双棒模型知识讲解

合集下载

2024高考双杆模型

2024高考双杆模型

2.常见双杆情景及解题思路常见情景(以水平光滑导轨为例) 过程分析三大观点的应用双杆切割式杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动,对系统动量守恒,对其中某杆适用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变,v1L1=v2L2动力学观点:求加速度能量观点:求焦耳热动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度双杆切割式a PQ减小,a MN增大,当a PQ=a MN时二者一起匀加速运动,存在稳定的速度差动力学观点:分别隔离两导体棒, F-B2L2△vR总=m PQ a,B2L2△vR总=m MN a,求加速度1.如图所示,宽为L的两固定足够长光滑金属导轨水平放置,空间存在竖直向上的匀强磁场,磁感应强度大小为B。

质量均为m、电阻值均为r的两导体棒ab和cd静止置于导轨上,其间距也为L,现给cd一向右的初速度v0,对它们之后的整个运动过程说法正确的是( )A.ab的加速度越来越大,cd的加速度越来越小B.cd克服安培力所做的总功为14mv2C.通过ab的电荷量为mv02BLD.两导体棒间的距离最终变为L+mv0rB2L22.竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5T,导体杆ab和cd的长均为0.2m,电阻均为0.1Ω,所受重力均为0.1N,现在用力向上推导体杆ab,使之匀速上升(与导轨接触始终良好),此时cd恰好静止不动,ab上升时下列说法正确的是( )A.ab受到的推力大小为2NB.ab向上的速度为2m/sC.在2s内,推力做功转化的电能是0.4JD.在2s内,推力做功为0.6J3.如图所示,相距为L 的两条足够长的平行金属导轨右端连接有一定值电阻R ,整个装置被固定在水平地面上,整个空间存在垂直于导轨平面向下的匀强磁场,磁感应强度大小为B ,两根质量均为m ,电阻都为R ,与导轨间的动摩擦因数都为μ的相同金属棒MN 、EF 垂直放在导轨上。

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。

物理双棒模型总结归纳

物理双棒模型总结归纳

物理双棒模型总结归纳物理双棒模型(Double Pendulum Model)是物理学中的一个重要概念,用于描述双摆系统或双杆振动的运动规律。

它由两根相互连接的杆组成,每根杆都有一个质点,并且能够在一个平面内自由运动。

双棒模型是一个复杂的系统,其运动表现出极为丰富和混沌的特性。

本文将对物理双棒模型进行总结归纳,旨在帮助读者更好地理解这一模型及其相关理论。

一、物理双棒模型的基本结构和运动规律物理双棒模型由两根杆组成,每根杆的一端通过铰链连接,并且可以绕着铰链点旋转。

质点分布在每根杆的另一端,可沿着它们的长度方向运动。

在不考虑外界影响和摩擦的情况下,物理双棒模型满足欧拉-拉格朗日方程,描述其运动状态和力学能量的变化。

二、物理双棒模型的动力学特性物理双棒模型的动力学特性十分丰富。

通过对其运动方程和参数的分析,可以得出以下几个关键特性:1. 混沌性:物理双棒模型的运动规律非常敏感,极其微小的初始条件变化也可能导致截然不同的运动轨迹。

这使得双棒模型具有混沌性质,即其行为难以预测和重现。

2. 非线性:物理双棒模型的运动方程呈现非线性的特点,即运动状态与外力、初始条件之间存在复杂的非线性关系。

这一特性引发了对非线性动力学的深入研究。

3. 稳定性和不稳定性:物理双棒模型的某些运动状态是稳定的,如垂直下垂状态。

然而,当双棒处于某些不稳定平衡位置时,极小的扰动就可能引发系统的大幅度运动,体现了其非线性和混沌性。

三、双棒模型在实际应用中的意义物理双棒模型虽然在理论研究中起到了重要的作用,但它也在一些实际应用中发挥了重要的作用。

下面列举了一些与双棒模型相关的实际应用领域:1. 振动工程:双棒模型的运动规律与实际工程中的振动问题具有一定的联系。

通过研究双棒模型的特性,可以预测结构在振动时的稳定性、共振频率等,并为振动工程的设计与优化提供理论依据。

2. 决策科学:双棒模型的混沌性质使其在决策科学领域得到应用。

通过运用混沌理论和非线性动力学的相关方法,可以分析金融市场、经济波动等复杂系统的行为,提供决策支持。

第8讲 双棒模型

第8讲 双棒模型

第8讲双棒模型双棒常考模型1. 光滑等距无外力2. 光滑不等距无外力3. 光滑等距有外力4. 光滑不等距有外力5. 不光滑等距有外力题型典例1.【多选】如图所示,方向竖直向下的匀强磁场中,有两根位于同一水平面内的足够长的平行金属导轨,两根相同的光滑导体棒ab 、cd ,质量均为m ,静止在导轨上。

0t 时,棒cd 受到一瞬时冲量作用而以初速度v 0向右滑动。

运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用1v 、2v 表示,回路中的电流用I 表示。

下列说法中正确的是( )A .两棒最终的状态是cd 静止,ab 以速度0v 向右滑动B .两棒最终的状态是ab 、cd 均以012v 的速度向右匀速滑动 C .ab 棒的速度由零开始匀加速增加到最终的稳定速度D .回路中的电流I 从某一个值0I 逐渐减小到零2.【多选】如图所示,足够长的平行光滑金属导轨固定在水平绝缘平台上,导轨电阻忽略不计,两根具有一定电阻的导体棒A 、C 置于金属导轨上,系统处于竖直向下的匀强磁场中,A 、C 与金属导轨保持良好接触且与导轨垂直。

某时刻导体棒A 有如图所示的速度,而C 的速度为零,从此时开始的足够长时间内( )A .若导体棒A 、C 发生碰撞,损失的机械能等于A 、C 棒产生的焦耳热B .若导体棒A 、C 不发生碰撞,导体棒A 先做减速运动,再反向做加速运动C .无论导体棒A 、C 是否发生碰撞,系统动量守恒,机械能不守恒D .无论导体棒A 、C 是否发生碰撞,两者最终都以相同的的速度做匀速运动3.【多选】水平面上有足够长且电阻不计的两平行导电轨道,轨道之间有竖直向下的匀强磁场(未画出),两根质量相同,电阻相同的导体棒ab 和cd 垂直于轨道静止放置,如图所示。

导体棒与轨道之间的动摩擦因数处处相等,现对导体棒施加一外力F ,使cd 棒向右匀速运动,则ab 棒从静止开始向右运动,则关于两导体棒的运动及受力下列说法正确的是( )A .导体棒ab 先向右加速运动,并最终以和cd 棒相同的速度匀速运动B .导体棒ab 先向右加速运动,并最终以比cd 棒小的速度匀速运动C .对cd 棒施加的外力F 大小始终不变D .对cd 棒施加的外力F 逐渐减小,当ab 棒匀速运动时,F 大小不再改变4.【多选】如图所示,在水平面内固定有两根相互平行的无限长光滑金属导轨,其间距为L,电阻不计。

高中物理双棒+磁场模型汇总

高中物理双棒+磁场模型汇总

二·双棒+磁场模型所需知识:动量定理、动量守恒、安培电磁感应定理、电流定义式、欧姆定理等。

①(有初速度)一质量为m 、电阻为r 、长度为L 且质量分布均匀的金属棒AB 静置于金属导轨上面,与金属棒AB 完全相同的金属棒CD 也置于金属导轨上面并以大小为v 的初速度沿导轨水平向右运动,开始时两金属棒保持一定距离。

整个装置位于磁感应强度大小为B 、方向竖直向上的匀强磁场中。

金属导轨电阻不计,不计一切摩擦力。

基本问题:1、两者最终的状态。

金属棒CD 运动产生电动势与电流,金属棒AB 有电流通过并在安培力的作用下向右运动(可看作楞次定律)。

金属棒AB 运动也产生电动势与电流,产生的电动势与金属棒CD 产生的电动势、电流相抵消。

最终两者速度相同,产生的电动势完全抵消。

回路中无电流,两金属棒不受安培力,保持匀速运动。

v v mv mv 212==最终最终由动量守恒得: 2、最终流过金属棒CD/金属棒AB 的电荷量为。

同结果。

使用动量定理可得出相对使用动量定理得:对AB BLmv q mv BLq mv t BLI mv mv t F CD 2212121===∆-=∆- 3、最终两金属棒相对位移。

同结果。

使用动量定理可得出相对为总电动势注意此处得使用动量定理得:对注意这道题十分易错相对相对AB L B mvr x mv rtv L B E mv r E t BL mv t BLI mv mv t F CD 22222122122121==∆=∆=∆-=∆- 提醒:若两金属棒均有一定初速度或者两金属棒所处导轨宽度不同只需要抓住稳定时回路电流为零处理即可②(有外力)一长度为L 且质量分布均匀的金属棒AB 静置于金属导轨上面,与金属棒AB 完全相同的金属棒CD 也置于金属导轨上面并在大小为F 水平向右得外力作用下向右运动,开始时两金属棒保持一定距离。

整个装置位于磁感应强度大小为B 、方向竖直向上的匀强磁场中。

双棒模型知识讲解

双棒模型知识讲解

双棒模型知识讲解无外力等距式1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点随着棒2的减速、棒1的加速,两棒的相对速度v2-v1变小,回路中电流也变小。

3.两棒的运动情况安培力大小:两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的加速运动棒2做加速度变小的减速运动最终两棒具有共同速度4.能量转化规律系统机械能的减小量等于内能的增加量.两棒产生焦耳热之比:5.几种变化:(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)无外力不等距式(4)两棒都有初速度(5)两棒位于不同磁场中有外力等距式1.电路特点棒2相当于电源;棒1受安培力而起动.2.运动分析:某时刻回路中电流:最初阶段,a2>a1,3.稳定时的速度差4.变化(1)两棒都受外力作用(2)外力提供方式变化5、有外力不等距式无外力不等距式1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点随着棒2的减速、棒1的加速,最终当Bl1v1= Bl2v2时,电流为零,两棒都做匀速运动3.两棒的运动情况安培力大小:两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的加速运动棒2做加速度变小的减速运动4、能量转化规律系统动能→电能→内能两棒产生焦耳热之比:5、两棒都有初速度有外力不等距式杆1做a渐小的加速运动a1≠a2a1、a2恒定杆2做a渐大的加速运动I 恒定某时刻两棒速度分别为v1、v2加速度分别为a1、a2经极短时间t后其速度分别为:此时回路中电流为:。

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析
双杆模型是电磁感应现象中最常用的模型之一。

它描述了一个电流源和一个磁场源之间的相互作用。

当电流源改变时,它会产生磁场,而磁场源也会影响电流源。

双杆模型由两个磁杆组成,分别代表电流源和磁场源。

电流源可以是电流或电压,而磁场源可以是磁场或磁通量。

两个磁杆之间的相互作用由磁力线来描述,磁力线是由磁场源产生的路径,它们与电流源的电流方向相反。

双杆模型可以用来描述电磁感应现象,包括磁感应、电磁感应和电磁耦合等。

它可以用来解释电磁感应的基本原理,也可以用来分析电磁感应现象的物理机制。

此外,双杆模型还可以用来设计电磁感应器件,例如变压器、发电机和电机等。

物理双棒模型的解题技巧

物理双棒模型的解题技巧

物理双棒模型的解题技巧
双棒在磁场中运动“四种模型”的总结提升
其实,我可以更加深度一点概括为“两种模型”,但首先,我还是想要根据考试常见的情形,先细化一点,介绍“四种模型”,然后进行深化,更加凝练总结为适用范围更广的“两种模型”,我们按部就班,一点点来。

关于双棒的模型,其基本要点在于“四点”。

分析得到最终状态,即最终状态双棒运动学物理量之间的关系,一般为速度和加速度。

而我们解题的关键也就是要求出这些最终状态的运动学物理量。

关于这一点,我希望小伙伴们不要进了考场再分析,提前把“四种模型”的最终状态结论记住,待会儿,我会以表格的形式展示。

从最初状态到最终状态的过程方程或最终状态的力学方程。

解方程求解出最终状态的运动学物理量,一般采用比值法求解,即联立两式,用相除的方法。

求解其他物理量,如产生的热量和通过电路的电荷量等。

高考回归复习—电磁感应之真双杆模型 含解析

高考回归复习—电磁感应之真双杆模型 含解析

高考回归复习—电磁感应之真双杆模型1.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路.己知两根导体棒的质量均为m 、电阻均为R ,其他电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦地滑行.开始时,导体棒cd 静止、ab 棒有水平向右的初速度v 0,两导体棒在运动中始终不接触且始终与两导轨垂直.求:(1)从开始运动到导体棒cd 达到最大速度的过程中,cd 棒产生的焦耳热及通过ab 棒横截面的电量; (2)当cd 棒速度变为014v 时,cd 棒加速度的大小. 2.如图所示,MN 、PQ 两平行光滑水平导轨分别与半径r =0.5m 的相同竖直半圆导轨在N 、Q 端平滑连接,M 、P 端连接定值电阻R ,质量M =2kg 的cd 绝缘杆垂直静止在水平导轨上,在其右侧至N 、Q 端的区域内充满竖直向上的匀强磁场。

现有质量m =1kg 的ab 金属杆以初速度v 0=12m/s 水平向右与cd 绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab 金属杆始终与导轨垂直且接触良好,取g=10m/s 2,求:(1)cd 绝缘杆通过半圆导轨最高点时的速度大小v ;(2)电阻R 产生的焦耳热Q 。

3.如图所示,光滑平行轨道abcd 的水平部分处于竖直向上的匀强磁场中,bc 段轨道宽度是cd 段轨道宽度的2倍,bc 段轨道和cd 段轨道都足够长,将质量相等的金属棒P 和Q 分别置于轨道上的ab 段和cd 段,且与轨道垂直。

Q 棒静止,让P 棒从距水平轨道高为h 的地方由静止释放,求:(1)P 棒滑至水平轨道瞬间的速度大小;(2)P 棒和Q 棒最终的速度。

4.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d =1m 、且足够长、不计电阻。

高考物理专题复习-电磁感应现象中的“双棒”问题研究

高考物理专题复习-电磁感应现象中的“双棒”问题研究

高考物理专题复习-电磁感应现象中的“双棒”问题研究“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。

笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。

一、分类1.按棒的长度可分为两类:等宽与不等宽(即一长一短)2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类二、规律(仅讨论水平导轨,且导棒的材料相同) 1.等长“双棒”两棒质量均为m ,长度均为L ,电阻均为R ,两间距足够大,所处磁场的磁感应强度为B(1)导轨光滑①冲量型:给棒1一个水平向右的速度0v ,则最终稳定后两棒均匀速直线运动,且速度均为0122v v v ==,系统的动量守恒,动能损失204k mv E Q ==,两棒从相对运动到相对静止,相对滑动的距离为022mv s B L =。

v t -图象如下: 010203040506070809000.51V1iV2i t i②恒定外力型:对棒1施加一个恒定外力F ,则最终稳定后,两棒均作匀加速直线运动,且两棒的加速度相等2F a m =,两棒的速度之差为一定值1222FR v v v B L =-=,两棒速度之和与时间成正比12F v v t m+=。

v t -图象如下: 0102030405060708090204060V1iV2i t i21③恒定功率型:以恒定功率作用在棒1上,则最终两棒的速度趋于无穷大,而两棒的速度差将趋于零,此时对应的外力为无穷小(零),v t -图象如下 0102030405060700102030V1iV2i t i(2)导轨粗糙①冲量型:给棒1初速度0v ,则两棒的运动类型有如下三种情况:10当2202B L v mg R μ≤时,则只有棒1运动,最终速度减小为零,棒2始终不动,v t -图象如下:02468101250100V1i t i 20当2202B L v mg Rμ>时,两棒一起运动,棒2先不动后加速最后减速,棒1一直减速运动,最后均静止。

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。

一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

双棒+水平导轨等间距(解析版)--电磁感应中的动量问题解读和专题训练

双棒+水平导轨等间距(解析版)--电磁感应中的动量问题解读和专题训练

电磁感应中的动量问题解读和专题训练专题 “双棒+水平导轨等间距”模型【问题解读】1.在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力或拉力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便。

2.双棒模型(不计摩擦力)类型双棒无外力双棒有外力示意图(F为恒力)特点分析1.电路特点棒1切割磁感线产生感应电动势相对于电源;棒2受到安培力而加速运动,运动后产生反电动势。

2.电流特点回路中电流I=Blv1-Blv2R1+R2=Bl v1-v2R1+R2棒1减速,棒2加速,两棒的相对速度变小,回路中电流减小。

当v2=0时,回路中电流最大,I m=Blv0R1+R2当v2=v1时,回路中电流最小,为零。

3.运动特点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动。

最终两棒速度相等。

1.电路特点棒1切割磁感线产生感应电动势相对于电源;棒2受到安培力而加速运动,运动后产生反电动势。

2.电流特点回路中电流I=Blv1-Blv2R1+R2=Bl v1-v2R1+R2棒1加速,棒2加速,两棒的相对速度差恒定时,回路中电流恒定。

3.运动特点某时刻中回路中电流I=Bl v1-v2R1+R2安培力F A=BIl棒1加速度a1=F-F Am,棒2加速度a2=F Am,初始阶段,a1>a2,(v1-v2)增大,I增大,棒所受安培力增大,金属棒1加速度减小,金属棒2加速度增大,即棒1做加速度减小的加速运动,棒2做加速度减小的加速运动。

当a1=a2,(v1-v2)恒定,两棒匀加速运动。

最终两棒速度差恒定,电流恒定。

稳定时,F=(m1+m2)a,F A=m2a,F A=BIl,I =Bl v 1-v 2R 1+R 2,联立解得:(v 1-v 2)=R 1+R 2 m 2FB 2l 2m 1+m2。

速度图像动力学观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动。

电磁感应拓展延伸(各种单双棒模型汇总)

电磁感应拓展延伸(各种单双棒模型汇总)

电磁感应中的导体棒专题掌握基本模型:1、光滑导轨宽为L ,导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。

磁感应强度为B ,分析导体棒的运动情况并判断最终状态。

2、光滑导轨宽为L ,导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。

磁感应强度为B 。

分析导体棒的运动情况并判断最终状态。

3、光滑导轨宽为L ,质量为m 的导体棒以初速度v 0向右开始运动,电容为C ,磁感应强度为B 。

分析导体棒的运动情况并判断最终状态。

4、光滑导轨宽为L ,质量为m 的导体棒受向右的恒力F 从静止开始向右运动,电容为C ,磁感应强度为B ,分析导体棒的运动情况并判断最终状态。

5、光滑导轨宽为L ,质量为m 、电阻为R 的导体棒由静止开始向右开始运动,磁感应强度为B ,电源电动势为E ,内阻为r,分析导体棒的运动情况并判断最终状态。

6、导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

磁感应强度为B 。

分析导体棒的运动情况并判断最终状态。

7、导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

磁感应强度为B 。

分析导体棒的运动情况并判断最终状态。

强化练习:1、如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v (v<v0)那么( ) A. 完全进入磁场中时线圈的速度大于(v0+v )/2 B. 安全进入磁场中时线圈的速度等于(v0+v )/2 C. 完全进入磁场中时线圈的速度小于(v0+v )/2 D. 以上情况A 、B 均有可能,而C 是不可能的R2、两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

动量观点在电磁感应中的应用ppt(双棒模型)

动量观点在电磁感应中的应用ppt(双棒模型)

端向上弯曲,导轨间距为l,电阻不计.水平段导轨所处空间存在方向竖
直向上的匀强磁场,磁感应强度为B.导体棒a与b的质量均为m,接入电
路的有效电阻分别为Ra=R,Rb=2R.b棒放置在水平导轨上足够远处, a棒在弧形导轨上距水平面h高度处由静止释放.运动过程中导体棒与导
轨接触良好且始终与导轨垂
直,重力加速度为g.求:
(3)试分析棒b进入倾斜轨道DED′E′的运动情况. 答案 先变加速运动,后匀速下滑
解析 稳定后,电容器不再充放电,由平衡条件可得
mgsin θ=BI L2cos θ, 回路产生的感应电流为
B I=
L2vcos R+2r
θ ,联立代入数据可解得
v=1654
m/s,
故棒b进入倾斜轨道DED′E′的运动情况为:先变加速运动,后匀速下滑.
释放,都能以恒定速度经过BB′处且经过BB′处时b的锁定装置解除,
之后棒a、b在各自轨道上运动足够长时间,当棒a运动到CC′处与两固
定在CC′处的金属立柱相撞并粘在一起,最终棒b恰能通过DD′处光滑
圆弧绝缘件进入倾斜轨道DED′E′.在ABA′B′导轨间区域存在垂直
导轨向上的匀强磁场,其他导轨间区域存在竖直向上的匀强磁场,磁感应
(1)a棒刚进入磁场时受到的
安培力的大小和方向;
答案
B2l2 2gh 3R
方向水平向左
解析 设a棒刚进入磁场时的速度为v,从开始下落到进入磁场, 根据机械能守恒定律 mgh=12mv2 a棒切割磁感线产生感应电动势
E=Blv 根据闭合电路欧姆定律 I=R+E2R a棒受到的安培力F=BIl 联立以上各式解得,F=B2l23R2gh,方向水平向左.
(2)棒a进入水平轨道后棒a上产生的焦耳热;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双棒模型知识讲解
无外力等距式
1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电
动势.
2.电流特点随着棒2的减速、棒1的加速,两棒的相对速度v2-v1变小,
回路中电流也变小。

3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感应电流变小,安培力变小.
棒1做加速度变小的加速运动棒2做加速度变小的减速运动
最终两棒具有共同速度
4.能量转化规律系统机械能的减小量等于内能的增加量.
两棒产生焦耳热之比:
5.几种变化:
(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)无外力不等距式
(4)两棒都有初速度(5)两棒位于不同磁场中
有外力等距式
1.电路特点棒2相当于电源;棒1受安培力而起动.
2.运动分析:某时刻回路中电流:
最初阶段,a2>a1,
3.稳定时的速度差
4.变化
(1)两棒都受外力作用(2)外力提供方式变化5、有外力不等距式
无外力不等距式
1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.
2.电流特点随着棒2的减速、棒1的加速,最终当Bl1v1= Bl2v2时,电流为零,两棒都做匀速运动
3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感应电流变小,安培力变小.
棒1做加速度变小的加速运动棒2做加速度变小的减速运动
4、能量转化规律系统动能→电能→内能
两棒产生焦耳热之比:
5、两棒都有初速度
有外力不等距式
杆1做a渐小的加速运动a1≠a2a1、a2恒定
杆2做a渐大的加速运动I 恒定
某时刻两棒速度分别为v1、v2
加速度分别为a1、a2
经极短时间t后其速度分别为:
此时回路中电流为:。

相关文档
最新文档