新课标高一数学——函数的基本性质练习题(精华)
函数的基本性质练习(含答案)
函数的基本性质练习(含答案)基础训练A组1.若函数f(x)为偶函数,则f(-x)=f(x),代入函数f(x),得到:m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)(-x)^2+(m-2)(-x)+(m^2-7m+12)化简得到:(m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)x^2-(m-2)x+(m^2-7m+12)移项得到:4x=0,因此m=2,选B。
2.偶函数在[-∞,-1]上是增函数,说明在[1,+∞)上也是增函数,因此f(-3/2)<f(-1)<f(2),选A。
3.因为f(x)是奇函数,所以在[-7,-3]上也是增函数,最小值为-5,因此选A。
4.F(x) = f(x) - f(-x),代入f(-x)得到:F(x) = f(x) - (-f(x)) = 2f(x)因此F(x)是偶函数,选B。
5.对于y=x,有y'=1>0,在(0,1)上是增函数,选A。
6.化简得到f(x)=-x^2+x,因此在[0,1]上是减函数,但f(-x)=-f(x),因此是奇函数,选B。
填空题1.因为f(x)是奇函数,所以f(0)=0,不等式化简得到f(x)<0,解为(-5,0)U(0,5)。
2.值域为(-∞,+∞),因为2x+x+1可以取到任意大的值。
3.y=x+1,因此值域为(1,2]。
4.f(x)的导数为2(k-2)x+(k-1),当x(k-1)/(2(k-2))时导数小于0,因此f(x)的递减区间为(-∞,-(k-1)/(2(k-2)))U((k-1)/(2(k-2)),+∞)。
5.命题(1)和(2)正确,命题(3)和(4)错误,因此正确的命题个数为2.解答题1.一次函数y=kx+b的单调性取决于k的符号,当k>0时单调递增,当k0时单调递减,当k0时开口向上,单调递增,当a<0时开口向下,单调递减。
2.因为定义域为(-1,1),所以f'(x)=2x-1<0当x<1/2时,f(x)单调递减,因此f(x)在(-1/2,1/2)上取得最大值,最小值为f(1)=3.x0时,f(x)为正数。
高一数学必修一函数的基本性练习题
高一数学必修一函数的基本性练习题函数的基本性质综合练一.选择题:(本大题共10题,每小题5分,共50分)1.若函数 y = ax 与 y = -bx 在(0.+∞) 上都是减函数,则 y = ax + bx 在(0.+∞) 上是()A。
增函数 B。
减函数 C。
先增后减 D。
先减后增2.已知函数 f(x) = (m-1)x² + (m-2)x + (m-7m+12) 为偶函数,则 m 的值是()A。
1 B。
2 C。
3 D。
43.设 f(x) 是 (-∞。
+∞) 上的增函数,a 为实数,则有()A。
f(a)。
f(a)4.如果奇函数 f(x) 在区间 [3,7] 上是增函数且最大值为 5,那么 f(x) 在区间 [-7,-3] 上是()A。
增函数且最小值是 -5 B。
增函数且最大值是 -5 C。
减函数且最大值是 -5 D。
减函数且最小值是 -55.已知定义域为{x|x ≠ 0} 的函数 f(x) 为偶函数,且 f(x) 在区间 (-∞,0) 上是增函数,若 f(-3) = 2,则 f(x)/x < 0 的解集为()A。
(-3,0)∪(0,3) B。
(-∞,-3)∪(0,3) C。
(-∞,-3)∪(3.+∞) D。
(-3,0)∪(3.+∞)6.当 x ∈ [0,5] 时,函数 f(x) = 3x² - 4x + c 的值域为()A。
[c,5+5c] B。
[-c,c] C。
[-5+c,5+c] D。
[c,20+c]7.设 f(x) 为定义在 R 上的奇函数。
当x ≥ 1 时,f(x) = 2x +b (b 为常数),则 f(-1) 等于()A。
3 B。
1 C。
-1 D。
-38.下列函数在 (0,1) 上是增函数的是()A。
y = 1-2x B。
y = x-1 C。
y = -x²+2x D。
y = 59.下列四个集合:① A = {x ∈ R | y = x+1} ② B = {y | y =x+1.x ∈ R} ③ C = {(x,y) | y = x²+1.x ∈ R} ④ D = {不小于 1 的实数}。
人教版高中数学必修一《函数的基本性质》练习题含答案
(数学1必修)第一章(下) 函数的基本性质[基础训练A 组]一、选择题1.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数, 则m 的值是( )A . 1B . 2C . 3D . 42.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<-B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f3.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A .增函数且最小值是5-B .增函数且最大值是5-C .减函数且最大值是5-D .减函数且最小值是5-4.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --= 在R 上一定是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数。
5.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1= D .42+-=x y 6.函数)11()(+--=x x x x f 是( )A .是奇函数又是减函数B .是奇函数但不是减函数C .是减函数但不是奇函数D .不是奇函数也不是减函数二、填空题1.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是2.函数2y x =+________________。
3.已知[0,1]x ∈,则函数y =的值域是 .4.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 . 5.下列四个命题(1)()f x =有意义; (2)函数是其定义域到值域的映射;(3)函数2()y x x N =∈的图象是一直线;(4)函数22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线, 其中正确的命题个数是____________。
新课标高一数学函数的基本性质试题及答案
新课标高一数学函数的基本性质试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】新课标高一数学同步测试(4)—第一单元(函数的基本性质)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.下面说法正确的选项()A.函数的单调区间可以是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是()A.B.C.D.3.函数是单调函数时,的取值范围()A.B. C .D.4.如果偶函数在具有最大值,那么该函数在有()A.最大值 B.最小值 C .没有最大值 D.没有最小值5.函数,是()A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关6.函数在和都是增函数,若,且那么()A. B.C.D.无法确定7.函数在区间是增函数,则的递增区间是()A.B. C.D.8.函数在实数集上是增函数,则()A.B. C. D.9.定义在R上的偶函数,满足,且在区间上为递增,则()A. B.C. D.10.已知在实数集上是减函数,若,则下列正确的是()A. B.C. D.二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.函数在R上为奇函数,且,则当,.12.函数,单调递减区间为,最大值和最小值的情况为.13.定义在R上的函数(已知)可用的=和来表示,且为奇函数,为偶函数,则=.14.构造一个满足下面三个条件的函数实例,①函数在上递减;②函数具有奇偶性;③函数有最小值为;.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知,求函数得单调递减区间. 16.(12分)判断下列函数的奇偶性①;②;③;④。
17.(12分)已知,,求.18.(12分))函数在区间上都有意义,且在此区间上①为增函数,;②为减函数,.判断在的单调性,并给出证明.19.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。
高一数学必修一函数的基本性练习题
函数的基本性质综合练习一.选择题:(本大题共10题,每小题5分,共50分)1.若函数ax y =与x b y -=在(0,+∞)上都是减函数,则bx ax y +=2在),0(∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增2.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 ( )A .1B .2C .3D .43.设)(x f 是(-∞,+∞)上的增函数a 为实数,则有 ( )A .)2()(a f a f <B .)()(2a f a f <C .)()(2a f a a f <+D .)()1(2a f a f >+ 4.如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间[-7,-3]上是( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-55.已知定义域为}0|{≠x x 的函数)(x f 为偶函数,且)(x f 在区间(-∞,0)上是增函数,若0)3(=-f ,则0)(<xx f 的解集为( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞) 6.当]5,0[∈x 时,函数c x x x f +-=43)(2的值域为( )A .[c,55+c ]B .[-43+c ,c ]C .[-43+c,55+c ] D .[c,20+c ] 7.设)(x f 为定义在R 上的奇函数.当0≥x 时,b x x f x ++=22)((b 为常数),则)1(-f 等于( )A .3B .1C .-1D .-38.下列函数在(0,1)上是增函数的是( )A .x y 21-=B .1-=x yC .x x y 22+-=D .5=y9.下列四个集合:①}1|{2+=∈=x y R x A ;②},1|{2R x x y y B ∈+==;③},1|),{(2R x x y y x C ∈+==;④}1{的实数不小于=D .其中相同的集合是( )A .①与②B .①与④C .②与③D .②与④ 10.给出下列命题:①xy 1=在定义域内为减函数;②2)1(-=x y 在),0(∞ 上是增函数;③x y 1-=在)0,(-∞上为增函数;④kx y =不是增函数就是减函数。
(完整word版)函数的基本性质练习题及答案
高中数学必修一1.3函数的基本性质练习题及答案一:单项选择题: (共10题,每小题5分,共50分)1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( )A.1B.2C.3D.42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A.)2()1()23(f f f <-<- B.)2()23()1(f f f <-<- C.)23()1()2(-<-<f f f D.)1()23()2(-<-<f f f3. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是()A.增函数且最小值是5-B.增函数且最大值是5-C.减函数且最大值是5-D.减函数且最小值是5-4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数5. 函数)11()(+--=x x x x f 是( )A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数6. 下列函数既是奇函数,又在区间上单调递减的是( ) A. B. C. D.7. 设函数|| + b + c 给出下列四个命题:①c = 0时,y 是奇函数 ②b 0 , c >0时,方程0 只有一个实根 ③y 的图象关于(0 , c)对称 ④方程0至多两个实根其中正确的命题是( )A .①、④B .①、③C .①、②、③D .①、②、④8. 已知函数f(x)=3-2|x|,g(x)=x 2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么F(x) ( )A .有最大值7-2,无最小值B . 有最大值3,最小值-1C .有最大值3,无最小值D .无最大值,也无最小值9. 已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式的解集是( ) A .B .C .D .10. 设定义域为R 的函数f (x )满足,且f (-1)=,则f (2006)的值为( ) A .1 B .1 C .2006 D .二:填空题: (共2题,每小题10分,共20分)1. 设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是 .2. 若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是____________ 三:解答题: (共2题,每小题10分,共20分)1. 判断y=1-2x 3 在(-)上的单调性,并用定义证明。
新课标高一数学——函数的基本性质练习题(精华)
高一数学 ------函数的基天性质一、典型选择题1.在区间上为增函数的是()A. B . C . D .(考点:基本初等函数单一性)2.函数是单一函数时,的取值范围()A. B . C . D .(考点:二次函数单一性)3.假如偶函数在拥有最大值,那么该函数在有()A.最大值 B .最小值 C .没有最大值 D .没有最小值(考点:函数最值)4.函数,是()A.偶函数 B .奇函数 C .不拥有奇偶函数 D .与相关(考点:函数奇偶性)5.函数在和都是增函数,若,且那么()A. B .C. D .没法确立(考点:抽象函数单一性)6.函数在区间是增函数,则的递加区间是()A. B . C .D.(考点:复合函数单一性)7.函数在实数集上是增函数,则()A.B.C.D.(考点:函数单一性)8.定义在R上的偶函数,知足,且在区间上为递加,则()A.B.C.D.(考点:函数奇偶、单一性综合)19.已知在实数集上是减函数,若,则以下正确的选项是()A. B .C. D .(考点:抽象函数单一性)二、典型填空题1.函数在 R上为奇函数,且,则当,. (考点:利用函数奇偶性求分析式)2.函数,单一递减区间为,最大值和最小值的状况为.(考点:函数单一性,最值)三、典型解答题1.( 12 分)已知,求函数得单一递减区间 .(考点:复合函数单一区间求法)2.( 12 分)已知,,求.(考点:函数奇偶性,数学整体代换的思想)3.( 14 分)在经济学中,函数的边沿函数为,定义为,某企业每个月最多生产100 台报警系统装置。
生产台的收入函数为(单位元),其成本函数为(单位元),收益的等于收入与成本之差.①求出收益函数及其边沿收益函数;②求出的收益函数及其边沿收益函数能否拥有同样的最大值;③你以为此题中边沿收益函数最大值的实质意义 .(考点:函数分析式,二次函数最值)4.( 14 分)已知函数,且,,试问,能否存在实数,使得在上为减函数,而且在上为增函数 .(考点:复合函数分析式,单一性定义法)2参照答案一、 BAABDBAAD二、1.;2.和,;三、3.解:函数,,故函数的单一递减区间为.4.解:已知中为奇函数,即=中,也即,,得,.5.解:.;,故当62 或 63 时,74120(元)。
函数的基本性质练习题
函数的基本性质练习题1.3 函数的基本性质练题(1)一、选择题:1.下面说法正确的选项(B)A。
函数的单调区间可以是函数的定义域。
B。
函数的多个单调增区间的并集也是其单调增区间。
C。
具有奇偶性的函数的定义域定关于原点对称。
D。
关于原点对称的图象一定是奇函数的图象。
2.在区间(,)上为增函数的是(D)A。
y = 1B。
y = (2x + 1)/(2x - 1)C。
y = (x^2 + 2)/(1 - x^2)D。
y = 1 + x3.函数y = x + bx + c(x∈(,1))是单调函数时,b的取值范围(B)A。
b ≥ 2B。
b ≤ 2C。
b。
2D。
b < 24.如果偶函数在[a,b]具有最大值,那么该函数在[b,a]有(A)A。
最大值B。
最小值C。
没有最大值D。
没有最小值5.函数y = x|x| + px,x∈R是(B)A。
偶函数B。
奇函数C。
不具有奇偶函数D。
与p有关6.函数f(x)在(a,b)和(c,d)都是增函数,若x1∈(a,b),x2∈(c,d),且x1 < x2,那么(A)A。
f(x1) < f(x2)B。
f(x1)。
f(x2)C。
f(x1) = f(x2)D。
无法确定7.函数f(x)在区间[2,3]是增函数,则y = f(x+5)的递增区间是(C)A。
[3,8]B。
[7,2]C。
[,5]D。
[2,3]8.函数y = (2k+1)x + b在实数集上是增函数,则(A)A。
k。
1/2B。
k < 1/2C。
b。
0D。
b。
1/29.定义在R上的偶函数f(x),满足f(x+1) = f(x),且在区间[1,]上为递增,则(B)A。
f(3) < f(2) < f(2)B。
f(2) < f(3) < f(2)C。
f(3) < f(2) < f(2)D。
f(2) < f(2) < f(3)10.已知f(x)在实数集上是减函数,若a+b≤0,则下列正确的是(C)A。
函数的基本性质练习题(重要).doc
(高中数学必修1)函数的基本性质[B 组]一、选择题1.下列判断正确的是()A.函数f ( x) x2 2 x 是奇函数 B .函数 f ( x) (1 x) 1 x是偶函数x 2 1 xC.函数f ( x) x x2 1 是非奇非偶函数 D .函数f ( x) 1既是奇函数又是偶函数2.若函数f (x) 4x2 kx 8 在 [5,8] 上是单调函数,则k 的取值范围是()A.,40 B . [40,64]C.,40 U 64, D . 64,3.函数y x 1 x 1的值域为()A., 2 B . 0, 2C.2, D . 0,4.已知函数 f x x2 2 a 1 x 2 在区间,4 上是减函数,则实数 a 的取值范围是()A.a3 B. a 3 C. a 5 D. a 35.下列四个命题: (1) 函数f ( x)在x 0 时是增函数, x 0 也是增函数,所以 f ( x) 是增函数;(2) 若函数f ( x) ax2 bx 2 与 x 轴没有交点,则b2 8a 0 且 a 0 ;(3) y x2 2 x 3 的递增区间为1, ; (4) y 1 x 和y (1 x)2表示相等函数。
其中正确命题的个数是( )A.0 B .1 C .2 D .36.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中d d d dd d d dO t 0 t O t 0 t O t 0 t O t 0 tA.B.C.D.纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是()二、填空题1.函数 f (x) x 2x 的单调递减区间是 ____________________ 。
2.已知定义在R 上的奇函数 f ( x) ,当 x 0 时, f (x) x 2| x | 1,那么 x0 时, f ( x).3.若函数 f (x)x a 1,1 上是奇函数 , 则 f (x) 的解析式为 ________.2 在x bx 14.奇函数 f ( x) 在区间 [3,7] 上是增函数,在区间[3,6] 上的最大值为 8 ,最小值为,则2 f ( 6) f ( 3) __________ 。
新课标高中数学(必修1)第一章:函数的基本性质(基础训练)答案
科 目:数学适用年级: 高一第一章函数的基本性质(基础训练)测试题——答案一、选择题1. B 奇次项系数为0,20,2m m -==2. D 3(2)(2),212f f =--<-<- 3. A 奇函数关于原点对称,左右两边有相同的单调性4. A ()()()()F x f x f x F x -=--=-5. A 3y x =-在R 上递减,1y x=在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减,6. A ()(11)(11)()f x x x x x x x f x -=----+=+--=-为奇函数,而222,12,01(),2,102,1x x x x f x x x x x -≥⎧⎪-≤<⎪=⎨-≤<⎪⎪<-⎩为减函数。
二、填空题1. (](2,0)2,5-奇函数关于原点对称,补足左边的图象2.[2,)-+∞1,x y ≥-是x 的增函数,当1x =-时,min 2y =-3.该函数为增函数,自变量最小时,函数值最小; 自变量最大时,函数值最大4. [)0,+∞210,1,()3k k f x x -===-+ 5.1 (1)21x x ≥≤且,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线。
三、解答题1.解:当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数;当0k >,k y x=在(,0),(0,)-∞+∞是减函数, 当0k <,k y x=在(,0),(0,)-∞+∞是增函数; 当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a-+∞是增函数, 当0a <,2y ax bx c =++在(,]2b a -∞-是增函数,在[,)2b a-+∞是减函数。
高一数学函数的基本性质知识点及练习题(含答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设()g x的定义域分别是12,D D,那么在它们的公共定义域上:f x,()奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
人教版高中数学必修一《函数的基本性质》练习题含答案
(数学1必修)第一章(下) 函数的基本性质[基础训练A 组]一、选择题1.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数, 则m 的值是( )A . 1B . 2C . 3D . 42.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<-B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f3.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A .增函数且最小值是5-B .增函数且最大值是5-C .减函数且最大值是5-D .减函数且最小值是5-4.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --= 在R 上一定是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数。
5.下列函数中,在区间()0,1上是增函数的是( )A .x y =B .x y -=3C .xy 1= D .42+-=x y 6.函数)11()(+--=x x x x f 是( )A .是奇函数又是减函数B .是奇函数但不是减函数C .是减函数但不是奇函数D .不是奇函数也不是减函数二、填空题1.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时, )(x f 的图象如右图,则不等式()0f x <的解是2.函数2y x =+________________。
3.已知[0,1]x ∈,则函数y =的值域是 .4.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 . 5.下列四个命题(1)()f x =有意义; (2)函数是其定义域到值域的映射;(3)函数2()y x x N =∈的图象是一直线;(4)函数22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线, 其中正确的命题个数是____________。
高一数学函数的基本性质知识点及练习题(含答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高一数学------函数的基本性质
一、典型选择题
1.在区间上为增函数的是()
A. B. C. D.
(考点:基本初等函数单调性)
2.函数是单调函数时,的取值范围() A. B.
C . D.
(考点:二次函数单调性)
3.如果偶函数在具有最大值,那么该函数在有()
A.最大值 B.最小值 C .没有最大值 D.没有最小值
(考点:函数最值)
4.函数,是()
A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关
(考点:函数奇偶性)
5.函数在和都是增函数,若,且那么()
A. B. C. D.无法确定
(考点:抽象函数单调性)
6.函数在区间是增函数,则的递增区间是()
A. B. C. D.
(考点:复合函数单调性)
7.函数在实数集上是增函数,则()
A.B.C. D.
(考点:函数单调性)
8.定义在R上的偶函数,满足,且在区间上为递增,则()
A. B.
C.D.
(考点:函数奇偶、单调性综合)
9.已知在实数集上是减函数,若,则下列正确的是()
A. B.
C. D.
(考点:抽象函数单调性)
二、典型填空题
1.函数在R上为奇函数,且,则当, .
(考点:利用函数奇偶性求解析式)
2.函数,单调递减区间为,最大值和最小值的情况为 .
(考点:函数单调性,最值)
三、典型解答题
1.(12分)已知,求函数得单调递减区间.
(考点:复合函数单调区间求法)
2.(12分)已知,,求.
(考点:函数奇偶性,数学整体代换的思想)
3.(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。
生产台的收入函数为(单位元),其成本函数为
(单位元),利润的等于收入与成本之差.
①求出利润函数及其边际利润函数;
②求出的利润函数及其边际利润函数是否具有相同的最大值;
③你认为本题中边际利润函数最大值的实际意义.
(考点:函数解析式,二次函数最值)
4.(14分)已知函数,且,,试问,是否存在实数,使得在上为减函数,并且在上为增函数.
(考点:复合函数解析式,单调性定义法)
参考答案
一、BAABDBAAD
二、1.; 2.和,;
三、3.解:函数,,
故函数的单调递减区间为.
4.解:已知中为奇函数,即=中,也即,
,得,.
5.解:.
;
,故当62或63时,74120(元)。
因为为减函数,当时有最大值2440。
故不具有相等的最大值.
边际利润函数区最大值时,说明生产第二台机器与生产第一台的利润差最大.
6.解:.
由题设当时,
,,
则当时,
,,
则故.。