小学奥数专题一_牛吃草问题

合集下载

小学奥数之牛吃草问题含答案

小学奥数之牛吃草问题含答案

小学奥数之牛吃草问题含答案This model paper was revised by LINDA on December 15, 2012.“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数?想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12?=60÷12?=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20?=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

小学奥数之牛吃草问题(含答案)

小学奥数之牛吃草问题(含答案)

小学奥数之牛吃草问题(含答案)英国著名数学家XXX曾经提出了一个著名的数学问题,即“牛吃草问题”,也可以称之为追及问题或者工程问题。

它的具体形式是:在一个牧场上,有一片青草,每天都以相同的速度生长。

这片青草可以供给10头牛吃22天,或者供给16头牛吃10天。

那么,如果供给25头牛吃,它可以维持多少天呢?解决这个问题的关键在于找到一些不变的量。

首先,我们需要计算出每天新长出的草的数量,然后再计算出牧场上原有的草的数量。

接着,我们可以计算出每天实际消耗的草量,最后就可以得出可以供25头牛吃的天数。

具体而言,通过比较10头牛22天吃的总量和16头牛10天吃的总量,我们可以得到每天新长出的草的数量。

然后,我们可以将25头牛分成两部分,一部分吃新长出的草,另一部分吃原有的草,从而计算出可以供25头牛吃的天数。

除了这个经典的牛吃草问题,还有一些类似的问题,比如在一个牧场上,一堆草可以供10头牛吃3天,那么这堆草可以供6头牛吃几天呢?这个问题相对简单,我们可以通过简单的计算得到答案为5天。

但是,如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。

这种工作总量不固定的问题就是牛吃草问题。

小军家有一片牧场,上面长满了草。

这片牧场可供10头牛吃20天,也可供12头牛吃15天。

如果小军家养了24头牛,那么这些牛可以吃多少天呢?我们可以通过已知的两种情况来计算出每天新长出的草量,即每天5头牛的草量。

这样,我们就可以算出原有的草量是100份,每天新长出的草量是5份。

当有25头牛时,其中有5头牛专吃新长出来的草,剩下的20头牛吃原有的草。

这些牛吃完草需要5天。

因此,这片草地可供25头牛吃5天。

在这个例子中,我们需要注意以下三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的;2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量;3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天。

小学奥数中的牛吃草问题

小学奥数中的牛吃草问题

一牧场,可供58头牛吃7天,或者可供50头牛吃9天,假设草的生长量每天相等,每头牛每天的吃草量也相等,那么,可供多少头牛吃6天?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。

【解答】①假设1头牛1天吃1份草②每天的新长草:58×7=406(份),50×9=450(份)450-406=44(份),44÷(9-7)=22份,即每天新长草22份。

③原有草:406-7×22=252(份)④分牛讨论原有草原有草7天的新长草9天的新长草多出的2天新长草新长草:22份→22头(每天22头牛专门应付新长草)原有草:252份,252÷6=42(份)→42头合计22+42=64头牛答:可供64头牛吃6天(化动为静)有一片牧场,草每天都在迅速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。

设每头牛每天吃草的量是相等的,如果放牧18头牛,几天可以吃完牧草?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。

【解答】①假设1头牛1天吃1份草②每天的新长草:24×6=144(份),21×8=168(份)168-144=24(份),24÷(8-6)=12份,即每天新长草12份。

③原有草:144-6×12=72(份)④分牛讨论原有草原有草6天的新长草8天的新长草多出的2天新长草新长草:12份→12头(每天12头牛专门应付新长草)原有草:72份,72÷(18-12)=12(天)如果放牧18头牛,12天可以吃完牧草(化动为静)如果要使队伍10分钟消失,需要打开多少个检票口?【思路】其实这也是一道变形的牛吃草问题。

排队等候的人是“草”,检票口是“牛”,检票前若干分钟排队的人是“原有草”,每分钟新增的人是“新长草”。

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

五年级奥数专题:牛吃草(含答案)

五年级奥数专题:牛吃草(含答案)

牛吃草牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

一、例题与方法指导例1.青青一牧场青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【解说】这道诗题,是依据闻名于世界的“牛顿牛吃草问题”编写的。

牛顿是英国人,他的种种事迹早已闻名于世,这里不赘述。

他曾写过一本书,名叫《普遍的算术》,“牛吃草问题”就编写在这本书中。

书中的这道题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草是不断生长的。

)解答这一问题,首先必须注意牧场里的草是不断生长增多的,而并非一个固定不变的数值。

小学奥数牛吃草问题

小学奥数牛吃草问题

专题一:牛吃草问题※.核心公式:草场草量=(牛数-每天长出的草量)×天数这里我们把草场草量称为“原有量”把每天长出的草量称为“日产量”那么牛吃草问题的核心公式为:原有量 =(牛数-日产量)×天数※.解题思路:A.对于简单的牛吃草问题,一般可以根据已知条件,分步骤解答。

首先:求出日产量(每天长出的草量)然后:求出原有量(草场草量)最后:求出题目。

B.对于较为复杂的牛吃草问题,我们将在下面例题中,具体分析。

-----------------------------------------------------------------例1.牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析:这是一道基本的牛吃草问题,我们可以按照思路A解答。

解:设1头牛1天吃的草为1份。

每天长出的草量为:(10×20-15×10)÷(20-10)= 5(份)草场原有的草量为:10×20-5×20 = 100(份)25头牛可以吃的天数:100÷(25-5)= 5(天)答:这片草地可供25头牛吃5天。

课堂练兵:牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供几头牛吃5天?例2.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?分析:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。

但我们可以利用例1的方法,求出每天减少的草量和原有的草量。

解:设1头牛1天吃的草为1份。

每天减少的草量为:(20×5-15×6)÷(6-5)= 10(份)草场原有的草量为:20×5+10×5 = 150(份)设:可供x头牛吃10天?150 = (x+10)×10x = 5答:可供5头牛吃10天。

奥数专题之牛吃草问题

奥数专题之牛吃草问题

奥数专题之牛吃草问题奥数专题之牛吃草问题1【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天? A.3B.4C.5D.6 【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35 【答案】C【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35 【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。

下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。

【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。

问如果计划用10分钟将水排完,需要多少台抽水机?【广东2021上】 A.5台B.6台C.7台D.8台【答案】B【例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?A.16B.20C.24D.28 【答案】C【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A.2周B.3周C.4周D.5周【答案】C【例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了A.2小时B.1.8小时C.1.6小时D.0.8小时【答案】D奥数专题之牛吃草问题21有一片牧场,草每天都匀速的生长,如果放牧24头牛,则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的,问 2.如果放牧16头牛几天可吃完牧草? 3.要使草永远吃不完,最多只能放牧几头牛?4,有一片牧草,如果养27头牛,这些牛6天可以把草吃尽,如果养23头牛,这些牛9天可以把草吃尽,如果养21头牛,这些牛几天可以把草吃尽?5,牧场上有一片牧草,供24头牛6周吃完,供18头牛10周吃完.假定草的生长速度不变,那么供19头牛需要几周吃完?6.有三块牧地,面积分别为3又1/3平方米,10平方米,24平方米,第一块牧地12头可吃4星期,第二块牧地21头可吃9星期,第三块牧地可供几头牛吃18星期? 7.一批货物,用5匹马运,6天可以运完;用6头牛运,4天可以运完。

小学奥数-牛吃草专题完整版

小学奥数-牛吃草专题完整版

牛吃草知识精讲英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草"问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草"问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草"问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲板块一、一块地的“牛吃草问题”【例 1】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。

仓库里原有的存货若用1辆汽车运则需要多少天运完?【例 2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】(2007年湖北省“创新杯”)牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.【巩固】一水库原有存水量一定,河水每天均匀入库。

小学五年级奥数课件 牛吃草问题

小学五年级奥数课件 牛吃草问题

例题【三】(★ ★ ★ ★)
一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃 25天, 如果1头牛每天的吃草量相当于3只羊每天的吃草量。请问:这片草地让17头 牛与多少只羊一起吃,刚好16天吃完?
18头牛,40天吃完; 24头牛,25天吃完; 头牛,16天吃完;
例题【三】(★ ★ ★ ★)
400÷40=10(分钟)
知识链接
1. 牛吃草—四步法: (1) 设1牛1天吃1份; (3) 求原有草; (4) 分牛. 2. 牛吃草的演绎:两种动物,天气变冷,排队问题. 3. 关键点:对比两个条件,找到草长速度.
18头牛,40天吃完; 24头牛,25天吃完;
头牛,16天吃完;
设1头牛1天吃1份
草长速:(720-600)÷(40-25)=8份
原有草:600-8×25=400(份)
25头+8头=33头
分牛 角落:8头
33-17=16头牛
原草场:?头
16×3=48(只)
400÷16=25(份) 25头
例题【四】(★ ★ ★ )
某游乐场开门前有400人在排队,开门后每分钟来的人数是固定的, 一个入口每分钟进入10个人, 如果开放了4个入口,20分钟后就没有 人排队了,现在开放6个入口,那么开门 10 分钟后没有人排队 了.

10×4×20=800(人) 人未速(800-400)÷20=20(人)
分入口 角落:2入口 原来入:4入口
例题五(★ ★ ★ ★ ★ )
一个蓄水池装有9根管, 其中1根为进水管, 其余8根为出水管. 开始进水 管以均匀的速度不停地向这个蓄水池蓄水. 池内注入了一些水后, 有人 想把出水管也打开, 使池内的水全部排光. 如果把8根出水管全部打开, 需要3小时可将池内的水排光; 而若仅打开3根出水管, 则需要18小时排 光. 如果要在8小时内全部排光,最少需要打开几根出水管?

小学奥数专题牛吃草问题

小学奥数专题牛吃草问题

小学奥数专题一牛吃草问题牛吃草概念及公式:设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度一、奥数导引例1.一块牧场长满草,每天牧草都均匀生长;这片牧场可供10头牛吃20天,可供15头牛吃10天,那么1可供25头牛吃多少天 2可供多少头牛吃4天例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷20-10=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷25-5=5天;可供25头牛吃5天; 解法二:110-x×20=15-x×10=25-x×210-x×20=15-x×10= -x×4例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛A.50B.46C.38D.35例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量;设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为51-36÷84-54=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头;解法2:利用列方程解问题;二、历年真题三、奥数拔高训练100分1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天;假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天10分2.现要将一池塘水全部抽干,但同时又有水流进池塘;若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干;若要5天抽干水,需要多少台同样的抽水机抽水 15分3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管;先放进一些水再排水;排水时进水管不关;如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光;要想在4.5小时内把池内的水全部排光,需同时打开几个出水管 15分4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕;1求增加人数的速度;2原来的人数;30分5.有三块草地,面积分别是5、15、24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天 30分1.解析:50×9-58×7÷9-7=22份,58×7-22×7=252份,252+6×22÷6=64头可供64头牛吃6天;2.解析:假设一台抽水机一天抽水1份;6×20-8×10÷20-10=4份,8×10-4×10=40份, 40+4×5÷5=12台,需要12台同样的抽水机抽水;3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份;两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份;3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份;4.5小时再进水4.5×2=9份,4.5小时排完需打开18+9÷4.5=6根排水管;4.解析:设一个检票口一分钟通过一个人1个检票口30分钟30个人1个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或者2×10-10×0.5=15人5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为84-60÷45-30=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,可供牛数为3360÷80=42头;例 1 一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天例 22008年“陈省身杯”国际青少年五年级数学邀请赛有一个水池,池底存了一些水,并且还有泉水不断涌出;为了将水池里的水抽干,原计划调来8台抽水机同时工作;但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时;工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时;这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机;例3 甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.巩固小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.例 4 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽巩固现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间。

小学数学奥数习题-牛吃草问题 通用版(含答案)

小学数学奥数习题-牛吃草问题 通用版(含答案)

牛吃草问题牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。

典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。

请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完例4、牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天【分析】这片牧场上的牧草的数量每天在变化。

解题的关键应找到不变量——即原来的牧草数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。

从这道题我们看到,草每天在长,牛每天在吃,都是在变化的,但是也有不变的,都是什么不变啊草是以匀速生长的,也就是说每天长的草是不变的;,同样,每天牛吃草的量也是不变的,对吧这就是我们解题的关键。

小学奥数之牛吃草问题(含答案)

小学奥数之牛吃草问题(含答案)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

小学奥数之牛吃草问题(附含答案解析)

小学奥数之牛吃草问题(附含答案解析)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

小学奥数牛吃草问题

小学奥数牛吃草问题

1、牧场上长满牧草,每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

可供25头牛吃几天?2、一牧场上的青草每天都匀速生长。

这片青草可供27头牛吃6周,或供23头牛吃9周。

那么可供21头牛吃几周?3、有一水井,继续不断涌出泉水,每分钟涌出的水量相等。

如果使用3架抽水机来抽水,36分钟可以抽完,如果使用5架抽水机来抽水,20分钟可抽完。

现在12分钟内要抽完井水,需要抽水机多少架?4、有一水池,池底有泉水不断涌出。

要想把水池的水抽干,如用10台抽水机需抽8小时;如用8台抽水机需抽12小时。

那么,如果用6台抽水机,需抽多少小时?5、有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完。

要使牧草永远吃不完,至多可以放牧几头牛?6、12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草.假设每公顷原有草量相等,草的生长速度不变.问多少头牛8周吃完16公顷的牧草?7、禁毒图片展8点开门,但很早便有人排队等候入场。

从第一个观众到达时起,每分钟来的观众人数一样多。

如果开3个入场口,8点9分就不再有人排队;如果开5个入场口,8点5分就没有人排队。

第一个观众到达时距离8点还有多少分钟?8、有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。

如果需要6天割完,需要派多少人去割草?9、有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完。

这桶酒每天漏掉的酒可供几人喝一天?10、一水库存水量一定,河水均匀入库。

5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。

若要6天抽干,需要多少台同样的抽水机?11、假设地球上新生成的资源的增长速度是一定的,照此测算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年。

为使人类能够不断繁衍,那么地球最多能养活多少亿人?12、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。

小学奥数知识点趣味学习——牛吃草问题

小学奥数知识点趣味学习——牛吃草问题

小学奥数知识点趣味学习——牛吃草问题知识点牛吃草问题在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1. 一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。

在东升牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛25天12×25=300 :原有草量+25天自然减少的草量24头牛10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800. 20天里,共草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。

例2.一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量。

小学奥数牛吃草问题的4个基本公式及经典题型

小学奥数牛吃草问题的4个基本公式及经典题型

小学奥数牛吃草问题的4个基本公式及经典题型牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

牛吃草问题是小学奥数中的经典奥数题型之一,也是小学奥数考试中经常会涉及到的考点。

牛吃草问题讲解在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题所求的问题。

小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。

在牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草?【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛 25天12×25=300 :原有草量+25天自然减少的草量24头牛 10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解

四年级奥数-牛吃草问题例题讲解work Information Technology Company.2020YEAR例1:牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天分析:设一头牛一天的吃草量为1份,(1)先算出牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)再算牧场原有的草量为:23×9-15×9=72份,(3)21头牛,要安排15头去吃每天新增的草量,剩余的牛21-15=6头去吃原有的草量,这样才可以把草吃完。

可以吃:72÷6=12天。

例2:一片牧场上长满牧草,如牧草每天都匀速生长。

则牧场可供27头牛吃6天或23头牛吃9天。

问想要18天吃完这些草要几头牛?分析:这道题和例1有点互逆的意思。

我们设一头牛一天的吃草量为1份,则(1)牧场每天新增的草量为:(23×9-27×6)÷(9-6)=15份,(2)牧场原有的草量为:23×9-15×9=72份,(3)18天要吃完草,先要安排15头牛去吃每天新增的草量,再安排72÷18=4头牛去吃原有的草量72份,所以要:15+4=19头牛。

例3:一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。

如果用12人舀水,3小时舀完。

如果只有5个人舀水,要10小时才能舀完。

现在要想在2小时舀完,需要多少人?分析:这是一道有点变异的牛吃草问题,解题的思路也是和牛吃草问题一样。

设每人每小时舀水量为一份,则(1)漏水量(新增的水量):(10×5-12×3)÷(10-3)=2份,(2)船原有的水为:12×3-2×3=30份,要先安排2个人去舀新增的水量,再安排30÷2=15人去舀原有的水量30分,共要15+2=17人。

奥数专题之牛吃草问题

奥数专题之牛吃草问题

奥数专题之牛吃草问题Revised on July 13, 2021 at 16:25 pm
奥数专题之牛吃草问题2
1有一片牧场;草每天都匀速的生长;如果放牧24头牛;则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的;问
2.如果放牧16头牛几天可吃完牧草
3.要使草永远吃不完;最多只能放牧几头牛
4;有一片牧草;如果养27头牛;这些牛6天可以把草吃尽;如果养23头牛;这些牛9天可以把草吃尽;如果养21头牛;这些牛几天可以把草吃尽
5;牧场上有一片牧草;供24头牛6周吃完;供18头牛10周吃完.假定草的生长速度不变;那么供19头牛需要几周吃完
6.有三块牧地;面积分别为3又1/3平方米;10平方米;24平方米;第一块牧地12头可吃4星期;第二块牧地21头可吃9星期;第三块牧地可供几头牛吃18星期
7.一批货物;用5匹马运;6天可以运完;用6头牛运;4天可以运完..如果用4匹马和4头牛同时运;几天可以运完
8;11头牛10天可吃完5公顷草;12头牛14天可吃完6公顷全部牧草;问8公顷草地可供19头牛吃多少天假设每块草地每公顷每天牧草长得一样快
9.一片牧场;草每天都在匀速生长草每天增长量相等;如果放牧24头牛;则6天吃完草;如果每天放牧21头牛;则8天吃完草;设每头牛没天吃草量相同;问如果放牧16头牛;几天可以吃完牧草
10.一块草地上的青草;到处长得一样密;养牛户发现;他养的牛每天吃的草量是相同的;这块草地15头牛6天可吃完;10头牛10天可以吃完..那么每天生长出的草是原来草量的几分之几
编辑推荐:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数专题一牛吃草问题
牛吃草概念及公式:
设定一头牛一天吃草量为“1”
(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度
一、奥数导引
例1.一块牧场长满草,每天牧草都均匀生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天,那么(1)可供25头牛吃多少天?(2)可供多少头牛吃4天?
例1.解析:假设一头牛一天吃1份草,10天长出草10×20-15×10=50份,每天长出草50÷(20-10)=5份,原有草10×20-20×5=100份,25头牛吃的草,减去每天长的草,一天消耗草25-5=20份,够吃100÷(25-5)=5天。

可供25头牛吃5天。

解法二:
(1)(10-x)×20=(15-x)×10=(25-x)×?
(2)(10-x)×20=(15-x)×10=(?-x)×4
例2.如果22头牛吃33公亩牧场的草,54天后可以吃完,17头牛吃28公亩牧场的草,84天后可以吃完,那么要在24天内吃完40公亩牧场的草,需要多少头牛?( )
A.50
B.46
C.38
D.35
例2解法1:牧场的面积发生变化,所以每天长出的草量不再是常量。

设每头牛每天的吃草量为1份,则每亩54天的总草量为:22×54÷33=36份;每亩84天的总草量为:17×84÷28=51份,那么每亩每天的新生长草量为(51-36)÷(84-54)=0.5份,每亩原有草量为36-0.5×54=9份,那么40亩原有草量为9×40=360份,40亩24天新生长草量为24×0.5×40=480份,40亩24天共有草量360+480=840,可供牛数为840÷24=35头。

解法2:利用列方程解问题。

二、历年真题
三、奥数拔高训练(100分)
1.一个牧场可供58头牛吃7天,或者可供50头牛吃9天。

假设草的生长量每天相等,每头牛的吃草量也相等,那么可供多少头牛吃6天?(10分)
2.现要将一池塘水全部抽干,但同时又有水流进池塘。

若用8台抽水机10天可以抽干;用6台抽水机20天可以抽干。

若要5天抽干
水,需要多少台同样的抽水机抽水?(15分)
3.一个蓄水池装有9根水管,1根进水管,8根相同的出水管。

先放进一些水再排水。

排水时进水管不关。

如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光。

要想在
4.5小时内把池内的水全部排光,需同时打开几个出水管?(15分)
4.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站开放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决完毕。

(1)求增加人数的速度;(2)原来的人数。

(30分)
5.有三块草地,面积分别是5、15、24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(30分)
1.解析:(50×9-58×7)÷(9-7)=22份,
58×7-22×7=252份,(252+6×22)÷6=64头
可供64头牛吃6天。

2.解析:假设一台抽水机一天抽水1份。

(6×20-8×10)÷(20-10)=4份,8×10-4×10=40份, (40+4×5)÷5=12台,需要12台同样的抽水机抽
水。

3.解析:假设打开一根出水管每小时可排水“一份”,那么8根出水管开3小时共排出水8×3=24份;5根出水管开6小时共排出水5×6=30份。

两种情况比较,可知3小时内进水管放进的水是30-24=6份;进水管每小时放进的水是6÷3=2份。

3小时排水24份,3小时进水6份,可见打开排水管前,水池中有水24-6=18份。

4.5小时再进水4.5×2=9份,4.5小时排完需打开(18+9)÷4.5=6根排水管。

4.解析:设一个检票口一分钟通过一个人
1个检票口30分钟30个人
1个检票口10分钟20个人
(30-20)÷(30-10)=0.5个人
原有1×30-30×0.5=15人或者2×10-10×0.5=15人
5.解析:设每头牛每天的吃草量为1份,则每亩30天的总草量为:10×30÷5=60份;每亩45天的总草量为:28×45÷15=84份,那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6份,每亩原有草量为60-1.6×30=12份,那么24亩原有草量为12×24=288份,24亩80天新生长草量为24×1.6×80=3072,24亩80天共有草量3072+288=3360,
可供牛数为3360÷80=42头。

【例 1】一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于l头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?
【例 2】(2008年“陈省身杯”国际青少年五年级数学邀请赛)有一个水池,池底存了一些水,并且还有泉水不断涌出。

为了将水池里的水抽干,原计划调来8台抽水机同时工作。

但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时。

工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时。

这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下台抽水机。

【例3】甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.
【巩固】小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.
【例 4】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?
【巩固】现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?。

相关文档
最新文档