小学奥数合辑(学生用书)-5-1-2-1加减法数字谜学生版

合集下载

小学奥数:5-1-1-2 算式谜(二).学生版

小学奥数:5-1-1-2 算式谜(二).学生版

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数; 偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.知识点拨教学目标5-1-1-2.算式谜(二)模块一、填横式数字谜【例1】将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是.【例2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:==7÷--□□□□□□□□【例3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:==÷÷÷□□□□□□□□□模块二、填横式数字谜综合【例4】将1~9分别填入下面算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每个算式都成立,其中1,2,5已填出.例题精讲【例 5】 下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【例 6】 是由1~9这九个数字组成的算式,请将这些数字填入空格,使算式成立.==⨯⨯+⎧⎨÷÷⎩□□□□□□□□□【例 7】 将1~8这八个数字分别填入下面算式的□中9⨯=⎧⎨⨯+=⎩□□□□□□□□,使每个算式都成立.【例 8】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.则=_________+++++===+dcba+++++===+ 1287546213+===+++++【例 9】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.那么图中a ,b ,c ,d 四个数的乘积为多少?。

五年级奥数专题 数字谜(学生版)

五年级奥数专题 数字谜(学生版)

学科培优数学数字谜学生姓名授课日期教师姓名授课时长知识定位什么是数字谜?数字谜,一般是指那些含有未知数字或未知运算符号的算式。

这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则、数的性质(和差积商的位数,数的整除性、奇偶性、尾数规律等)来进行正确的推理、判断。

重难点:1.横式迷问题2.竖式迷题中的除法式迷3.试验法在解决数字谜问题的应用考点: 1.复杂的横式迷题2.复杂的竖式谜题3.枚举和筛选相结合的方法(试验法)解决数字谜题知识梳理如何解决数字谜题?解数字谜,一般是从某个数的首位或末位数字上寻找突破口。

推理时应注意:(1)数字谜中的文字、字母或其它符号,只取0~9中的某个数字;(2)要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;(3)必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;(4)数字谜解出之后,最好验算一遍。

横式的补填空格和破译字母问题中,解题的基本方法有尾数分析,分情况试算,数值估算,以及因数分解等。

同学们在解题时要灵活应用。

例题精讲【试题来源】【题目】在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。

那么所填的3个数字之和是多少?□,□8,□97【试题来源】【题目】在下列各等式的方框中填入恰当的数字,使等式成立,并且算式中的数字关于等号左右对称:(1)12×23□=□32×21, (2)12×46□=□64×21,(3)□8×891=198×8□, (4)24×2□1=1□2×42, (5)□3×6528=8256×3□。

【试题来源】【题目】在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□, (2)7□□8÷37=□1□,(3)3□□3÷2□=□17, (4)8□□□÷58=□□6。

5-1-2-1 加减法数字谜.教师版

5-1-2-1 加减法数字谜.教师版

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?例题精讲知识点拨教学目标5-1-2-1.加减法数字谜0191杯华24+【考点】加法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第1题【解析】 由0+“杯”=4,知“杯”代表4(不进位加法);再由191+“华”=200,知“华”代表9.因此,“华杯”代表的两位数是94.【答案】94【例 2】 下面的算式里,四个小纸片各盖住了一个数字。

被盖住的四个数字的总和是多少?1+49【考点】加法数字谜 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题【解析】 149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。

于是,四个数字的总和是14+9=23。

【答案】23【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。

问:被加数至少是多少?【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】第四届,华杯赛,初赛,第2题【解析】 从“被加数的数字和是和的数字和的三倍”这句话,可以推断出两点:①被加数可以被3整除。

五年级奥数专题 数字谜初步(学生版)

五年级奥数专题 数字谜初步(学生版)

学科培优 数学 “数字谜初步” 学生姓名授课日期 教师姓名授课时长 知识定位 数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题。

知识梳理数字谜加减法(1)个位数字分析法(如图)加法各位数规律;减法个位数规律;乘法个位数规律;(2)加减法中的进位与错位(3)奇偶性分析法数字谜乘除法(1)解题方法:数字乘法个位数字的规律--最大值最小值的考量--加减法进位规律--合数分解质因数性质--奇偶数性质规律--余数性质数阵图1、从整体和局部两种方向入手,单和与总和2、区分数阵图中的普通点(或方格),和关键点(方格)3、在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些 关键点与相关点的数量关系,得到关键点上所填数的范围4、运用已经得到的信息进行尝试(试数)429+7例题精讲 【试题来源】 【题目】有一个五位数,在某一位数字后加上一个小数点,得到一个小数,再把这个小数和原来的五位数相加,得数十79358.73,求这个五位数? 【试题来源】 【题目】希1+望1+杯1=1,不同的汉字表示不同的自然数,则“希+望+杯”=【试题来源】【题目】在每个方框内填入一个数字,要求所填数字都是质数,并使竖式成立【试题来源】【题目】迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字。

那么“迎+春+杯+好”之和等于多少?【试题来源】【题目】由3个不同数字能组成6个互异的三位数,这6个三位数的和是2886.求所有这样的6个三位数中最小的三位数.【试题来源】【题目】下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是 .x7【试题来源】【题目】下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是.【试题来源】【题目】下面的除法算式(1)是一个小数的除法竖式,其中所注明的两个字母要求:A<B,那么满足这个竖式的除数与商的和是.【试题来源】【题目】在下面的算式中,只有四个4是已知的,则被除数为【试题来源】【题目】把1,2,3,…,13这13个数分别填在如图所示的3个圆圈内,使得同一个圆圈内任意两个数相减,所得的差不在这个圆圈内.现在已经把1,4,7填在第一个圆圈内,3填在第三个圆圈内,请将其余9个数填好.【试题来源】 【题目】将I,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍,那么最小的和是多少?【试题来源】【题目】红、黄、蓝和白色卡片各一张,每张上写有一个数字.小明将这4张卡片如图7-l 放置,使它们构成一个四位数,并计算这个四位数与它的数字之和的10倍的差.结果小明发现,无论白色卡片上是什么数字,计算结果都是1998.问红、黄、蓝3张卡片上各是什么数字?红黄 白 蓝【试题来源】【题目】请补全下图这个残缺的除法竖式.问这个除法算式的商数是多少?31 4 7 2 11 125 6 8 910 1331 4 7习题演练【试题来源】【题目】ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【试题来源】【题目】如图,4个小三角形的顶点处有6个圆圈。

小学奥数5-1-2-2 乘除法数字谜(一).专项练习及答案解析

小学奥数5-1-2-2 乘除法数字谜(一).专项练习及答案解析

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷ 数字谜解出之后,最好验算一遍.例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【考点】乘法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第2题【解析】 乘积是两位数并且是5的倍数,因而最大是95.95÷5=19,所以题中的算式实际上是59915×所以,所填四个数字之和便是1+9+9+5=24【答案】24【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【考点】乘法数字谜 【难度】2星 【题型】填空【关键词】走美杯,四年级,初赛,第12题,五年级,初赛,第11题【解析】 由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,如果“美”为2,根据“美”ד学”的个位数为“妙”,那么“妙”为偶数,即为4,推出“学”为7,又由 “美”+“学”=“数”,可知“数”为9,所以=美妙数学2497。

小学奥数5-1-2-5 最值的数字谜(二).专项练习及答案解析

小学奥数5-1-2-5 最值的数字谜(二).专项练习及答案解析

1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二)【考点】混合计算中的数字谜【难度】2星【题型】填空【关键词】希望杯,六年级,初赛,第3题,6分【解析】为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:1 12345203 -÷+⨯=.【答案】1 203【例2】将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。

1111123456□□□□【考点】混合计算中的数字谜【难度】3星【题型】填空【关键词】华杯赛,初赛,第9题【解析】题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,,,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.ABCC AB∙∙=∙∙,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例 6】 已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed =⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题 【难度】3星 【题型】填空 【关键词】迎春杯,五年级,初赛,第7题 【解析】 根据题意,45abcba deed =,则ab c b a 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a ++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。

小学奥数5-1-1-2 算式谜(二).专项练习-精品

小学奥数5-1-1-2 算式谜(二).专项练习-精品

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数; 偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.例题精讲知识点拨教学目标5-1-1-2.算式谜(二)模块一、填横式数字谜【例1】将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是.【例2】将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立:==7÷--□□□□□□□□【例3】1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:==÷÷÷□□□□□□□□□模块二、填横式数字谜综合【例4】将1~9分别填入下面算式的中512⨯=⎧⎪⎨+=+⎪⎩□□□□□□,使每个算式都成立,其中1,2,5已填出.【例 5】 下题是由1~9这九个数字组成的算式,其中有一个数字已经知道,请将其余的数字填入空格,使算式成立:=5=⨯⎧⎨÷⨯⎩□□□□□□□□【例 6】 是由1~9这九个数字组成的算式,请将这些数字填入空格,使算式成立.==⨯⨯+⎧⎨÷÷⎩□□□□□□□□□【例 7】 将1~8这八个数字分别填入下面算式的□中9⨯=⎧⎨⨯+=⎩□□□□□□□□,使每个算式都成立.【例 8】 将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.则=_________+++++===+ dcba+++++===+ 1287546213+===+++++【例9】将1,2,3,4,5,6,7,8这八个数字分别填入右图的八个○中,使得图中的六个等式都成立.那么图中a,b,c,d四个数的乘积为多少?a+b=+++cd+=+=【例10】请将1~12这12个自然数分别填入到右图的方框中,每个数只出现1次,使得每个等式都成立.那么乘积A B C D⨯⨯⨯=____________()28||||||126+÷=+-÷--=----⨯=-+÷+÷=模块三、数字谜与逻辑推理【例11】题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C处填的数各是多少?【例12】自然数M N满足:.410-=-=-NNMM则=+NM()【例13】用下图的3张卡片,能组成29的倍数的数是【例14】如果一个至少两位的自然数N满足下列性质:在N的前面任意添加一些数字,使得得到的新数的数字和为N,但无论如何添加,这样得到的新数一定不能被N整除,则称N为“学而思数”。

(小学奥数)加减法数字谜

(小学奥数)加减法数字谜

5-1-2-1.加減法數字謎教學目標數字謎從形式上可以分為橫式數字謎與豎式數字謎,從運算法則上可以分為加減乘除四種形式的數字謎。

橫式與豎式亦可以互相轉換,本講中將主要介紹數字謎的一般解題技巧。

主要涉及小數、分數、循環小數的數字謎問題,因此,會需要利用數論的知識解決數字謎問題知識點撥一、數字迷加減法1.個位數字分析法2.加減法中的進位與退位3.奇偶性分析法二、數字謎問題解題技巧1.解題的突破口多在於豎式或橫式中的特殊之處,例如首位、個位以及位數的差異;2.要根據不同的情況逐步縮小範圍,並進行適當的估算;3.題目中涉及多個字母或漢字時,要注意用不同符號表示不同數字這一條件來排除若干可能性;4.注意結合進位及退位來考慮;模組一、加法數字謎【例 1】 “華杯賽”是為了紀念和學習我國傑出的數學家華羅庚教授而舉辦的全國性大型少年數學競賽.華羅庚教授生於1910年,現在用“華杯”代表一個兩位數.已知1910與“華杯”之和等於2004,那麼“華杯”代表的兩位數是多少?0191杯华2040+【考點】加法數字謎 【難度】1星 【題型】填空【關鍵字】華杯賽,初賽,第1題【解析】 由0+“杯”=4,知“杯”代表4(不進位加法);再由191+“華”=200,知“華”代表9.因此,“華杯”代表的兩位數是94.【答案】94【例 2】 下麵的算式裏,四個小紙片各蓋住了一個數字。

被蓋住的四個數字的總和是多少?1+49【考點】加法數字謎 【難度】2星 【題型】填空【關鍵字】華杯賽,初賽,第5題【解析】 149的個位數是9,說明兩個個位數相加沒有進位,因此,9是兩個個位數的和,14是兩個十位數的和。

於是,四個數字的總和是14+9=23。

【答案】23【例 3】 在下邊的算式中,被加數的數字和是和數的數字和的三倍。

問:被加數至少是多少?例題精講【考點】加法數字謎 【難度】3星 【題型】填空【關鍵字】第四屆,華杯賽,初賽,第2題【解析】 從“被加數的數字和是和的數字和的三倍”這句話,可以推斷出兩點:①被加數可以被3整除。

小学奥数5(1)2(5最值的数字谜(二).学生版)-

小学奥数5(1)2(5最值的数字谜(二).学生版)-

小学奥数5(1)2(5最值的数字谜(二).学生版)-
5-1-2-5。

最高谜题数(2)
1。

掌握最多谜题的技巧
2。

能够综合运用数论相关知识解决谜题
教学目标
知识点
常用分析方法
1。

数字拼图一般分为纵横字谜和垂直数字拼图。

十字数字谜往往是结合数论知识来考察的,有时
可以转换成竖式数字谜;
2。

垂直填字游戏通常有以下突破点:最后和第一个位置、进位和借位、一位数、位数差异等。

3。

填字游戏常用的分析方法有:单位数分析、高位数分析、位数估
计分析、进位错位分析、
分解素因子法、奇偶分析等。

4。

除了数值谜题中常用的分析方法外,比较方法通常是通过比较计算公式计算过程中的步骤来获得
的可能值,然后验证是否可以获得最大值。

5。

数字难题通常结合了数字的可分特征、质数和组合、分解质数因子、一位数、余数、小数和小数替换、
方程、估计、寻找规则等。

范例集中在
模块一,纵横字谜
[范例1]用四个运算符号填写下列公式□中?、?、?、?(每个符号只填一次),最大计算结果为
_ _ _ _ _ _。

1□2□3□4□5
1 11[例2]将+、-、×、>四个操作符号分别填入以下四个框中,使公式的值最大□□□□
23456
[例3]在等号左边的5个方框中填入1、3、5、7和9,在等号右边的4个方框中填入2、4、6和8,这样等式
成立,等号两边的计算结果都是自然数。

这个结果的最大值是. ??????。

小学奥数5-1-2-2 乘除法数字谜(一).专项练习及答案解析

小学奥数5-1-2-2 乘除法数字谜(一).专项练习及答案解析
因此这个乘法算式是53×72=3816,故这个算式的乘积是3816。
【答案】3816
【例 6】右面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字.美+妙+数+学+花+园=.
【考点】乘法数字谜【难度】3星【题型】填空
【关键词】走美杯,3年级,决赛,第5题,10分
【解析】从式中可以看出“花” “学”的乘积末位为零,故“花”与“学”之中必有一个为数字 或 ,当“学”是 时,由下面一列中的“学”、“ ”,“好”,知“好”为“ ”或“ ”,则“数”取 中的任何一个数字也不行,同样地“学”也不是 ,而“花”不能是 ,所以“花”为数字 ,则可以逆向计算出:美妙数学 .故“美” ,“妙” ,“数” “学” .再看下面的加法:“数” “好”且进 位,可知必有进位且“好” ,于是“真” ,所以再次逆推“园” .符合题意,假设成立,故,美 妙 数 学 花 园 .
②若 , 为偶数.从算式的千位看,由于 ,由于不能进位,所以7加几也不能等于1.所以时是无解的.
(2)当 时,从百位看, 的个位数字必是9,十位数字必是0,那么 .此时 .
【答案】301
【例 14】如图所示的乘法竖式中,“学而思杯”分别代表0~9中的一个数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么“学而思杯”代表的数字分别为________
【关键词】学而思杯,5年级,第13题
1【解析】 ,
【答案】 ,
【例 12】如图,请在右图每个方框中填入一个不是8的数字,使乘法竖式成立。
【考点】乘法数字谜【难度】4星【题型】填空
【关键词】走美杯,四年级,第11题
1【解析】
【答ቤተ መጻሕፍቲ ባይዱ】
【例 13】在下面的算式中: , 别代表0~9中的三个不同的数字,那么,数字 是.

【小学奥数题库系统】1-1-2-1小数加减法速算与巧算.学生版(可编辑修改word版)

【小学奥数题库系统】1-1-2-1小数加减法速算与巧算.学生版(可编辑修改word版)

小数加减法速算与巧算教学目标本讲知识点属于计算板块的部分,难度并不大。

要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。

知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b 各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c 各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c 各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)例题精讲模块一:分组凑整思想【例1】91.5 + 88.8 + 90.2 + 270.4 + 89.6 + 186.7 + 91.8【巩固】2006+200.6+20.06+2.006+994+99.4+9.94+0.994=【例2】计算【例3】计算56.43+12.96+13.57-4.33-8.96-5.67【巩固】3.17 + 7.48 - 2.38 + 0.53 - 3.48 - 1.62 + 5.3【例4】计算1 + 0.99 - 0.98 - 0.97 + 0.96 + 0.95 - 0.94 - 0.93 + + 0.04 + 0.03 - 0.02 - 0.01模块二、加补凑整思想【例5】同学们,你们有什么好办法又快又准的算出下面各题的答案?把你的好方法讲一讲!也当一次小老师!(1) 0.9 + 0.99 + 0.999 + 0.9999 + 0.99999(2) 1.996 +19.97 +199.8(3) 0.7 + 9.7 + 99.7 + + 999999999.7【巩固】请你认真计算下面两道题看谁算得最准确(1)9.996+29.98+169.9+3999.5(2)89+899+8999+89999+899999模块三、位值原理【例6】(123456789.987654321 + 234567891.198765432 + + 912345678.876543219) ÷ 9 【例7】124.68 + 324.68 + 524.68 + 724.68 + 924.68【巩固】325.24 + 425.24 + 625.24 + 925.24 + 525.24模块四、基准数思想【例8】计算0.9 + 0.99 + 0.999 + 0.9999 + 0.99999【巩固】1.996 + 19.97 + 199.8。

a小学数学奥赛5-1-2-2 乘除法数字谜(一).学生版

a小学数学奥赛5-1-2-2 乘除法数字谜(一).学生版

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【例 3】 北京有一家餐馆,店号“天然居”,里面有一副著名对联:客上天然居,居然天上客。

巧的很,这副对联恰好能构成一个乘法算式(见右上式)。

相同的汉字代表相同的数字,不同的汉字代表不同的数字。

“天然居”表示成三位数是_______。

例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)×客上天然居4居然天上客【例 4】下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是多少?【例 5】下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是?【例 6】右面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字.美+妙+数+学+花+园= .423805⨯美妙数学花园数学真美妙好好好美妙【例 7】在右边的乘法算式中,字母A、B和C分别代表一个不同的数字,每个空格代表一个非零数字.求A、B和C分别代表什么数字?941A B CA B C⨯【例 8】 在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.【例 9】 在图中的每个方框中填入一个适当的数字,使得乘法竖式成立。

小学奥数5-1-1-2 算式谜(二).专项练习及答案解析

小学奥数5-1-1-2 算式谜(二).专项练习及答案解析

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数. (2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质: 奇数+奇数=偶数; 奇数+偶数=奇数; 偶数+偶数=偶数.③整数的减法有以下性质: 奇数-奇数=偶数; 奇数-偶数=奇数; 偶数-奇数=奇数; 偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数; 奇数×偶数=偶数;偶数×偶数=偶数.例题精讲知识点拨教学目标5-1-1-2.算式谜(二)模块一、填横式数字谜【例 1】 将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是 .【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空 【关键词】迎春杯,高年级,初赛,3试题 【解析】 方法一:首先可以估算四位数的取值范围:四位数不大于()2007913428010+-⨯-=,不小于()2007198427638+-⨯-=.显然四位数的千位数字只能是7.再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8.若为6,由个位是8而能被4整除的数其十位数字是偶数,可知四位数只能为7986,而()7986241997+÷=,故只需利用剩下的数凑出10即可.剩下的数字是1,3,5,不能凑出10.所以四位数的个位数字不是6.四位数的个位数字是8时,由个位是0而能被4整除的数其十位数字是偶数,故四位数的十位数字是1、3、7或9.当四位数的十位数字是1时,四位数只可能是7918,而()7918241980+÷=,故只需利用剩下的数凑出27即可.剩下的数字是3,5,6,不能凑出27;当四位数的十位数字是3时,四位数只可能是7938,而()7938241985+÷=,故只需利用用剩下的数凑出22即可.剩下的数字是1,5,6,不能凑出22;当四位数的十位数字是5时,四位数只可能是7658或7958,若为7958,则由()7958241990+÷=,需利用剩下的数凑出17即可.剩下的数字是1,3,6,不能凑出17;若为7658,有()7658249312007+÷+-=;当四位数的十位数字是9时,四位数只可能是7698,而()7968241925+÷=,故只需利用剩下的数凑出82即可.剩下的数字是3,5,6,不能凑出82;故此题只有惟一答案:()7658249312007+÷+-=.算式中唯一的减数是1.方法二:根据弃九法,7□□□+2+4+□□+★被9整除,而(7□□□+2)÷4+□□-★也被9整除。

小学奥数教师版-5-1-2-2 乘除法数字谜(一)

小学奥数教师版-5-1-2-2 乘除法数字谜(一)



【考点】乘法数字谜 【难度】3 星 【题型】填空
【关键词】迎春杯,中年级,复试,第 8 题
【解析】这是一道数字谜问题.考察同学们的推理能力.首先列成竖式:
cba abc
a cbba
从 cba a ,及乘积为 acbba 看, c 1,所以 cba c 1ba 1 1ba . 1b a
⑴ 数字谜中的文字,字母或其它符号,只取 0 ~ 9 中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件; ⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.
例题精讲
模块一、乘法数字谜
【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?
知识点拨
1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式. 2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的
性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断. 3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意:
【例 10】如图,请在右图每个方框中填入一个数字,使乘法竖式成立。
×
2
0
0
7
【考点】乘法数字谜 【难度】3 星 【题型】填空 【关键词】走美杯,初赛,六年级,第 7 题
154
× 522 3 08
308 7 70
【解析】 8 0 3 8 8
【答案】
5-1-2-2.乘除法数字谜(一).题库
教师版
page 4 of 12
学而思杯
学而思杯
【考点】乘法数字谜 【难度】3 星 【题型】填空 【解析】首先从式子中可以看出“思” 0 ,另外第三个部分积的首位只能为 9,所以“学”只能为 3.由于 3 个

小学数学奥赛5-1-2-5 最值的数字谜(二).学生版

小学数学奥赛5-1-2-5 最值的数字谜(二).学生版

1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。

1111123456□□□□【例 3】 将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为 . ÷++=÷+例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二)【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【例5】0.2.0080.A BCC A B••=••,三位数ABC的最大值是多少?模块二、乘除法中的最值问题【例6】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【例7】在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。

小学奥数—乘除法数字谜(一)

小学奥数—乘除法数字谜(一)

5-1-2-2.乘除法数字谜(一)
教学目标
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突
1.数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.
模块一、乘法数字谜
是一个残缺的乘法竖式,其中
下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是?
,不同汉字代表不同数字.美。

小学奥数:5-1-2-1 加减法数字谜.学生版

小学奥数:5-1-2-1 加减法数字谜.学生版

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+【例 2】 下面的算式里,四个小纸片各盖住了一个数字。

被盖住的四个数字的总和是多少?1+49例题精讲知识点拨教学目标5-1-2-1.加减法数字谜【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。

问:被加数至少是多少?【例 4】 两个自然数,它们的和加上它们的积恰为34,这两个数中较大数为( ).【例 5】 下面的算式里,每个方框代表一个数字.问:这6个方框中的数字的总和是多少?1991+【例 6】 在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs =______s t v av t s t t t v t t +【巩固】 下面的字母各代表什么数字,算式才能成立?DD D +AC DEE B ECBA【巩固】 右面算式中每一个汉字代表一个数字,不同的汉字表示不同的数字.当它们各代表什么数字时算式成立?+啊好是真好是真好啊好【巩固】 下面算式中,相同汉字代表相同数字,不同汉字代表不同数字,求“数学真好玩”代表的数是几?+爱好真知数学更好数学真好玩【例 7】 下图是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字.已知BAD 不是3的倍数,GOOD 不是8的倍数,那么ABGD 代表的四位数是多少?B A DB A D G O O D +【例 8】 在下面的算式中,汉字“第、十、一、届、华、杯、赛’,代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛’’所代表的7个数字的和等于 .+届赛6一杯0十华02第【例 9】 在下边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出:+++ ☆=_______.+☆☆【例 10】 下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A +B +C +D +E +F +G = 。

小学奥数教程-乘除法数字谜(二) (62) 含答案)

小学奥数教程-乘除法数字谜(二)  (62) 含答案)
杯赛=999999÷7=142857 【答案】142857
【例 3】 右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问 A 和 E 各代表什么数字?
AB ×
EE E
C DE 3
EE E
【考点】与数论结合的数字谜之特殊数字 【难度】3 星 【题型】填空
【解析】由于被乘数的最高位数字与乘数相同,且乘积为 EEEEEE ,是重复数字根据重复数字的特点拆分,
或 74,判断出“杯”是 7 或 4。 若 杯=7,则好=9,999/37=27,所以,迎+春+杯+好=3+2+7+9=21 若 杯=4,则好=6,666/74=9,不是两位数,不符合题意 。迎+春+杯+好=3+2+7+9=21。 【答案】迎+春+杯+好=3+2+7+9=21
【例 7】 在下面的算式中,每一个汉字代表一个数字,不同的汉字表示不同的数字,当“开放的中国盼奥运” 代表什么数时,算式成立?盼盼盼盼盼盼盼盼盼÷□ =开放的中国盼奥运
【题型】填空
【例 2】 右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数, 其中的六位数是______ 。
5-1-2-3.乘除法数字谜(二).题库
教师版
page 1 of 6
小学 希 望杯 赛
×

99 9 9 9 9
【考点】与数论结合的数字谜之特殊数字 【难度】3 星 【题型】填空 【关键词】希望杯,4 年级,初赛,20 题 【解析】赛×赛的个位是 9,赛=3 或 7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望

小学五年级奥数讲义(学生版)30讲全

小学五年级奥数讲义(学生版)30讲全

五年级奥数第1讲数字迷〔一〕第16讲巧算24第2讲数字谜<二>第17讲位置原如此第3讲定义新运算<一>第18讲最大最小第4讲定义新运算<二>第19讲图形的分割与拼接第5讲数的整除性<一>第20讲多边形的面积第6讲数的整除性<二>第21讲用等量代换求面积第7讲奇偶性〔一〕第22 用割补法求面积第8讲奇偶性〔二〕第23讲列方程解应用题第9讲奇偶性〔三〕第24讲行程问题〔一〕第10讲质数与合数第25讲行程问题〔二〕第11讲分解质因数第26讲行程问题〔三〕第12讲最大公约数与最小公倍数〔一〕第27讲逻辑问题〔一〕第13讲最大公约数与最小公倍数〔二〕第28讲逻辑问题〔二〕第14讲余数问题第29讲抽屉原理<一>第15讲孙子问题与逐步约束法第30讲抽屉原理<二>第1讲数字谜〔一〕例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立〔每个运算符号只准使用一次〕:〔5○13○7〕○〔17○9〕=12.例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568. 例3 在443后面添上一个三位数,使得到的六位数能被573整除.例4 六位数33□□44是89的倍数,求这个六位数.例5 在左下方的加法竖式中,不同的字母代表不同的数字,一样的字母代表一样的数字,请你用适当的数字代替字母,使加法竖式成立.FORTYTEN+ TENSIXTY例6 在左下方的减法算式中,每个字母代表一个数字,不同的字母代表不同的数字.请你填上适当的数字,使竖式成立.练习11.在一个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数.2.在如下竖式中,不同的字母代表不同的数字,一样的字母代表一样的数字.请你用适当的数字代替字母,使竖式成立:〔1〕 A B <2> A B A B+ B C A - A C AA B C B A A C3.在下面的算式中填上括号,使得计算结果最大:1÷2÷3÷4÷5÷6÷7÷8÷9.4.在下面的算式中填上假如干个〔〕,使得等式成立:1÷2÷3÷4÷5÷6÷7÷8÷9=2.8.5.将1~9分别填入下式的□中,使等式成立:□□×□□=□□×□□□=3634.6.六位数391□□□是789的倍数,求这个六位数.7.六位数7□□888是83的倍数,求这个六位数.第2讲数字谜〔二〕这一讲主要讲数字谜的代数解法与小数的除法竖式问题.例1 在下面的算式中,不同的字母代表不同的数字,一样的字母代表相例2 在□内填入适当的数字,使左下方的乘法竖式成立.□□□× 8 1□□□□□□□□□□□例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立.□8 □□□□>□□□□□□□□□□□□□□□□□□□□□□□□例4 在□内填入适当数字,使小数除法竖式成立.例4图例5图例5 一个五位数被一个一位数除得到右上图竖式〔1〕,这个五位数被另一个一位数除得到右上图的竖式〔2〕,求这个五位数.练习21.下面各算式中,一样的字母代表一样的数字,不同的字母代表不同的数字,求出abcd与abcxyz<1>1abcd×3=abcd5 <2>7×abcxyz=6×xyzabc2.用代数方法求解如下竖式:3.在□内填入适当的数字,使如下小数除法竖式成立:□ 8 □ 7 □.□□□□□□□>□□□□□□□.□> □□□.□□> □.□□□□□□□□□□□□□ 8 □□□□□□□□□□□□□□□□ 0 0□□第3讲定义新运算〔一〕例1 对于任意数a,b,定义运算"*〞:a*b=a×b-a-b.求12*4的值.例2 a△b表示a的3倍减去b的1,例如根据以上的规定,求10△6的值23,x>=2,求x的值.例6 对于任意自然数,定义:n!=1×2×…×n.例如 4!=1×2×3×4.那么1!+2!+3!+…+100!的个位数字是几?例7 如果m,n表示两个数,那么规定:m¤n=4n-〔m+n〕÷2. 求3¤〔4¤6〕¤12的值.练习31.对于任意的两个数a和b,规定a*b=3×a-b÷3.求8*9的值.2.a b表示a除以3的余数再乘以b,求134的值.3.a b表示〔a-b〕÷〔a+b〕,试计算:〔53〕〔106〕.4.规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值.5.假定m◇n表示m的3倍减去n的2倍,即m◇n=3m-2n.〔2〕x◇〔4◇1〕=7,求x的值.7.对于任意的两个数P, Q,规定 P☆Q=〔P×Q〕÷4.例如:2☆8=〔2×8〕÷4.x☆〔8☆5〕=10,求x的值.8.定义: a△b=ab-3b,a b=4a-b/a.计算:〔4△3〕△〔2b〕.9.: 23=2×3×4,45=4×5×6×7×8,……求〔44〕÷〔33〕的值.第4讲定义新运算〔二〕例1 a※b=〔a+b〕-〔a-b〕,求9※2的值.例2 定义运算:a⊙b=3a+5ab+kb,其中a,b为任意两个数,k为常数.比如:2⊙7=3×2+5×2×7+7k.〔1〕5⊙2=73.问:8⊙5与5⊙8的值相等吗?〔2〕当k取什么值时,对于任何不同的数a,b,都有a⊙b=b⊙a,即新运算"⊙〞符合交换律?例3 对两个自然数a和b,它们的最小公倍数与最大公约数的差,定义为a☆b,即a☆b=[a,b]-〔a,b〕.比如,10和14的最小公倍数是70,最大公约数是2,那么10☆14=70-2=68.〔1〕求12☆21的值;〔2〕6☆x=27,求x的值.例4 a表示顺时针旋转90°,b表示顺时针旋转180°,c表示逆时针旋转90°,d表示不转.定义运算"◎〞表示"接着做〞.求:a◎b;b◎c;c◎a.例5 对任意的数a,b,定义:f〔a〕=2a+1, g〔b〕=b×b.〔1〕求f〔5〕-g〔3〕的值;〔2〕求f〔g〔2〕〕+g〔f〔2〕〕的值;〔3〕f〔x+1〕=21,求x的值.练习42.定义两种运算"※〞和"△〞如下:a※b表示a,b两数中较小的数的3倍, a△b表示a,b两数中较大的数的2.5倍. 比如:4※5=4×3=12,4△5=5×2.5=12.5.计算:[<0.6※0.5>+<0.3△0.8>]÷[<1.2※0.7>-<0.64△0.2>].4.设m,n是任意的自然数,A是常数,定义运算m⊙n=〔A×m-n〕÷4,并且2⊙3=0.75.试确定常数A,并计算:〔5⊙7〕×〔2⊙2〕÷〔3⊙2〕.5.用a,b,c表示一个等边三角形围绕它的中心在同一平面内所作的旋转运动:a表示顺时针旋转240°,b表示顺时针旋转120°,c表示不旋转. 运算"∨〞表示"接着做〞.试以a,b,c为运算对象做运算表.6.对任意两个不同的自然数a和b,较大的数除以较小的数,余数记为a b.比如73=1,529=4,420=0.〔1〕计算:19982000,〔519〕19,5〔195〕;〔2〕11x=4,x 小于20,求x 的值.7.对于任意的自然数a,b,定义:f 〔a 〕=a ×a-1,g 〔b 〕=b ÷2+1.〔1〕求f 〔g 〔6〕〕-g 〔f 〔3〕〕的值;〔2〕f 〔g 〔x 〕〕=8,求x 的值.第5讲 数的整除性〔一〕1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷如此称a 能被b 整除或者b 能整除a ,记做b a |,否如此称为a 不能被b 整除或者b 不能整除a ,记做b | a .2、性质〔1〕如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除.〔2〕如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除. 〔3〕如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除.〔4〕如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个. 〔5〕几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除.整除的数的特征1、 被2整除特征:个位上是0,2,4,6,82、 被5整除特征:个位上是5,03、 能被3或9整除的数的特征是:各个数位的数字之和是3或9的倍数4、被4、25整除的数的特征:一个数的末2位能被4、25整除5、被8、125整除的数的特征:一个数的末3位能被8、125整除6、被7整除的数的特征 :假如一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,如此原数能被7整除.如果数字仍然太大不能直接观察出来,就重复此过程.7、能被11整除的数的特征: 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数<包括0>,那么,原来这个数就一定能被11整除. 例如:判断491678能不能被11整除. —→奇位数字的和9+6+8=23 —→偶位数位的和4+1+7=12 23-12=11 因此,491678能被11整除.这种方法叫"奇偶位差法〞.8、能被13整除的数的特征:把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,如此原数能被13整除.如果数字仍然太大不能直接观察出来,就重复此过程.如:判断1284322能不能被13整除. 128432+2×4=128440 12844+0×4=128441284+4×4=13001300÷13=100 所以,1284322能被13整除.9、被7、11、13整除特征:末三位与末三位之前的数之差〔大数-小数〕能被7、11、13整除,如果数字仍然太大不能直接观察出来,就重复此过程.例如:判断556584能不能被7整除 末三位584 末三位之前的数556,584-556=28 28能被7整除,所以556584能被7整除10、能被17整除的数的特征: 把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍, 如果差是17的倍数,如此原数能被17整除.如果数字仍然太大不能直接观察出来,就重复此过程.11、能被19整除的数的特征:把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍, 如果和是19的倍数,如此原数能被19整除.如果数字仍然太大不能直接观察出来,就重复此过程 例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.例2 由2000个1组成的数111…11能否被41和271这两个质数整除?例3 有四个数:76550,76551,76552,76554.能不能从中找出两个数,使它们的乘积能被12整除? 例4 在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?例5 能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?练习51.4205和2813都是29的倍数,1392和7018是不是29的倍数?2.如果两个数的和是64,这两个数的积可以整除4875,那么这两个数的差是多少?3.173□是个四位数.数学教师说:"我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除.〞问:数学教师先后填入的3个数字之和是多少4、用1—6六个数字组成一个六位数abcdef期中不同的字母代表1-6中不同的数字.要求ab能被2整除,abc能被3整除,abcd能被4整除,abcde是5的倍数,abcdef是6的倍数.这样的六位数有几个?各是多少?5.红光小学五年级二班期末数学考试平均分是90分,总分A95B,这个班有多少名学生?6.能不能将从1到9的各数排成一行,使得任意相邻的两个数之和都能被3整除?第6讲数的整除性〔二〕特殊的数——1001.因为1001=7×11×13,所以但凡1001的整数倍的数都能被7,11和13整除. 例2 判断306371能否被7整除?能否被13整除?例3 10□8971能被13整除,求□中的数.例4说明12位数abbaabbaabba一定是3、7、13的倍数.例5 如果41位数55……5□99……9能被7整除,那么中间方格内的数字是几?︸︸20个 20个判断一个数能否被27或37整除的方法:对于任何一个自然数,从个位开始,每三位为一节将其分成假如干节,然后将每一节上的数连加,如果所得的和能被27〔或37〕整除,那么这个数一定能被27〔或37〕整除;否如此,这个数就不能被27〔或37〕整除.例6 判断如下各数能否被27或37整除:〔1〕2673135;〔2〕8990615496.判断一个数能否被个位是9的数整除的方法:为了表示方便,将个位是9的数记为 k9〔= 10k+9〕,其中k为自然数.对于任意一个自然数,去掉这个数的个位数后,再加上个位数的〔k+1〕倍.连续进展这一变换.如果最终所得的结果等于k9,那么这个数能被k9整除;否如此,这个数就不能被k9整除.例7 〔1〕判断18937能否被29整除;〔2〕判断296416与37289能否被59整除.练习61.如下各数哪些能被7整除?哪些能被13整除?88205, 167128, 250894, 396500, 675696, 796842, 805532, 75778885.2.六位数175□62是13的倍数.□中的数字是几? 3、七位数132A679是7的倍数,求A?4、六位数ababab能否被7和13整除?5、12位数aabbaabbaabb能否被7和13整除?6、33……3□88……8能被13整除,求中间□中的数?20个 20个7.九位数8765□4321能被21整除,求中间□中的数.8.在如下各数中,哪些能被27整除?哪些能被37整除?1861026, 1884924, 2175683, 2560437,11159126,131313555,266117778.9.在如下各数中,哪些能被19整除?哪些能被79整除?55119, 55537, 62899, 71258, 186637,872231,5381717.第7讲奇偶性〔一〕整数按照能不能被2整除,可以分为两类:〔1〕能被2整除的自然数叫偶数,例如0, 2, 4, 6, 8, 10, 12, 14, 16,…〔2〕不能被2整除的自然数叫奇数,例如1,3,5,7,9,11,13,15,17,…整数由小到大排列,奇、偶数是交替出现的.相邻两个整数大小相差1,所以肯定是一奇一偶.因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数.每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性.奇偶数有如下一些重要性质:〔1〕两个奇偶性一样的数的和〔或差〕一定是偶数;两个奇偶性不同的数的和〔或差〕一定是奇数.反过来,两个数的和〔或差〕是偶数,这两个数奇偶性一样;两个数的和〔或差〕是奇数,这两个数肯定是一奇一偶.〔2〕奇数个奇数的和〔或差〕是奇数;偶数个奇数的和〔或差〕是偶数.任意多个偶数的和〔或差〕是偶数.〔3〕两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数.〔4〕假如干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数.反过来,如果假如干个数的积是偶数,那么因数中至少有一个是偶数;如果假如干个数的积是奇数,那么所有的因数都是奇数.〔5〕在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数.奇数肯定不能被偶数整除.〔6〕偶数的平方能被4整除;奇数的平方除以4的余数是1.因为〔2n〕2=4n2=4×n2,所以〔2n〕2能被4整除;因为〔2n+1〕2=4n2+4n+1=4×〔n2+n〕+1,所以〔2n+1〕2除以4余1.〔7〕相邻两个自然数的乘积必是偶数,其和必是奇数.〔8〕如果一个整数有奇数个约数〔包括1和这个数本身〕,那么这个数一定是平方数;如果一个整数有偶数个约数,那么这个数一定不是平方数.整数的奇偶性能解决许多与奇偶性有关的问题.有些问题外表看来似乎与奇偶性一点关系也没有,例如染色问题、覆盖问题、棋类问题等,但只要想方法编上,成为整数问题,便可利用整数的奇偶性加以解决.例1下式的和是奇数还是偶数?1+2+3+4+…+1997+1998.例2 能否在下式的□中填上"+〞或"-〞,使得等式成立?1□2□3□4□5□6□7□8□9=36.例3 任意给出一个五位数,将组成这个五位数的5个数码的顺序任意改变,得到一个新的五位数.那么,这两个五位数的和能不能等于99999?例4 在一次校友聚会上,久别重逢的老同学互相频频握手.请问:握过奇数次手的人数是奇数还是偶数?请说明理由.例5 五〔2〕班局部学生参加镇里举办的数学竞赛,每X试卷有50道试题.评分标准是:答对一道给3分,不答的题,每道给1分,答错一道扣1分.试问:这局部学生得分的总和能不能确定是奇数还是偶数?练习71.能否从四个3、三个5、两个7中选出5个数,使这5个数的和等于22?2.任意交换一个三位数的数字,得一个新的三位数,一位同学将原三位数与新的三位数相加,和是999.这位同学的计算有没有错?3.甲、乙两人做游戏.任意指定七个整数〔允许有一样数〕,甲将这七个整数以任意的顺序填在如下图第一行的方格内,乙将这七个整数以任意的顺序填在图中的第二行方格里,然后计算出所有同一列的两个数的差〔大数减小数〕,再将这七个差相乘.游戏规如此是:假如积是偶数,如此甲胜;假如积是奇数,如此乙胜.请说明谁将获胜.4.某班学生毕业后相约彼此通信,每两人间的通信量相等,即甲给乙写几封信,乙也要给甲写几封信.问:写了奇数封信的毕业生人数是奇数还是偶数?5.A市举办五年级小学生"春晖杯〞数学竞赛,竞赛题30道,记分方法是:底分15分,每答对一道加5分,不答的题,每道加1分,答错一道扣1分.如果有333名学生参赛,那么他们的总得分是奇数还是偶数?6.把如下图中的圆圈任意涂上红色或蓝色.是否有可能使得在同一条直线上的红圈数都是奇数?试讲出理由.7.红星影院有1999个座位,上、下午各放映一场电影.有两所学校各有1999名学生包场看这两场电影,那么一定有这样的座位,上、下午在这个座位上坐的是两所不同学校的学生,为什么?第8讲奇偶性〔二〕例1用0~9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少?例2 7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子.能否经过假如干次翻转,使得7只杯子全部杯口朝下?例3 有m〔m≥2〕只杯子全部口朝下放在桌子上,每次翻转其中的〔m-1〕只杯子.经过假如干次翻转,能使杯口全部朝上吗?例4 一本论文集编入15篇文章,这些文章排版后的页数分别是1,2,3,…,15页.如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一面是奇数页码的最多有几篇?例5 有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子.阿花每次从大盒内随意摸出两枚棋子,假如摸出的两枚棋子同色,如此从小盒内取一枚黑棋子放入大盒内;假如摸出的两枚棋子异色,如此把其中白棋子放回大盒内.问:从大盒内摸了1999次棋子后,大盒内还剩几枚棋子?它们都是什么颜色?例6 一串数排成一行:1,1,2,3,5,8,13,21,34,55,…到这串数的第1000个数为止,共有多少个偶数?练习81.在11,111,1111,11111,…这些数中,任何一个数都不会是某一个自然数的平方.这样说对吗?2.一本书由17个故事组成,各个故事的篇幅分别是1,2,3,…,17页.这17个故事有各种编排法,但无论怎样编排,故事正文都从第1页开始,以后每一个故事都从新一页码开始.如果要求安排在奇数页码开始的故事尽量少,那么最少有多少个故事是从奇数页码开始的?3.桌子上放着6只杯子,其中3只杯口朝上,3只杯口朝下.如果每次翻转5只杯子,那么至少翻转多少次,才能使6只杯子都杯口朝上?4.70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边的两个数的和,这一行数的最左边的几个数是这样的:0,1,3,8,21,…问:最右边的一个数是奇数还是偶数?5.学校组织运动会,小明领回自己的运动员后,小玲问他:"今天发放的运动员加起来是奇数还是偶数?〞小明说:"除开我的,把今天发的其它加起来,再减去我的,恰好是100.〞今天发放的运动员加起来,到底是奇数还是偶数?6.在黑板上写出三个整数,然后擦去一个换成所剩两数之和,这样继续操作下去,最后得到88,66,99.问:原来写的三个整数能否是1,3,5?7.将888件礼品分给假如干个小朋友.问:分到奇数件礼品的小朋友是奇数还是偶数?第9讲奇偶性〔三〕例1 在7×7的正方形的方格表中,以左上角与右下角所连对角线为轴对称地放置棋子,要求每个方格中放置不多于1枚棋子,且每行正好放3枚棋子,如此在这条对角线上的格子里至少放有一枚棋子,这是为什么?例2 对于左下表,每次使其中的任意两个数减去或加上同一个数,能否经过假如干次后〔各次减去或加上的数可以不同〕,变为右下表?为什么?例3 如下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?例4 如下图是由14个大小一样的方格组成的图形.能不能剪裁成7个由相邻两方格组成的长方形?例5 在右图的每个○中填入一个自然数〔可以一样〕,使得任意两个相邻的○中的数字之差〔大数减小数〕恰好等于它们之间所标的数字.能否办到?为什么?例6 下页上图是半X中国象棋盘,棋盘上已放有一只马.众所周知,马是走"日〞字的.请问:这只马能否不重复地走遍这半X棋盘上的每一个点,然后回到出发点?练习91.教室里有5排椅子,每排5X,每X椅子上坐一个学生.一周后,每个学生都必须和他相邻〔前、后、左、右〕的某一同学交换座位.问:能不能换成?为什么?2.房间里有5盏灯,全部关着.每次拉两盏灯的开关,这样做假如干次后,有没有可能使5盏灯全部是亮的?3.左如下图是由40个小正方形组成的图形,能否将它剪裁成20个一样的长方形?4.一个正方形果园里种有48棵果树,加上右下角的一间小屋,整齐地排列成七行七列〔见右上图〕.守园人从小屋出发经过每一棵树,不重复也不遗漏〔不许斜走〕,最后又回到小屋.可以做到吗?5.红光小学五年级一次乒乓球赛,共有男女学生17人报名参加.为节省时间不打循环赛,而采取以下方式:每人只打5场比赛,每两人之间用抽签的方法决定只打一场或不赛.然后根据每人得分决定出前5名.这种比赛方式是否可行?6.如如下图所示,将1~12顺次排成一圈.如果报出一个数a〔在1~12之间〕,那么就从数a的位置顺时针走a个数的位置.例如a=3,就从3的位置顺时针走3个数的位置到达6的位置;a=11,就从11的位置顺时针走11个数的位置到达10的位置.问:a是多少时,可以走到7的位置?第10讲质数与合数自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1.第二类:只能被两个不同的自然数整除的自然数.因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除.这类自然数叫质数〔或素数〕.例如,2,3,5,7,…第三类:能被两个以上的自然数整除的自然数.这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除.这类自然数叫合数.例如,4,6,8,9,15,…上面的分类方法将自然数分为质数、合数和1,1既不是质数也不是合数.例1 1~100这100个自然数中有哪些是质数?例2 判断269,437两个数是合数还是质数.例3 判断数1111112111111是质数还是合数?例4 判定298+1和298+3是质数还是合数?例5 A是质数,〔A+10〕和〔A+14〕也是质数,求质数A.练习101.现有1,3,5,7四个数字.〔1〕用它们可以组成哪些两位数的质数〔数字可以重复使用〕?〔2〕用它们可以组成哪些各位数字不一样的三位质数?2.a,b,c都是质数,a>b>c,且a×b+c=88,求a,b,c.3.A是一个质数,而且A+6,A+8,A+12,A+14都是质数.试求出所有满足要求的质数A.5.试说明:两个以上的连续自然数之和必是合数.6.判断266+388是不是质数.7.把一个一位数的质数a写在另一个两位数的质数b后边,得到一个三位数,这个三位数是a的87倍,求a和b.第11讲分解质因数自然数中任何一个合数都可以表示成假如干个质因数乘积的形式,如果不考虑因数的顺序,那么这个表示形式是唯一的.把合数表示为质因数乘积的形式叫做分解质因数.例如,60=22×3×5, 1998=2×33×37.例1 一个正方体的体积是13824厘米3,它的外表积是多少?例2 学区举行团体操表演,有1430名学生参加,分成人数相等的假如干队,要求每队人数在100至200之间,共有几种分法?例3 1×2×3×…×40能否被90909整除?例4 求72有多少个不同的约数.例5 试求不大于50的所有约数个数为6的自然数.练习111.一个长方体,它的正面和上面的面积之和是209分米2,如果它的长、宽、高都是质数,那么这个长方体的体积是多少立方分米?2.爷孙两人今年的年龄的乘积是693,4年前他们的年龄都是质数.爷孙两人今年的年龄各是多少岁?3.某车间有216个零件,如果平均分成假如干份,分的份数在5至20之间,那么有多少种分法?4.小英参加小学数学竞赛,她说:"我得的成绩和我的岁数以与我得的名次乘起来是3916,总分为是100分.〞能否知道小英的年龄、考试成绩与名次?5.举例回答下面各问题:〔1〕两个质数的和仍是质数吗?〔2〕两个质数的积能是质数吗?〔3〕两个合数的和仍是合数吗?〔4〕两个合数的差〔大数减小数〕仍是合数吗?〔5〕一个质数与一个合数的和是质数还是合数?6.求不大于100的约数最多的自然数.7.同学们去射箭,规定每射一箭得到的环数或者是"0〞〔脱靶〕或者是不超过10的自然数.甲、乙两同学各射5箭,每人得到的总环数之积刚好都是1764,但是甲的总环数比乙少4环.求甲、乙各自的总环数.第12讲最大公约数与最小公倍数〔一〕如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数.如果一个自然数同时是假如干个自然数的约数,那么称这个自然数是这假如干个自然数的公约数.在所有公约数中最大的一个公约数,称为这假如干个自然数的最大公约数.自然数a1,a2,…,an的最大公约数通常用符号〔a1,a2,…,an〕表示,例如,〔8,12〕=4,〔6,9,15〕=3.如果一个自然数同时是假如干个自然数的倍数,那么称这个自然数是这假如干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这假如干个自然数的最小公倍数.自然数a1,a2,…,an的最小公倍数通常用符号[a1,a2,…,an]表示,例如[8,12]=24,[6,9,15]=90.常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法.例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克.现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?例2 用自然数a去除498,450,414,得到一样的余数,a最大是多少?例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?例4 在一个30×24的方格纸上画一条对角线〔见下页上图〕,这条对角线除两个端点外,共经过多少个格点〔横线与竖线的交叉点〕?例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒.三人同时从起点出发,最少需多长时间才能再次在起点相会?例6 爷爷对小明说:"我现在的年龄是你的7倍,过几年是你的6倍,再过假如干年就分别是你的5倍、4倍、3倍、2倍.〞你知道爷爷和小明现在的年龄吗?练习121.有三根钢管,分别长200厘米、240厘米、360厘米.现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?2.两个小于150的数的积是2028,它们的最大公约数是13,求这两个数.3.用1~9这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数?4.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长.亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印.问:这个花圃的周长是多少米?5.有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个.这堆桔子至少有多少个?6.某公共汽车站有三条线路的公共汽车.第一条线路每隔5分钟发车一次,第二、三条线路每隔6分钟和8分钟发车一次.9点时三条线路同时发车,下一次同时发车是什么时间?7.四个连续奇数的最小公倍数是6435,求这四个数.第13讲最大公约数与最小公倍数〔二〕两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积.即,〔a,b〕×[a,b]=a×b.例1 两个自然数的最大公约数是6,最小公倍数是72.其中一个自然数是18,求另一个自然数.例2 两个自然数的最大公约数是7,最小公倍数是210.这两个自然数的和是77,求这两个自然数. 例3 a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c.要将它们全局部别装入小瓶中,每个小瓶装入液体的重量一样.问:每瓶最多装多少千克?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题
一、数字迷加减法
1.个位数字分析法
2.加减法中的进位与退位
3.奇偶性分析法
二、数字谜问题解题技巧
1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;
2.要根据不同的情况逐步缩小范围,并进行适当的估算;
3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;
4.注意结合进位及退位来考虑;
模块一、加法数字谜
【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华
罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?
01
9
1杯华
2
4

【例 2】 下面的算式里,四个小纸片各盖住了一个数字。

被盖住的四个数字的总和是多少?
1

4
9
例题精讲
知识点拨
教学目标
5-1-2-1.加减法数字谜
【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。

问:被加数至少是多少?
【例 4】 两个自然数,它们的和加上它们的积恰为34,这两个数中较大数为( ).
【例 5】 下面的算式里,每个方框代表一个数字.问:这6个方框中的数字的总和是多少?
1
9
9
1

【例 6】 在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs =______
s t v a
v t s t t t v t t +
【巩固】 下面的字母各代表什么数字,算式才能成立?
D
D D +A
C D
E
E B E
C
B
A
【巩固】 右面算式中每一个汉字代表一个数字,不同的汉字表示不同的数字.当它们各代表什么数字时算式成
立?
+

好是真好是真好啊好
【巩固】 下面算式中,相同汉字代表相同数字,不同汉字代表不同数字,求“数学真好玩”代表的数是几?
+爱好真知数学更好数学真好玩
【例 7】 下图是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字.已
知BAD 不是3的倍数,GOOD 不是8的倍数,那么ABGD 代表的四位数是多少?
B A D
B A D G O O D
+
【例 8】 在下面的算式中,汉字“第、十、一、届、华、杯、赛’,代表1,2,3,4,5,6,7,8,9中的
7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛’’所代表的7个数字的和等于 .


赛6

杯0
十华0
2

【例 9】 在下边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可
以推算出:+++☆=_______.
+
☆☆
【例 10】 下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么
A +
B +
C +
D +
E +
F +
G = 。

+0
7
2
E F G D C B A
D
C B A E F G 9
3
7
8

【例 11】 在下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数ABCD
为 .
2008-A B C D E F G H 2424-A E F G E F G H
【例 12】 从0、1、2、3、4、5、6、7、8、9 这十个数字中,选出九个数字,组成一个两位数、一个三位数
和一个四位数,使这三个数的和等于2010. 其中未被选中的数字是
【例 13】 把0~9中的数填到下图的方格中,每个数只能用一次,其中5已经填好,位于上方的格子中所填
数总大于它正下方的格子中所填数.
【例 14】 下面的算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字.如果巧+解+数+字+谜=30,
那么“巧解数字谜”所代表的五位数是多少?
+巧赛
解解解数数数数字
字字
字字谜


谜谜谜
【巩固】 如图所示的算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.求使算式成立的汉
字所表示的数字.
2008+学数学爱数学喜爱数学
【巩固】 如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字,则数+学+
竞+赛= 或 。

赛赛赛赛
赛赛
竞竞竞
竞竞
学学学学数数数1
2

【例 15】 在33⨯的方格中,各有一个数,由一张或两张数字卡片组成,请你移动一张卡片,使每行每列三
个数的和都相等.用箭头表示将哪一张卡片移动到哪里.
1
1
3
5792
9
71
1131
12
模块二、减法数字谜
【例 16】 如下图是两个三位数相减的算式,每个方框代表一个数字.问:这六个方框中的数字的连乘积等
于多少?

8
9
4
【例 17】 在下式的每个空格里填入一个数字,使竖式成立。

9
2
6
-500
【例 18】 把0~9这10个数字填入下图(已填两个数字),使得等式成立。

减数为
_____
2
5
95
4
3
1

【例 19】 在下面的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字,那么D +G=?

F
F
F
G A F E
D B C B A
【例 20】 英文“HALLEY”表示“哈雷”,“COMET”表示“彗星”,“EARTH”表示地球.在下面的算式中,每个
字母均表示0~9中的某个数字,且相同的字母表示相同的数字,不同的字母表示不同的数字.这些字母各代表什么数字时,算式成立?
E
H
Y T -
T
R
A
E M O C E L L A H。

相关文档
最新文档