,5x Z A ∈∴=--,即A 中含有8个元素,故A 的非空真子集数为822254-=个.(2)由B =∅,则22(3)4(21)0m m m ∆=----≤,得2(2)0m +≤,得2m =-.(3)①2m =-时,B A =∅⊆;②当2m <-时,()()21120m m m +--=+<,所以()21,1B m m =+-,因此,要B A ⊆,则只要21236152m m m +≥-⎧⇒-≤≤⎨-≤⎩,所以m 的值不存在; ③当2m >- 时,()1,21B m m =-+ ,因此,要B A ⊆,则只要1212215m m m -≥-⎧⇒-≤≤⎨+≤⎩. 综上所述,知m 的取值范围是2m =-或12m -≤≤.【点睛】本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,考查了分类讨论思想的应用,属于中档题.24.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.25.(1)(){|24}R A B x x ⋂=≤<(2)1a =【分析】 化简集合B ,(1)计算3a =时集合A ,根据补集与交集的定义;(2)由题意得出A ≠∅,根据包含关系,列出关于a 的不等式,求出实数a 的取值范围.【详解】集合{|123}A x a x a =+≤≤+{}{}22|7100|7100{|25}B x x x x x x x x =-+-≥=-+≤=≤≤;(1)当3a =时,{|49}A x x =≤≤{| 4 R A x x ∴=<或9}x >则(){|24}R A B x x ⋂=≤<(2)因为B A ⊆,{|25}B x x =≤≤,所以A ≠∅,则1232a a a +≤+⇒≥-并且由B A ⊆,得12235a a +≤⎧⎨+≥⎩,解得1a = 综上,实数a 的取值范围是1a =.【点睛】本题主要考查了交集,并集的运算以及根据包含关系求参数范围,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。

高中数学必修一《集合》测试题 (440)

高中数学必修一《集合》测试题 (440)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4 (2012湖北文)D2.设集合{}20M x x x =-<,{}2N x x =<,则 A .M N =∅ B .M N M =C .M N M =D .MN R =(2006全国1理)3.集合A= {x ∣12x -≤≤},B={x ∣x<1},则()R AB = (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)4.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且S B φ≠的集合S 的个数为(A )57 (B )56 (C )49 (D )8(2011安徽理) 5.集合{}|25A x R x =∈-≤中最小整数位 .6.若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为 A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2|7.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =________.8.已知 I 为全集,集合M ,N I ,若M ∩N=N ,则------------------------( )A .I IM N ⊆B .I M N ⊆C .I I M N ⊇D .I M N ⊇9.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个 (2009全国卷Ⅰ理)10.若关于x 的一元二次不等式20ax bx c ++<的解集为实数集R ,则a 、b 、c 应满足的条件为-----------------------------------------------------------------------( )(A ) a >0,b 2―4ac >0 (B ) a >0,b 2―4ac <0 (C ) a <0,b 2―4ac >0 (D ) a <0,b 2―4ac <0 二、填空题11. 已知集合3{1,},{|1}4P m Q x x =-=-<<,若P Q φ≠,则整数m = .12.已知集合A ={-1,3,2m -1},集合B ={3,2m }.若B A ⊆,则实数m = . 13.设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________.14. 已知1a ≤时,集合[],2a a -有且只有3个整数,则a 的取值范围是___________.15.若集合{}1A x x =≥,{}24B x x =≤,则A B = .16.设集合{(,)|||},{(,)|},A x y y a x B x y y x a C A B ====+=,且集合C 为单元素集合,则实数a 的取值范围为__||1a ≤__________17.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好音乐也不爱好体育,则班级中既爱好音乐也爱好体育的人数为 26 . 18.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u19.集合}{,,,,,U =123456,}{,,S =145,{2,3,5}T =,则()U S T 等于 .20.已知全集U =R ,集合A =(),0-∞,{}1,3,B a =--,若()U C A B ≠∅,则实数a的取值范围是 。

有答案高中数学必修一集合测试题

有答案高中数学必修一集合测试题

高中数学必修一《集合》测试题(时间:45分钟,满分100分)一、 选择题(每小题5分,7题共35分) 1.下列几组对象可以构成集合的是( ) A .充分接近π的实数的全体 B .善良的人C .世界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确,故选D. 答案:D2.设集合A ={x |x ≤4},m =1,则下列关系中正确的是( ) A .m ⊆A B .m ∉A C .{m }∈AD .m ∈A解析:因为A ={x |x ≤4},m =1所以m ∈A ,故选D. 答案:D3.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .4解析:A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},显然⎩⎪⎨⎪⎧a 2=16a =4, 解得a=4.答案:D4.(2015·高考安徽卷)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩{∁U B }=( )A .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}解析:因为∁U B ={1,5,6},所以A ∩(∁U B )={1},故选B. 答案:B5.(2014·高考辽宁卷)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}解析:由题意可知,A ∪B ={x |x ≤0或x ≥1},所以∁U (A ∪B )={x |0<x <1}. 答案:D6.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}解析:因为A∩B={3},所以3∈A,又(∁U B)∩A={9},所以9∈A.若5∈A,则5∉B(否则5∈A∩B),从而5∈∁U B,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理1∉A,7∉A,故A={3,9}.答案:D7.如图,I是全集,M,P,S是I的子集,则阴影部分所表示的集合是( )A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)解析:观察Venn图,可知阴影部分既在表示集合M的区域中又在表示集合P的区域中,即在表示集合M,P的公共区域内,且在表示集合S的区域外,即在集合∁I S中.根据集合运算的概念,可得阴影部分表示的集合为(M∩P)∩(∁I S).答案:C二、填空题(每小题5分,5题共25分)1.用适当的符号填空(“∈、∉、、=”).(1)a________{a,b,c}; (2) ∅________{x∈R|x2+1=0};(3){0}________{x|x2=x}; (4){2,1}________{x|x2-3x+2=0}.(5)){0} ∅解析:(1)为元素与集合的关系,(2)(3)(4)为集合与集合的关系.易知a∈{a,b,c};∵x2+1=0在实数范围内的解集为空集,故∅={x∈R|x2+1=0};∵{x|x2=x}={0,1},∴{0}{x|x2=x};∵x2-3x+2=0的解为x1=1,x2=2.∴{2,1}={x|x2-3x+2=0}.答案:(1)∈(2)=(3)(4)=2.集合{1,2,3,4}的不含有2的真子集为________. 答案:∅,{1},{3},{4},{1,3},{1,4},{3,4},{1,3,4}3.设集合S ={三角形},A ={直角三角形},则∁S A =____________________. 答案:{锐角三角形或钝角三角形}4.已知集合A ={(x ,y )|y =x +3},B ={(x ,y )|y =3x -1},则A ∩B =________.解析:由⎩⎪⎨⎪⎧y =x +3y =3x -1得⎩⎪⎨⎪⎧x =2y =5,∴A ∩B =⎩⎨⎧x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =3x -1=⎩⎨⎧x ,y ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =2y =5={(2,5)}.答案:{(2,5)}5.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },则用列举法表示B =__________.解析:本题主要考查了集合的描述法与列举法.因为集合A ={-2,2,3,4},B ={x |x =t 2,t ∈A },当t =-2和2时,x =4;当t =3时,x =9;当t =4时,x =16,用列举法表示B ={4,9,16}.答案:{4,9,16}三、 解答题:(每小题10分,4题共40分)1.已知全集U =R ,集合A ={x |1≤x ≤3或4<x <6},集合B ={x |2≤x <5},求下列集合.(1)∁U A 及∁U B ; (2)A ∩(∁U B ); (3)(∁U A )∪B . 解:(1)∁U A ={x |x <1或3<x ≤4或x ≥6}, ∁U B ={x |x <2或x ≥5}.(2)A ∩(∁U B )={x |1≤x ≤3或4<x <6}∩{x |x <2或x ≥5}={x |1≤x <2或5≤x <6}. (3)(∁U A )∪B ={x |x <1或3<x ≤4或x ≥6}∪{x |2≤x <5}={x |x <1或2≤x <5或x ≥6}.2.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值. 解:由|a -7|=3,得a =4或a =10. 当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,所以a =4.3.已知集合A ={x |ax 2-3x -4=0,x ∈R },若A 中至多有一个元素,求实数a 的取值范围.解:当a =0时,A =⎩⎨⎧⎭⎬⎫-43;当a≠0时,关于x的方程ax2-3x-4=0应有两个相等的实数根或无实数根,∴Δ=9+16a≤0,即a≤-9 16.综上,所求实数a的取值范围是a=0或a≤-916.4.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.解:A={1,2},∵A∪B=A,∴B⊆A.集合B有两种情况:B=∅或B≠∅.(1)B=∅时,方程x2-4x+a=0无实数根,∴Δ=16-4a<0.∴a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知1+2=3≠4,矛盾,∴a=4.综上,a的取值范围是a≥4.. .。

人教版高中数学新教材必修第一册集合测试题

人教版高中数学新教材必修第一册集合测试题

人教版高中数学新教材必修第一册集合测试题人教版高中数学材必修第一册集合测试题班级_________;姓名____________;座号__________;分数_________一、选择题(每小题7分,每小题给出的四个选项中,只有一项是符合题目要求的)1.如果集合P={x|x>-1},那么()A) ∅⊆ PB) { } ∈ PC) ∅∈ PD) { } ⊆ P解析:P中的元素都是大于-1的实数,∅既不是P的子集也不是P中的元素,故选项B、C、D均不符合题目要求,选A。

2.如果集合U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7},那么(U∪A)∩B等于()A) {5}B) { }C) {2,8}D) {1,3,7}解析:U∪A={1,2,3,4,5,6,7,8},(U∪A)∩B={5},故选A。

3.如果集合M={x|x=k/k,k∈Z},N={x|x=2k/4,k∈Z},那么M∩N=∅。

A) M=NB) XXXC) XXXD) MN解析:M中的元素为所有形如k/k的实数,N中的元素为所有形如2k/4的实数,显然M和N没有相同的元素,故M∩N=∅,选项D符合题目要求。

4.集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A) a<2B) a≥-1C) a>-1D) -1<a≤2解析:A∩B≠∅,即存在一个数x既满足-1≤x<2,又满足x<a,即-1≤x<a,故a的取值范围为选项B。

5.满足{a,b}⊆M⊆{a,b,c,d,e}的集合M的个数为()A) 6B) 7C) 8D) 9解析:M中的元素有2个或3个或4个,分别对应{a,b}、{a,b,c}、{a,b,c,d}、{a,b,c,d,e},故M的个数为4,选项D。

6.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A) S∩PB) S∪PC) V∖SD) V∖P解析:阴影部分表示的是在S和P中都出现过的元素,即S∩P,选项A。

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习巩固集合内容,下面是店铺给大家带来的高一数学必修一集合练习题,希望对你有帮助。

高一数学必修一集合练习题一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.高一数学必修一集合知识点集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

高中数学必修一《集合》测试题 (150)

高中数学必修一《集合》测试题 (150)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))2.已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( C ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}(2006江西理)3.已知集合{}12,M x x x R =-≤∈,51,1P x x Z x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P 等于(A){}03,x x x Z <≤∈ (B){}03,x x x Z ≤≤∈(C){}10,x x x Z -≤≤∈ (D){}10,x x x Z -≤<∈ (2005上海理)4.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .6(2005湖北卷) 5.设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂=A. {x |-7<x <-5 }B. {x | 3<x <5 }C. {x | -5 <x <3}D. {x | -7<x <5 }. (2009四川卷文6.集合{ 1-x ,2,12-x }中的x 不能取的值是( B )A. 2B. 3C. 4D. 57.已知集合M ={ x ||x -1|≤2,x ∈R },P ={ x |5x +1≥1,x ∈Z },则M ∩P 等于( ).(A ){ x |0<x ≤3,x ∈Z }(B ){ x |0≤x ≤3,x ∈Z } (C ){ x |-1≤x ≤0,x ∈Z } (D ){ x |-1≤x <0,x ∈Z }8.集合,,M N P 满足N P N N N M =⋂=⋃,,则————————( )(A )P M =(B )P M ⊆(C )P M ⊇(D )P M ≠⊂ 9.设全集U R =,下列集合运算结果为R 的是( )(A)u Z N (B)u N N (C)()u u ∅ (D){0}u (2013年上海市春季高考数学试卷(含答案))10.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u ( )(A )∅ (B ){}0|≤χχ (C ){}1|->χχ (D ){}10|-≤>χχχ或(2008浙江卷理2)11.设集合P ={1,2,3,4,5,6},Q ={x ∈R|2≤x ≤6},那么下列结论正确的是( )A.P ∩Q =PB.P ∩Q QC.P ∪Q =QD.P ∩Q P (2004天津1)12.已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( )A .0B .1C .2D .3(2011广东理2) 二、填空题13.已知全集为{4}U x x =>,{5}A x x =>,则U C A =14.已知全集U ={0,1,2,3}且}2{=A C I ,则集合A 的真子集个数为7 。

高中数学必修一集合习题及答案

高中数学必修一集合习题及答案

必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定M N A M N B N M C M ND二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1};18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。

(完整版)高中数学必修1第一章集合测试题

(完整版)高中数学必修1第一章集合测试题

新课标人教 A 版会集单元测试题一、选择题:〔每题〔时间4 分,共计80 分钟,总分值40 分〕100 分〕1、若是会集U1,2,3,4,5,6,7,8, A2,5,8, B1,3,5,7,那么 (U A)B等于〔〕(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,72、若是 U是全集, M,P,S 是U 的三个子集,那么阴影局部所表示的会集为〔〕〔A〕〔 M∩P〕∩ S;〔B〕〔 M∩P〕∪ S;〔C〕〔M∩P〕∩〔 C U S〕〔D〕〔M∩P〕∪〔 C U S〕3、会集M {( x, y) | x y2},N{( x, y) | x y 4} ,那么会集M I N 为〔〕A、x3, y1B、(3,1)C、 {3,1}D、 {(3,1)}4.A{4, 2a1, a2} ,B= { a5,1a,9},且 A B {9} ,那么 a 的值是()A. a 3B.a3C.a3D. a 5或 a35.假设会集A{ x kx24x 40, x R} 中只有一个元素 , 那么实数 k 的值为 ()B. 1C. 0或 1D.k16.会集 A{ y y x24, x N , y N} 的真子集的个数为()A. 9B. 8C. 7D. 67.符号 { a}P { a,b,c} 的会集P的个数是()A. 2B. 3C. 4D. 58. M{ y y x21, x R}, P{ x x a 1, a R} , 那么会集 M与 P 的关系是()A. M=PB.P R C .M P D.M P9.设 U为全集 , 会集 A、B、C满足条件 A B A C ,那么以下各式中必然成立的是(〕A.A B A CB.B CC.A(C U B)A(C U C)D.(C U A) B (C U A) C10.A{ x x 2x60}, B{ x mx10} ,且A B A ,那么的取值范围是( )mA.{ 1,1} B.{0, 1 ,1} C.{0,1,1} D.{1,1}323232 3 2二、选择题:〔每题 4 分,总分值 20 分〕11.设会集 M { 小于5的质数 } ,那么M的真子集的个数为.12. 设U{1,2,3,4,5,6,7,8} , A {3,4,5}, B {4,7,8}. 那么: (C U A) (C U B) ,(C U A)(C U B) .13 . 某班有学生 55 人, 其中音乐爱好者34 人 , 体育爱好者 43 人, 还有 4 人既不爱好体育也不爱好音乐 , 那么班级中即爱好体育又爱好音乐的有人.14.A{ x x1或x 5}, B{ x a x a4} ,假设A B, 那么实数a 的取值范围是.15.会集P{ x x m23m1}, T{ x x n23n1} , 有以下判断:① P T { y y 5}②P4T { y y5}③P4T④ P T其中正确的选项是 .三、解答题16. 〔此题总分值 10 分〕含有三个元素的会集 { a, b,1}{ a2 , a b,0}, 求a2007b 2021 a的值 .17.〔此题总分值 10 分〕假设会集S {小于10的正整数},A S,B S ,且 (C S A) B {1,9}, A B { 2}, (C S A) (C S B) {4,6,8} ,求A和B。

高中数学必修一集合习题大全含答案

高中数学必修一集合习题大全含答案

的实数 x 是否存在?若存在,求出 x ;若不存在,请说明理由。
0 , 则这样
练习二
一、选择题(每小题 5 分,计 5× 12=60 分)
1.下列集合中,结果为空集的为(

( A) x R | x2 4 0
( B) x | x 9 或 x 3
( C) ( x , y) | x 2 y 2 0 ( D) x | x 9 且 x 3
则 a 的值为
13.不等式 |x-1|>-3 的解集是

14.若集合 M { x | ax 2 2x 1 0 , x R} 只有一个元素,则实数 a 的值为
三解答题
2
21、已知全集 U={x |x -3x+2 ≥0} ,A={x||x-2|>1}
,B= x x 1 2x
0 ,求 CUA,CUB,A∩ B A ∩
设集合 M
{x| x
k
1 ,k
Z} , N
{x |x
k
1 ,k
Z} ,则()
24
42
A. M N B. M N C. N M D. M N
二、填空题 ( 每小题 4 分 , 共 16 分 )
13. 某班有学生 55 人,其中体育爱好者 43 人,音乐爱好者 34 人,还有 4 人既不爱好
体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人
《集合》
一、选择题 :( 每小题 5 分共 6 0 分 )
1. 下列命题正确的有(

( 1)很小的实数可以构成 集合;
练习一
( 2)集合 y | y
2
x
1 与集合
x, y | y
2
x
1 是同一个集合 ;

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。

其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。

高中数学必修一《集合》测试题 (500)

高中数学必修一《集合》测试题 (500)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()U A B 中元素的个数为( )A .1B .2C .3D .4(2008陕西理)2.2.已知集合A ={1,2,3,4},那么A 的真子集的个数是( )A .15B .16C .3D .4(2000广东1)3.集合{}|25A x R x =∈-≤中最小整数位 .4.设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)=( ) A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}(2012浙江文)5.已知集合A =,B ={1,m} ,A B =A, 则m=A 0或3 C 1 D 1或36.设全集为R ,2{|560},{||5|}A x x x B x x a =-->=-<(a 为常数),且11B ∈,则( )A.()R C A B R ⋃=B. ()R A C B R ⋃=C. ()()R R C A C B R ⋃=D.A B R ⋃=7.设全集为I ,非空集合A ,B 满足A ⊂B ,则下列集合中为空集的是----------------( )A.A ∩BB.A ∩BC.A ∩BD.A ∩B8.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A .M N ⋃B .M N ⋂C .()()⋃u u C M C ND .()()⋂u u C M C N (2011江西文2)二、填空题9.集合{1,1},{0,1,2}P Q =-=,则P Q = ▲10.已知集合{|},{|12},()R A x x a B x x AC B R =<=<<=且,则实数a 的取值范围是11.设集合A={m|关于x 的方程x 2-2x+m=0有实根,m ∈R}, B={m|关于x 的二次方程mx 2-x+1=0无实根,m ∈R},则A ∪B= .12.设集合s={0,1,2,3,4},T={2,3,5,6},则S ∩T= {2,3} .(5分)13.集合{}2,1,1A a a =+-,{}221,2,34B a a a =--+,若{}1A B =-,则实数a = 0a = .14.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u15.已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个16.已知R 为实数集,2{|20},{|1}M x x x N x x =-<=≥,则=)(N C M R ▲.17.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 ▲ 个.18.若-3∈{ x-1,3x ,x 2+1},则x= -2 -1 。

高中数学 必修一 集合 习题大全 含答案

高中数学 必修一 集合 习题大全 含答案

《集合》练习一一、选择题:(每小题5分共60分) 1. 下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。

A .0个B .1个C .2个D .3个2. 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个3. 若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .1-C .1或1-D .1或1-或04. 若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( )A .MN M =B .M N N =C .M N M =D .M N =∅5. 方程组⎩⎨⎧=-=+9122y x y x 的解集是()A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-。

6. 下列式子中,正确的是( ) A .R R ∈+B .{}Z x x x Z∈≤⊇-,0|C .空集是任何集合的真子集D .{}φφ∈7. 下列表述中错误的是( )A .若AB A B A =⊆ 则,B .若B A B B A ⊆=,则C .)(B A A)(B A D .()()()B C A C B A C U U U =8. 若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆B .{}0X ∈C .X φ∈D .{}0X ⊆ 9. 已知集合{}2|10,A x x mx AR φ=++==若,则实数m 的取值范围是( )A .4<mB .4>mC .40<≤mD .40≤≤m10.下列说法中,正确的是( )A.一个集合必有两个子集;B.则,A B 中至少有一个为φC.集合必有一个真子集;D.若S 为全集,且,AB S =则,A B S ==11.若U 为全集,下面三个命题中真命题的个数是( )(1)若()()U B C A C B A U U == 则,φ (2)若()()φ==B C A C U B A U U 则, (3)若φφ===B A B A ,则A .0个B .1个C .2个D .3个12.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则()A .N M =B .MN C .N M D .M N φ=二、填空题(每小题4分,共16分)13. 某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学集合测试题
1.以下元素的全体不能够构成集合的是【】
A. 中国古代四大发明
B. 地球上的小河流
C. 方程210x 的实数解
D. 周长为10cm 的三角形
2.方程组23
211x y x y 的解集是【】
A . 51, B. 15, C. 51, D. 15,
3.给出下列关系:①12R ;②2Q ;③*
3N ;④0Z . 其中正确的个数是【
】A. 1 B. 2 C. 3 D. 4
4.下列与集合A={1,2}相等的是【】
(A ){1,2,3} (B )}31{x x (C )}023{2x x x (D )N
5.已知集合}02{x x M ,}1{x x N ,则【】
(A )M=N (B )N M (C )N M (D )M 与N 无包含关系
6..集合1,,,x y
y x N x y y x M ,则(
)A .N M B .N M C .N M D .N
M 7.下列各式中,M 与N 表示同一集合的是【

A.2,1M ,1,2N
B. 2,1M ,1
,2N C.N M ,0 D.实数集
N R M ,8.设集合|12M x x ,|0N x x k ,若M N ,则k 的取值范围是
A .2k
B .1k
C .1k
D .2k 【】
9.若2{,0,1}{,,0}a a b ,则20072007a b 的值为【】
A. 0
B. 1
C. 1
D. 2
10.已知集合P={x|x 2 =1},集合Q={x|ax = 1},若Q P ,那么a 的值是【】
A. 1
B. -1
C. 1或-1
D. 0,1或-1
11.集合1,12,3,3,1,22a a a B a a A ,若3B A ,则a 的值是【】
A .0 B. 1 C. 2 D. 1
12.设0,x x M R U ,11x x N ,则N M C U 是【】
A .10x x
B .10x x
C .01x x
D .1x x
13.用适当的符号填空:
(1)
}01{2x x ;(2){1,2,3} N ;(3){1} }{2x x x ;(4)0
}2{2x x x ;(5){菱形} {平行四边形};{等腰三角形} {等边三角形};(6)
2{|20}x R x ; 0 {0}; {0}; N {0}. 14.已知x R ,则集合2{3,,2}x x
x 中元素x 所应满足的条件为。

15.当2{1,,}{0,,}b a a a b a 时,a =________,b =_________。

16.若集合2|60,|10M x x x N x ax ,且N M ,求实数a 的值.
17.已知集合}2,,{b a b a a A ,},,{2ax ax a B ,若B A ,求实数x 的值。

18.已知A={2,3},M ={2,5,
235a a },N ={1,3, 2610a a },A M ,且 A N ,
求实数a 的值。

19.设集合}512{x x A ,}0{2a x x B ,若满足A B ,求实数a 的取值范围。

20.设全集*{|010,}U x x x N ,若{3}A B I 。

}7,5,1{B C A U ,}9{B C A C U U ,
求集合A 、B 。

21.设U R ,{|24}A x x ,{|8237}B x x
x ,求)(B A C U ,B C A C U U 。

22.已知集合}31{x x A ,},{2A x
y x y B ,},2{A x a x y y C ,若满足B C ,求实数a 的取值范围.。

相关文档
最新文档