医学数据挖掘与大数据处理ppt课件
合集下载
第1章 《数据挖掘》PPT绪论
Wisdom
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
大数据分析与挖掘培训ppt
AI与大数据挖掘的融合应用
深度学习
利用深度学习技术,对 大规模数据进行特征提 取和模式识别,提高数 据挖掘的精度和效率。
强化学习
结合强化学习技术,根 据环境反馈自动调整模 型参数,提高模型泛化 能力和鲁棒性。
多模态融合
将不同模态的数据进行 融合,如文本、图像、 视频等,挖掘多模态数 据的潜在价值。
进行全面评估。
欺诈检测
利用大数据技术,实时监测交易 行为,及时发现并阻止欺诈行为
。
风险评估
通过对历史数据和实时数据的分 析,对金融机构的风险状况进行
全面评估。
医疗健康
个性化医疗
通过大数据分析,为患者提供个性化的诊疗方案 和治疗建议。
疾病预测
利用大数据技术,对疾病的发生和发展趋势进行 预测,为预防和治疗提供参考。
数据收集
从各种来源收集大量数据。
数据转换
将数据从一种格式转换为另一 种格式,如从CSV转换为 JSON。
结果展示
将挖掘出的信息以图表、报告 等形式展示给用户。
02
大数据分析技术
数据预处理
01
02
03
数据清洗
去除重复、无效或错误数 据,保证数据质量。
数据转换
将数据从一种格式或结构 转换为另一种,以便于后 续分析。
数据聚合
对数据进行汇总、计算, 生成新的特征或指标。
分布式计算
分布式文件系统
Hadoop HDFS等,用于 存储大规模数据。
分布式计算框架
MapReduce、Spark等, 用于并行处理大规模数据 。
分布式数据库
HBase、Cassandra等, 用于存储和查询大规模数 据。
数据库技术
大数据高职系列教材之数据挖掘基础PPT课件:第6章 数据挖掘应用案例
6 . 1 电力行业采用聚类方法进行主变油温分析
第六章 数据挖掘应用案例
需求背景及采用的大数据分析方法
• 把正常运行油温分成几个区间段,分析各区间段的油温出现次数分布,并计算出该区间 段的油温次数分布中心点。而根据中心点的偏离程度即阈值作为设备异常的预判是有较 大参考价值的。
• 采用聚类K-Means分析方法 • 在Spark集群上实现
6.2 银行信贷评价
第六章 数据挖掘应用案例
神经网络(NN),就是构建一个含有输入层、输出层和隐含层的模型,其中隐含 层可以有多层,这组输入和输出单元相互连接,单元之间的每个连接都设置一个权 重。输入层中神经元数目根据数据集中的属性数目确定,输出层为一个神经元,经 过训练,设定迭代次数和误差及求出每个神经元的权重,确定模型,对输入数据进 行预测。
17/11/07 23:15:38 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 0.2 1000 0.2 900 0.2 1050 0.4 1500 0.4 1450 0.4 1530 0.6 2500 0.6 2430 0.6 2520 0.8 2000 0.8 1960 0.8 2030 1.0 1200 1.0 1160 1.0 1230
大数据应用人才培养系列教材
数据挖掘基础
大数据应用人才培养系列教材
第六章 数据挖掘应用案例
6.1电力行业采用聚类方法进行主变油温分析 6.2 银行信贷评价 6.3 指数预测 6.4 客户分群的精准智能营销 6.5 使用WEKA进行房屋定价 习题
数据挖掘PPT-第3章分类
应用市场:医疗诊断、人脸检测、故障诊断和故障预警 ······
2 of 56
More
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第三章 分类
3.1 基本概念 3.2 决策树 3.3 贝叶斯分类 3.4 支持向量机 3.5 实战:决策树算法在Weka中的实现 习题
3 of 56
*** 基本概念
6 of 56
高级大数据人才培养丛书之一,大数据挖掘技术与应用
第三章 分类
3.1 基本概念 3.2 决策树 3.3 贝叶斯分类 3.4 支持向量机 3.5 实战:决策树算法在Weka中的实现 习题
7 of 56 7
*** 决策树
第三章 分类
决策树是数据挖掘的有力工具之一,决策树学习算法是从一组样本数据集(一个样 本数据也可以称为实例)为基础的一种归纳学习算法,它着眼于从一组无次序、无规则 的样本数据(概念)中推理出决策树表示形式的分类规则。
E
X ,a
g X,a H X,a
第三章 分类
*** 分类的基本概念
分类(Classification)是一种重要的数据分析形式,它提取刻画重要数据类的模型。 这种模型称为分类器,预测分类的(离散的、无序的)类标号。这些类别可以用离散值 表示,其中值之间的次序没有意义。
分类也可定义为: 分类的任务就是通过学习得到一个目标函数(Target Function)ƒ ,把每个属性集x映 射到一个预先定义的类标号y 。
11
No Small 55K ?
12 Yes Medium 80K ?
13 Yes Large 110K ?
14
No Small 95K ?
15
No Large 67K ?
数据挖掘与医院管理统计PPT课件
(二)医院信息系统数据挖掘实例 3.数据源 以ERP为核心的医院人财物运营数据
医疗与运营信息
相互关联、交互、作用
系统关联性 流程连续性 操作时效性 内容约束性
35
二、数据挖掘示例
(二)医院信息系统数据挖掘实例
4.基于患者服务标准的主题数据集设计
诊疗活动 基于患者诊疗事务信息 数据梳理归纳
主题数据集类别
二、数据挖掘示例
(一)什么是数据挖掘?
数据挖掘(Data Mining,DM)又称数据库中的知识发 现(Knowledge Discover in Database,KDD),是目前 人工智能和数据库领域研究的热点问题。
所谓数据挖掘是指从数据库的大量数据中揭示出隐含的 、先前未知的并有潜在价值信息的过程。
诊断类 治疗类 服务类 手术类 抢救类 管理类 …………
疾病种类、参 与者与维度
挂号、住院登记
确定主题
门急诊就诊、体检 入科
检验 治疗
用药
辅诊ቤተ መጻሕፍቲ ባይዱ手术
结帐
设计主题模型 定义数据集
与HIS后台关联 建立数据集结构 动态数据静态转储 数据核查与标准化
出院
生成数据集
36
1.住院病人数据集 2.门诊病人数据集 3.手术病人数据集 4.业务人员数据集 5.药品材料数据集 6.仪器设备数据集 8.辅助检查数据集 9.检验信息数据集 10.床位配置数据集
数据挖掘是一种决策支持过程,它主要基于人工智能、
机器学习、模式识别、统计学、数据库、可视化技术等,高
度自动化地分析数据,做出归纳性的推理,从中挖掘出潜在
的规律,帮助决策者调整策略,减少风险,做出正确的决策
。
24
二、数据挖掘示例
医疗与运营信息
相互关联、交互、作用
系统关联性 流程连续性 操作时效性 内容约束性
35
二、数据挖掘示例
(二)医院信息系统数据挖掘实例
4.基于患者服务标准的主题数据集设计
诊疗活动 基于患者诊疗事务信息 数据梳理归纳
主题数据集类别
二、数据挖掘示例
(一)什么是数据挖掘?
数据挖掘(Data Mining,DM)又称数据库中的知识发 现(Knowledge Discover in Database,KDD),是目前 人工智能和数据库领域研究的热点问题。
所谓数据挖掘是指从数据库的大量数据中揭示出隐含的 、先前未知的并有潜在价值信息的过程。
诊断类 治疗类 服务类 手术类 抢救类 管理类 …………
疾病种类、参 与者与维度
挂号、住院登记
确定主题
门急诊就诊、体检 入科
检验 治疗
用药
辅诊ቤተ መጻሕፍቲ ባይዱ手术
结帐
设计主题模型 定义数据集
与HIS后台关联 建立数据集结构 动态数据静态转储 数据核查与标准化
出院
生成数据集
36
1.住院病人数据集 2.门诊病人数据集 3.手术病人数据集 4.业务人员数据集 5.药品材料数据集 6.仪器设备数据集 8.辅助检查数据集 9.检验信息数据集 10.床位配置数据集
数据挖掘是一种决策支持过程,它主要基于人工智能、
机器学习、模式识别、统计学、数据库、可视化技术等,高
度自动化地分析数据,做出归纳性的推理,从中挖掘出潜在
的规律,帮助决策者调整策略,减少风险,做出正确的决策
。
24
二、数据挖掘示例
《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
大数据的处理和分析ppt课件
• 大数据的分析
– 关键技术概述、PageRank初步
3
大数据的魅力
• 数据挖掘
– 数据挖掘的定义 1. 从数据中提取出隐含的过去未知的有价值的潜
在信息 2. 从大量数据或者数据库中提取有用信息的科学
– 相关概念:知识发现 1. 数据挖掘是知识发现过程中的一步 2. 粗略看:数据预处理数据挖掘数据后处理 预处理: 将未加工输入数据转换为适合处理的形式 后处理: 如可视化, 便于从不同视角探查挖掘结4果
经关联分析,可发现顾客经常同时购买的商品:尿布牛5 奶
大数据的魅力
• 大数据
– 大数据,或称海量数据,指所涉及的数据量规模 巨大到无法通过人工,在合理时间内达到截取、 管理、处理、并整理成为人类所能解读的信息
– 在总数据量相同的情况下,与个别分析独立的小 型数据集相比,将各个小型数据集合并后进行分 析可得出许多额外的信息和数据关系性,可用来 察觉商业趋势、避免疾病扩散、打击犯罪、测定 实时交通路况或判定研究质量等
大数据时代的精髓在于人们分析信息时的 三个转变,这些转变将改变人们决策的制定 和对表象的理解
14
大数据时代的思维变革
• 变革一 — 更多: 不是随机样本, 而是全体数据
1. 随机抽样:用最少的数据获得最多的信息 – 过去由于获取和分析全体数据的困难,抽样调查
是一种常用统计分析方法。它根据随机原则从总 体中抽取部分实际数据进行调查,并运用概率估 计方法,根据样本数据推算总体相应的数量指标
通过统计性的搜索、比较、聚类、分析和归纳, 寻找事件(或数据)之间的相关性 – 一般来说,统计学无法检验逻辑上的因果关系 – 也许正因为统计方法不致力于寻找真正的原因, 才 促进数据挖掘和大数据技术在商业领域广泛应用
– 关键技术概述、PageRank初步
3
大数据的魅力
• 数据挖掘
– 数据挖掘的定义 1. 从数据中提取出隐含的过去未知的有价值的潜
在信息 2. 从大量数据或者数据库中提取有用信息的科学
– 相关概念:知识发现 1. 数据挖掘是知识发现过程中的一步 2. 粗略看:数据预处理数据挖掘数据后处理 预处理: 将未加工输入数据转换为适合处理的形式 后处理: 如可视化, 便于从不同视角探查挖掘结4果
经关联分析,可发现顾客经常同时购买的商品:尿布牛5 奶
大数据的魅力
• 大数据
– 大数据,或称海量数据,指所涉及的数据量规模 巨大到无法通过人工,在合理时间内达到截取、 管理、处理、并整理成为人类所能解读的信息
– 在总数据量相同的情况下,与个别分析独立的小 型数据集相比,将各个小型数据集合并后进行分 析可得出许多额外的信息和数据关系性,可用来 察觉商业趋势、避免疾病扩散、打击犯罪、测定 实时交通路况或判定研究质量等
大数据时代的精髓在于人们分析信息时的 三个转变,这些转变将改变人们决策的制定 和对表象的理解
14
大数据时代的思维变革
• 变革一 — 更多: 不是随机样本, 而是全体数据
1. 随机抽样:用最少的数据获得最多的信息 – 过去由于获取和分析全体数据的困难,抽样调查
是一种常用统计分析方法。它根据随机原则从总 体中抽取部分实际数据进行调查,并运用概率估 计方法,根据样本数据推算总体相应的数量指标
通过统计性的搜索、比较、聚类、分析和归纳, 寻找事件(或数据)之间的相关性 – 一般来说,统计学无法检验逻辑上的因果关系 – 也许正因为统计方法不致力于寻找真正的原因, 才 促进数据挖掘和大数据技术在商业领域广泛应用
大数据高职系列教材之数据挖掘基础PPT课件:第1章 数据挖掘概念
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
(3) 支持向量机 支持向量机(Support Vector Machine,SVM)是建立在统计学理论的VC维理论和
结构风险最小原理基础上的,它在解决小样本、非线性及高维模式识别中表现出许 多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机算 法将在后面章节做详细介绍。
第一章 数据挖掘概念
1. 什么是测量误差和数据收集误差 测量误差是测量中测量结果与实际值之间的差值叫误差。 数据收集误差是指收集数据时遗漏数据对象或属性值,或包含了其他数据对象等情况。
2. 什么是噪声 噪声是从物理角度而言,噪声是波形不规则的声音。
1.2 数据探索
1.2.2 数据质量
第一章 数据挖掘概念
第一章 数据挖掘概念
1.3 数据挖掘的应用
第一章 数据挖掘概念
1. 算法延展性
算法延展性即为算法弹性,随着数据产生、采集技术的快速进步,以GB、TB、PB(1GB=1024MB, 1TB=1024GB,1PB=1024TB)为单位的数据集越来越普遍。
2. 高维性
在以前的数据库构成中只有少量属性的数据集,现在大数据集群构成中是具有成百上千属性的数据集。
1.2 数据探索
1.2.1 数据概述
1. 属性 (1)区分属性可通过属性可能取值的个数来判断。 (2)非对称的属性 2. 数据集的一般特性
数据集一般具有三个特性,分别是维度、稀疏性、 分辨率三个,它们对数据挖掘有重要影响。 3. 较常见的数据类型
第一章 数据挖掘概念
1.2 数据探索
1.2.2 数据质量
1.3 数据挖掘的应用
1.3.3 数据挖掘的应用场景
大数据与数据挖掘之文本挖掘(PPT 56张)
文档的向量空间模型
W权值计算方法TF-IDF
目前广泛采用TF-IDF权值计算方法来计算权重, TF-IDF的主 要思想是,如果某个词或短语在一篇文章中出现的频率TF 高,并且在其他文章中很少出现,则认为此词或者短语具 有很好的类别区分能力,适合用来分类。 TF词频(Term Frequency)指的是某一个给定的词语在该文件 中出现的次数。 IDF逆文档频率(Inverse Document Frequency)是全体文档数与 包含词条文档数的比值。如果包含词条的文档越少,IDF越 大,则说明词条具有很好的类别区分能力。 在完整的向量空间模型中,将TF和IDF组合在一起,形成TFIDF度量:TF-IDF(d,t)= TF(d,t)*IDF(t)
• (11)查词表,W不在词表中,将W最右边一个字去掉, 得到W="是三" • (12)查词表,W不在词表中,将W最右边一个字去掉, 得到W=“是”,这时W是单字,将W加入到S2中,S2=“计 算语言学/ 课程/ 是/ ”, • 并将W从S1中去掉,此时S1="三个课时"; • ������ ������ • (21)S2=“计算语言学/ 课程/ 是/ 三/ 个/ 课时/ ”,此时 S1=""。 • (22)S1为空,输出S2作为分词结果,分词过程结束。
停用词
• • • • 指文档中出现的连词,介词,冠词等并无太大意义的词。 英文中常用的停用词有the,a, it等 中文中常见的有“是”,“的”,“地”等。 停用词消除可以减少term的个数,降低存储空间。停用词 的消除方法: • (1)查表法:建立一个停用词表,通过查表的方式去掉 停用词。 • (2)基于DF的方法:统计每个词的DF,如果超过总文档 数目的某个百分比(如80%),则作为停用词去掉。
医学数据挖掘与大数据处理ppt课件
数据的存储与管理:决定采用什么产品和技术
来建立数据仓库的核心,则需要从数据仓库的技术 特点着手分析。针对现有各业务系统的数据,进行 抽取、清理,并有效集成,按照主题进行组织。数 据仓库按照数据的覆盖范围可以分为企业级数据仓 库和部门级数据仓库(通常称为数据集市)。
数据仓库体系结构
OLAP(On Line Analysis Processing)
趋势分析:我们正处在医疗行业的一个重要转折点
存储的增长
15000 10000
5000 0
医疗服务产生的数据总量(PB)
2010 2011 2012 2013 2014 2015
Admin Imaging EMR Email File Non Clin Img Research
医疗影像归档
一个医疗系统案例的数据
数据仓库是稳定的(非易失性的)。
其数据以物理分离的方式存储,决策人员只进行数 据查询,而不进行数据修改。数据仓库只需要两类 操作:数据的初始化装入和数据访问
数据挖掘与知识发现基本概念
数据挖掘(从数据中发现知识)
数据挖掘(DM):从大量的数据中正规地发现有效 的、新颖的、潜在有用的,最终可被读懂的模式 的过程,简单的说就是从大量数据中提取或“挖 掘”知识。
第七章 医学数据挖掘与大数据处理
本章主要内容
数据挖掘与数据仓库 常用的数据挖掘方法 大数据概念 大数据处理方法 医疗大数据应用
阅读书目
崔雷.医学数据挖掘. 高等教育出版社 涂子佩. 大数据. 广西师范大学出版社 赵刚.大数据技术与应用实践指南. 电子工
业出版社 李雄飞等. 数据挖掘与知识发现(第2版).
分类或者特征提取。如检查特定记录并描述第一 类记录的特点。如信用分析。
来建立数据仓库的核心,则需要从数据仓库的技术 特点着手分析。针对现有各业务系统的数据,进行 抽取、清理,并有效集成,按照主题进行组织。数 据仓库按照数据的覆盖范围可以分为企业级数据仓 库和部门级数据仓库(通常称为数据集市)。
数据仓库体系结构
OLAP(On Line Analysis Processing)
趋势分析:我们正处在医疗行业的一个重要转折点
存储的增长
15000 10000
5000 0
医疗服务产生的数据总量(PB)
2010 2011 2012 2013 2014 2015
Admin Imaging EMR Email File Non Clin Img Research
医疗影像归档
一个医疗系统案例的数据
数据仓库是稳定的(非易失性的)。
其数据以物理分离的方式存储,决策人员只进行数 据查询,而不进行数据修改。数据仓库只需要两类 操作:数据的初始化装入和数据访问
数据挖掘与知识发现基本概念
数据挖掘(从数据中发现知识)
数据挖掘(DM):从大量的数据中正规地发现有效 的、新颖的、潜在有用的,最终可被读懂的模式 的过程,简单的说就是从大量数据中提取或“挖 掘”知识。
第七章 医学数据挖掘与大数据处理
本章主要内容
数据挖掘与数据仓库 常用的数据挖掘方法 大数据概念 大数据处理方法 医疗大数据应用
阅读书目
崔雷.医学数据挖掘. 高等教育出版社 涂子佩. 大数据. 广西师范大学出版社 赵刚.大数据技术与应用实践指南. 电子工
业出版社 李雄飞等. 数据挖掘与知识发现(第2版).
分类或者特征提取。如检查特定记录并描述第一 类记录的特点。如信用分析。
(2024年)大数据ppt课件
• 智慧城市:大数据在智慧城市领域的应用主要包括交通管理、环境监测、公共 安全等方面。通过对城市运行数据的挖掘和分析,政府可以更加准确地掌握城 市运行状况、预测未来发展趋势、制定科学合理的城市规划和管理策略等。
• 教育:大数据在教育领域的应用主要包括个性化教学、教育评估、教育资源优 化等方面。通过对教育数据的挖掘和分析,教育机构可以更加准确地了解学生 学习情况、为教师提供个性化教学策略、优化教育资源配置等。
数据可视化
利用图表、图像等方式展示数据集成与融合 的结果,便于分析和理解。
14
04
大数据分析方法与 应用
2024/3/26
15
统计分析方法
2024/3/26
描述性统计
对数据进行整理和描述,包括数据的中心趋势、离散程度、分布 形态等。
推论性统计
通过样本数据推断总体特征,包括参数估计和假设检验等方法。
数据存储技术
包括分布式文件系统(如HDFS)、NoSQL数据 库(如HBase、Cassandra)等,用于存储海量 数据。
数据处理技术
包括批处理(如MapReduce、Spark批处理) 、流处理(如Spark Streaming、Flink)等,用 于实现数据的实时分析和处理。
数据存储与处理技术的发展趋势
24
隐私保护技术与方法
数据脱敏技术
通过对敏感数据进行脱敏处理,如替换、加密、 去标识化等,以保护个人隐私。
差分隐私技术
在数据发布和分析过程中添加随机噪声,以保护 个体隐私不被泄露。
同态加密技术
允许对加密数据进行计算并得到加密结果,从而 实现在加密状态下对数据进行处理和验证。
2024/3/26
25
企业如何保障大数据安全
• 教育:大数据在教育领域的应用主要包括个性化教学、教育评估、教育资源优 化等方面。通过对教育数据的挖掘和分析,教育机构可以更加准确地了解学生 学习情况、为教师提供个性化教学策略、优化教育资源配置等。
数据可视化
利用图表、图像等方式展示数据集成与融合 的结果,便于分析和理解。
14
04
大数据分析方法与 应用
2024/3/26
15
统计分析方法
2024/3/26
描述性统计
对数据进行整理和描述,包括数据的中心趋势、离散程度、分布 形态等。
推论性统计
通过样本数据推断总体特征,包括参数估计和假设检验等方法。
数据存储技术
包括分布式文件系统(如HDFS)、NoSQL数据 库(如HBase、Cassandra)等,用于存储海量 数据。
数据处理技术
包括批处理(如MapReduce、Spark批处理) 、流处理(如Spark Streaming、Flink)等,用 于实现数据的实时分析和处理。
数据存储与处理技术的发展趋势
24
隐私保护技术与方法
数据脱敏技术
通过对敏感数据进行脱敏处理,如替换、加密、 去标识化等,以保护个人隐私。
差分隐私技术
在数据发布和分析过程中添加随机噪声,以保护 个体隐私不被泄露。
同态加密技术
允许对加密数据进行计算并得到加密结果,从而 实现在加密状态下对数据进行处理和验证。
2024/3/26
25
企业如何保障大数据安全
大数据培训课件ppt
Elasticsearch是一个分布式搜索和分析引 擎,它可以快速地存储、检索和分析大量 数据。Elasticsearch提供了近实时的搜索 和分析功能,广泛应用于日志分析、安全 监控和业务智能等领域。
04
大数据应用场景
金融行业
风险评估与控制
金融监管
大数据可以帮助金融机构评估客户信 用风险、市场风险和操作风险,提高 风险预警和应对能力。
大数据培训课件
汇报人:可编辑 2023-12-24
contents
目录
• 大数据概述 • 大数据处理流程 • 大数据技术 • 大数据应用场景 • 大数据挑战与未来发展
01
大数据概述
大数据的定义
总结词
大数据是指在传统数据处理软件难以处理的庞大的、复杂的 数据集。
详细描述
大数据通常是指数据量巨大、类型多样、处理复杂的数据集 合,其规模和复杂度超出了传统数据处理软件的应对能力。 这些数据可能来自各种来源,包括社交媒体、企业数据库、 物联网设备等。
存储方案
关系型数据库、NoSQL数据 库、分布式文件系统等。
存储架构
集中式存储、分布式存储、云 存储等。
存储性能
数据压缩、数据去重、索引技 术等。
数据清洗
数据清洗
处理缺失值、异常值、重复值 ,保证数据质量。
缺失值处理
填充缺失值、删除缺失值、不 处理缺失值。
异常值处理
识别异常值、处理异常值。
重复值处理
02
大数据处理流程
数据采集
数据采集
数据源
采集工具
采集方法
定义数据源、选择采集 工具、确定采集方法、
实施采集。
包括数据库、API、社交 媒体、日志文件等。
04
大数据应用场景
金融行业
风险评估与控制
金融监管
大数据可以帮助金融机构评估客户信 用风险、市场风险和操作风险,提高 风险预警和应对能力。
大数据培训课件
汇报人:可编辑 2023-12-24
contents
目录
• 大数据概述 • 大数据处理流程 • 大数据技术 • 大数据应用场景 • 大数据挑战与未来发展
01
大数据概述
大数据的定义
总结词
大数据是指在传统数据处理软件难以处理的庞大的、复杂的 数据集。
详细描述
大数据通常是指数据量巨大、类型多样、处理复杂的数据集 合,其规模和复杂度超出了传统数据处理软件的应对能力。 这些数据可能来自各种来源,包括社交媒体、企业数据库、 物联网设备等。
存储方案
关系型数据库、NoSQL数据 库、分布式文件系统等。
存储架构
集中式存储、分布式存储、云 存储等。
存储性能
数据压缩、数据去重、索引技 术等。
数据清洗
数据清洗
处理缺失值、异常值、重复值 ,保证数据质量。
缺失值处理
填充缺失值、删除缺失值、不 处理缺失值。
异常值处理
识别异常值、处理异常值。
重复值处理
02
大数据处理流程
数据采集
数据采集
数据源
采集工具
采集方法
定义数据源、选择采集 工具、确定采集方法、
实施采集。
包括数据库、API、社交 媒体、日志文件等。
数据仓库和数据挖掘PPT课件
客户细分
通过对客户的行为、偏好、资产等数据的分析,可以将客 户划分为不同的细分市场,为精准营销和服务提供支持。
投资决策
通过对历史数据的挖掘和分析,可以发现市场趋势和预测 未来走势,为投资者提供科学的投资决策依据。
电商行业的数据仓库和数据挖掘应用
总结词
电商行业是数据仓库和数据挖掘应用的另一个重 要领域,通过对用户行为、商品销售、市场趋势 等数据的分析和挖掘,可以优化营销策略、提高 用户体验和销售额。
03
数据挖掘基础
数据挖掘定义
总结词
数据挖掘是从大量数据中提取出有用 的信息和知识的过程。
详细描述
数据挖掘是一种从大量数据中通过算 法搜索隐藏在其中的信息、模式和关 联性的过程。这些信息可以用于决策 支持、预测趋势和行为等。
数据挖掘过程
总结词
数据挖掘过程包括数据预处理、数据探索、模型建立 和评估等步骤。
02
数据仓库基础
数据仓库定义
总结词
数据仓库是一个大型、集中式的存储系统,用于存储和管理企业的结构化数据。
详细描述
数据仓库是一个面向主题的、集成的、非易失的数据存储环境,用于支持管理 决策和业务操作。它通常包含历史数据,并支持对数据的分析和查询。
数据仓库架构
总结词
数据仓库架构包括数据源、ETL过程、数据 存储和数据访问等组成部分。
05
数据仓库和数据挖掘的实 际应用案例
金融行业的数据仓库和数据挖掘应用
总结词
金融行业是数据仓库和数据挖掘应用的重要领域,通过对 大量数据的分析和挖掘,可以提供风险控制、客户细分、 投资决策等方面的支持。
风险控制
金融机构可以利用数据仓库和数据挖掘技术,对海量的交 易数据进行实时监控和异常检测,及时发现和预防潜在的 金融风险。
医学大数据分析策略与数据挖掘PPT课件
26
1. 投票法:选取多数类结果(例如:2个或者2个以上预测模 型结果为恶性)作为最后病例的预测结果;
2. 并联法:只要有一个预测模型结果判断为恶性,此病人最 终判断为恶性结果,否则为良性;
3. 串联法:只有3个预测模型同时判断为恶性,此病人最终判 断为恶性结果,否则为良性;
4. 综合法:合并轴状位、冠状位、矢状位数据集,建立一个 预测模型,其结果作为最终结果。
b
i1
25
SVM中不同的内积核函数将形成不同的算法。
➢ Gaussian 核函数: ➢ Polynom核函数 ➢ Vanilladot线性核函数 ➢ 双曲切线核函数 ➢ Laplacian 核函数 ➢ Bessel核函数
kx.y (axTy c)d
kx.y xTy cd
kx .y tanh(axTy c)
支持向量机 决策树 随机森林最近邻分类神经网络 Gradient Lasso回归 boosting
19 19
✓ 各纹理产生30,40,50,60个子代(即纹理分别 为420,560,700,840个)。每个纹理子代分布 为正态分布,均值和标准差与轴位CT图像均值 相近;
✓ 设定每个纹理内部子代之间的相关系数为r=0.1, 0.2,0.3,0.4;
主成分分析
因子分析
广义线性模型
......
正态性
线性、齐性
条
独立性
件
足够大的样本量
变量的20倍
......
➢ 传统的多元统计方法难以处理和分析医学大数据 ➢ 高维、非线性、非高斯等数据,采用数据挖掘方法,可以
提供更高的预测精度。
12
数据挖掘方法简介及其应用
13
数据挖掘:是在从大量的数据中提取隐含的、 事先未知的,但又是潜在有用的信息和知识的过程。
医学数据挖掘与大数据处理PPT63页
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
医学数据挖掘与大数据处理
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
大数据本科系列教材PPT课件之《数据挖掘》:第1章 绪论
1.3.1 商用工具
• SAS Enterprise Miner Enterprise Miner是一种通用的数据挖掘工具,按照“抽样-探索-修改-建模-评价”的方 法进行数据挖掘,它把统计分析系统和图形用户界面(GUI)集成起来,为用户提供了用 于建模的图形化流程处理环境。
19 of 43
1.3数据挖掘常用工具
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘的定义
• 数据挖掘(Data Mining,DM),是从大量的、有噪声的、不完全的、模糊和随机 的数据中,提取出隐含在其中的、人们事先不知道的、具有潜在利用价值的信息和 知识的过程。
• 这个定义包含以下几层含义: ✓ 数据源必须是真实的、大量的、含噪声的; ✓ 发现的是用户感兴趣的知识; ✓ 发现的知识要可接受、可理解、可运用; ✓ 不要求发现放之四海皆准的知识,仅支持特定的问题
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
8 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.3 大数据挖掘的特性
• 在大数据时代,数据的产生和收集是基础,数据挖掘是关键,即数据挖掘是大数据 中最关键、最有价值的工作。
大数据挖掘的特性:
• 应用性 • 工程性 • 集合性
9 of 43
大数据应用案例分析课件(PPT2)
数据质量挑战
电商数据存在大量噪声和无效 信息,需要进行数据清洗和预 处理。
2024/1/26
实时处理挑战
电商业务要求实时处理和分析 数据,对技术架构和算法性能 提出更高要求。
商业模式创新机遇
大数据可以揭示市场趋势和消 费者需求变化,为电商企业创 新商业模式提供有力支持。
10
03
案例分析:金融领域大数据应 用
通过分析客户的交易行为、偏好、社交媒体互动等信息, 实现客户细分和个性化服务,提升客户满意度和忠诚度。
13
金融领域大数据挑战与机遇
2024/1/26
数据安全和隐私保护
随着金融数据的不断增长和集中,数据安全和隐私保护成为重要挑战。需要加强数据安全管理和技术手段,确保数据 的安全性和合规性。
数据整合和分析能力
金融机构需要具备强大的数据整合和分析能力,以应对复杂多变的市场环境和客户需求。需要建立完善的数据治理体 系和技术平台,提升数据处理和分析能力。
创新业务模式和服务
大数据为金融机构提供了创新业务模式和服务的机会。可以通过数据挖掘和分析,发现新的市场机会和 客户需求,推出个性化的金融产品和服务。
14
04
02
03
个性化治疗
医疗科研
通过分析患者的基因、生活习惯 等数据,制定个性化的治疗方案 ,提高治疗效果。
利用大数据技术进行医疗科研, 加快新药研发、临床试验等进程 。
2024/1/2621Leabharlann 医疗健康领域大数据挑战与机遇
数据隐私保护
如何在利用数据的同时保护患者隐私, 是医疗健康领域大数据面临的重要挑战
。
随着大数据技术的不断发展, 数据挖掘和分析将成为未来大
数据应用的重要方向。
临床医学大数据分析与挖掘—基于Python机器学习与临床决策-第11章-数据挖掘建模平台实现全
大数据挖掘专家
7
பைடு நூலகம்
数据源
➢ 【数据源】模块主要用于数据分析工程的数据导入与管理,根据情况用户可选择【CSV文件】或者【SQL 数据库】。【CSV文件】支持从本地导入CSV类型的数据,如图所示。
大数据挖掘专家
8
数据源
➢ 【SQL数据库】支持从DB2、SQL Server、MySQL、Oracle、PostgreSQL等关系型数据库导入数据,如 图所示。
大数据挖掘专家
15
TipDM数据挖掘建模平台的本地化部署
➢ 通过开源TipDM数据挖掘建模平台官网(),如图所示。
大数据挖掘专家
16
TipDM数据挖掘建模平台的本地化部署
➢ 进入Github或码云开源网站,如图所示,同步平台程序代码到本地,按照说明文档进行配置部署。
➢ 在TipDM数据挖掘建模平台上配置医疗保险的欺诈发现案例的总体流程如图所示。
数据来源
数据获取
数据准备
特征工程
模型训练
数
数据源
据 获
取
描述性统计
修改列名
绘制保险条 款类别饼图
新增列 分组聚合
表堆叠 表连接 缺失值处理 数据编码化 数据标准化
基于K-Means 的投保人聚类
大数据挖掘专家
22
总体流程
大数据挖掘专家
6
首页
➢ 登录平台后,用户即可看到【首页】模块系统提供的示例工程(模板),如图所示。
【模板】模块主要用于常用数据分析与建模案例的快速创建和展示。通过【模板】模块,用户可以创建一个 无须导入数据及配置参数就能够快速运行的工程。同时,用户可以将自己搭建的数据分析工程生成为模板, 显示在【首页】模块,供其他用户一键创建。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的存储与管理:决定采用什么产品和技术
来建立数据仓库的核心,则需要从数据仓库的技术 特点着手分析。针对现有各业务系统的数据,进行 抽取、清理,并有效集成,按照主题进行组织。数 据仓库按照数据的覆盖范围可以分为企业级数据仓 库和部门级数据仓库(通常称为数据集市)。
数据仓库体系结构
OLAP(On Line Analysis Processing)
数据库
目标 数据
已处理 数据
已转换 数据
模式 趋势
知识
选Байду номын сангаас 处理
转换
2022/3/23
数据 挖掘
解释 评价
25
数据挖掘和知识发现的基本步骤
选择:根据某种标准选择数据
处理:包括清除和充实
转换:删除丢失重要内容的记录,将数据 分类、格式变换等
数据挖掘:运用工具或算法,在数据中发 现模式和规律
解释评价:将发现的模式解释为可用于决 策的知识
高等教育出版社
纽约警察-杰克.梅普尔的传奇
数据驱动管理 除了上帝,任何人都要用数据说话。-爱德华.戴明
图灵奖、诺经济学奖、 美心理学会终身成就奖
人类理性是有限的, 所有决策都是基于有 限理性的结果,如果 能利用存储在计算机 里的信息来辅助决策, 人类理性的范围将扩 大,决策的质量就能 提高。 决策支持—商务智能
数据仓库是稳定的(非易失性的)。
其数据以物理分离的方式存储,决策人员只进行数 据查询,而不进行数据修改。数据仓库只需要两类 操作:数据的初始化装入和数据访问
数据挖掘与知识发现基本概念
数据挖掘(从数据中发现知识)
数据挖掘(DM):从大量的数据中正规地发现有效 的、新颖的、潜在有用的,最终可被读懂的模式 的过程,简单的说就是从大量数据中提取或“挖 掘”知识。
医学数据挖掘:是针对医学方面的数据仓库进行 挖掘
知识发现:知识发现(KDD)包括数据清理、数据 集成、数据选择、数据变换、数据挖掘、模式评 估、知识表示等步骤
• 有人把数据挖掘视为数据中的知识发现或KDD同义词,另 一些人将其视为知识发现的一个基本步骤。
2022/3/23
23
数据挖掘和知识发现的基本步骤
数据仓库是集成的。
数据仓库的数据有来自于分散的操作型数据,将 所需数据从原来的数据中抽取出来,进行加工与 集成,转换统一与综合之后才能进入数据仓库;
数据仓库特点
数据仓库是随时间而变化的。
不断跟踪事务处理系统中,数据仓库会把业务系统 数据库中变化数据追加进去。传统的关系数据库系 统比较适合处理格式化的数据,能够较好的满足商 业商务处理的需求。稳定的数据以只读格式保存, 且不随时间改变。
分类或者特征提取。如检查特定记录并描述第一 类记录的特点。如信用分析。
序列模式。注重在一定时间段内发生的购买事件。 如买电视和摄像机序列。
聚类分析。将数据库中的记录分成子类。可用统
计学方法和神经网络等非监督性符号归纳方法实
2022/3/23 现数据聚类。
33
本章主要内容
数据挖掘与数据仓库 常用的数据挖掘方法 大数据概念 大数据处理方法 医疗大数据应用
2022/3/23
9
数据仓库
数据仓库是一个 面向主题的,集 成的,相对稳定 的,反映历史变 化的数据集合, 用于支持管理中 的决策支持。
数据仓库体系结构
数据仓库体系结构
数据源:通常包括企业内部信息和外部信息。内
部信息包括存放于RDBMS中的各种业务处理数据和 各类文档数据。外部信息包括各类法律法规、市场 信息和竞争对手的信息等等。
2022/3/23
26
数据挖掘:数据库中的知识挖掘(KDD)
数据挖掘——知识发 现过程的核心
模式评估 数据挖掘 模式
任务相关数据
数据仓库
选择
数据清理与集成 数据集
2022/3/23
27
知识发现和数据挖掘的算法
数据挖掘算法由3部分组成:模型表达、模型评 价和检索方法。
关联规则。两个或多个变量之间存在某种规律性, 称为关联。如超市中顾客买可乐和玉米片的相关 性。
数据仓库体系结构
前端工具
各种报表工具、查询工具、数据分析工具、数 据挖掘工具以及各种基于数据仓库或数据集市 的应用开发工具。
数据分析工具主要针对OLAP服务器 报表工具、数据挖掘工具主要针对数据
仓库。
数据仓库四大特点
数据仓库是面向主题的。
数据库的数据组织面向事务处理任务,而数据仓 库中的数据是按照一定的主题域进行组织。主题 是指用户使用数据仓库进行决策时所关心的重点 方面,一个主题通常与多个操作型信息系统相关。
第七章 医学数据挖掘与大数据处理
本章主要内容
数据挖掘与数据仓库 常用的数据挖掘方法 大数据概念 大数据处理方法 医疗大数据应用
阅读书目
崔雷.医学数据挖掘. 高等教育出版社 涂子佩. 大数据. 广西师范大学出版社 赵刚.大数据技术与应用实践指南. 电子工
业出版社 李雄飞等. 数据挖掘与知识发现(第2版).
数据挖掘的发展动力
---需要是发明之母
数据爆炸但知识贫乏
全球每秒290万份电子邮件、每秒亚马逊产生 72.9笔订单,每分钟20个小时视屏上传到 YouTube,Google每天处理24PB数据;淘宝有6亿注 册会员,在线商品超过9亿,每天交易超过数千亿。
自动数据收集工具和成熟的数据库技术使得大量 的数据被收集,存储在数据库、数据仓库或其他 信息库中以待分析。
常用的数据挖掘方法
关联规则与关联分析 聚类分析 决策树 人工神经网络 遗传算法 粗糙集理论
对分析需要的数据进行有效集成,按多维模型予以 组织,以便进行多角度、多层次的分析,并发现趋 势。 ROLAP(关系型在线分析处理),基本数据和聚合 数据均存放在RDBMS之中; MOLAP(多维在线分析处理)和HOLAP(混合型线上 分析处理),基本数据和聚合数据均存放于多维数 据库中; HOLAP基本数据存放于RDBMS之中,聚合数据存放于 多维数据库中。
这些数据当中大量有用的知识被淹没其中。
2022/3/23
8
解决方法-数据仓库和数据挖掘
数据仓库(Data Warehouse)和在线 分析处理(OLAP)
在大量的数据中挖掘感兴趣的知识(规则、 规律、模式、约束)
支持数据挖掘技术的基础
- - 海量数据搜集 - - 强大的多处理器计算机 - - 数据挖掘算法
来建立数据仓库的核心,则需要从数据仓库的技术 特点着手分析。针对现有各业务系统的数据,进行 抽取、清理,并有效集成,按照主题进行组织。数 据仓库按照数据的覆盖范围可以分为企业级数据仓 库和部门级数据仓库(通常称为数据集市)。
数据仓库体系结构
OLAP(On Line Analysis Processing)
数据库
目标 数据
已处理 数据
已转换 数据
模式 趋势
知识
选Байду номын сангаас 处理
转换
2022/3/23
数据 挖掘
解释 评价
25
数据挖掘和知识发现的基本步骤
选择:根据某种标准选择数据
处理:包括清除和充实
转换:删除丢失重要内容的记录,将数据 分类、格式变换等
数据挖掘:运用工具或算法,在数据中发 现模式和规律
解释评价:将发现的模式解释为可用于决 策的知识
高等教育出版社
纽约警察-杰克.梅普尔的传奇
数据驱动管理 除了上帝,任何人都要用数据说话。-爱德华.戴明
图灵奖、诺经济学奖、 美心理学会终身成就奖
人类理性是有限的, 所有决策都是基于有 限理性的结果,如果 能利用存储在计算机 里的信息来辅助决策, 人类理性的范围将扩 大,决策的质量就能 提高。 决策支持—商务智能
数据仓库是稳定的(非易失性的)。
其数据以物理分离的方式存储,决策人员只进行数 据查询,而不进行数据修改。数据仓库只需要两类 操作:数据的初始化装入和数据访问
数据挖掘与知识发现基本概念
数据挖掘(从数据中发现知识)
数据挖掘(DM):从大量的数据中正规地发现有效 的、新颖的、潜在有用的,最终可被读懂的模式 的过程,简单的说就是从大量数据中提取或“挖 掘”知识。
医学数据挖掘:是针对医学方面的数据仓库进行 挖掘
知识发现:知识发现(KDD)包括数据清理、数据 集成、数据选择、数据变换、数据挖掘、模式评 估、知识表示等步骤
• 有人把数据挖掘视为数据中的知识发现或KDD同义词,另 一些人将其视为知识发现的一个基本步骤。
2022/3/23
23
数据挖掘和知识发现的基本步骤
数据仓库是集成的。
数据仓库的数据有来自于分散的操作型数据,将 所需数据从原来的数据中抽取出来,进行加工与 集成,转换统一与综合之后才能进入数据仓库;
数据仓库特点
数据仓库是随时间而变化的。
不断跟踪事务处理系统中,数据仓库会把业务系统 数据库中变化数据追加进去。传统的关系数据库系 统比较适合处理格式化的数据,能够较好的满足商 业商务处理的需求。稳定的数据以只读格式保存, 且不随时间改变。
分类或者特征提取。如检查特定记录并描述第一 类记录的特点。如信用分析。
序列模式。注重在一定时间段内发生的购买事件。 如买电视和摄像机序列。
聚类分析。将数据库中的记录分成子类。可用统
计学方法和神经网络等非监督性符号归纳方法实
2022/3/23 现数据聚类。
33
本章主要内容
数据挖掘与数据仓库 常用的数据挖掘方法 大数据概念 大数据处理方法 医疗大数据应用
2022/3/23
9
数据仓库
数据仓库是一个 面向主题的,集 成的,相对稳定 的,反映历史变 化的数据集合, 用于支持管理中 的决策支持。
数据仓库体系结构
数据仓库体系结构
数据源:通常包括企业内部信息和外部信息。内
部信息包括存放于RDBMS中的各种业务处理数据和 各类文档数据。外部信息包括各类法律法规、市场 信息和竞争对手的信息等等。
2022/3/23
26
数据挖掘:数据库中的知识挖掘(KDD)
数据挖掘——知识发 现过程的核心
模式评估 数据挖掘 模式
任务相关数据
数据仓库
选择
数据清理与集成 数据集
2022/3/23
27
知识发现和数据挖掘的算法
数据挖掘算法由3部分组成:模型表达、模型评 价和检索方法。
关联规则。两个或多个变量之间存在某种规律性, 称为关联。如超市中顾客买可乐和玉米片的相关 性。
数据仓库体系结构
前端工具
各种报表工具、查询工具、数据分析工具、数 据挖掘工具以及各种基于数据仓库或数据集市 的应用开发工具。
数据分析工具主要针对OLAP服务器 报表工具、数据挖掘工具主要针对数据
仓库。
数据仓库四大特点
数据仓库是面向主题的。
数据库的数据组织面向事务处理任务,而数据仓 库中的数据是按照一定的主题域进行组织。主题 是指用户使用数据仓库进行决策时所关心的重点 方面,一个主题通常与多个操作型信息系统相关。
第七章 医学数据挖掘与大数据处理
本章主要内容
数据挖掘与数据仓库 常用的数据挖掘方法 大数据概念 大数据处理方法 医疗大数据应用
阅读书目
崔雷.医学数据挖掘. 高等教育出版社 涂子佩. 大数据. 广西师范大学出版社 赵刚.大数据技术与应用实践指南. 电子工
业出版社 李雄飞等. 数据挖掘与知识发现(第2版).
数据挖掘的发展动力
---需要是发明之母
数据爆炸但知识贫乏
全球每秒290万份电子邮件、每秒亚马逊产生 72.9笔订单,每分钟20个小时视屏上传到 YouTube,Google每天处理24PB数据;淘宝有6亿注 册会员,在线商品超过9亿,每天交易超过数千亿。
自动数据收集工具和成熟的数据库技术使得大量 的数据被收集,存储在数据库、数据仓库或其他 信息库中以待分析。
常用的数据挖掘方法
关联规则与关联分析 聚类分析 决策树 人工神经网络 遗传算法 粗糙集理论
对分析需要的数据进行有效集成,按多维模型予以 组织,以便进行多角度、多层次的分析,并发现趋 势。 ROLAP(关系型在线分析处理),基本数据和聚合 数据均存放在RDBMS之中; MOLAP(多维在线分析处理)和HOLAP(混合型线上 分析处理),基本数据和聚合数据均存放于多维数 据库中; HOLAP基本数据存放于RDBMS之中,聚合数据存放于 多维数据库中。
这些数据当中大量有用的知识被淹没其中。
2022/3/23
8
解决方法-数据仓库和数据挖掘
数据仓库(Data Warehouse)和在线 分析处理(OLAP)
在大量的数据中挖掘感兴趣的知识(规则、 规律、模式、约束)
支持数据挖掘技术的基础
- - 海量数据搜集 - - 强大的多处理器计算机 - - 数据挖掘算法