数控机床刀具补偿原理
数控机床刀具补偿功能的应用
刀具长度补偿是通过调整刀具在Z轴上 的位置来实现对工件表面的加工,而刀 具半径补偿则是通过调整刀具在X轴或 Y轴上的位置来实现对工件表面的加工
。
刀具补偿功能可以提高加工精度、减少 加工时间、降低加工成本。
刀具补偿的参数设置
01
刀具补偿参数主要包括刀具类型、刀具直径、刀具长
度、刀具角度等。
面形状和尺寸的高精度控制。
数控铣床应用
在数控铣床上,刀具补偿可应用于 三维空间加工,如曲面加工、五轴 加工等,以实现复杂零件的高效加 工。
加工中心应用
在加工中心上,刀具补偿可应用于 多轴联动加工,实现复杂零件的高 效加工。
02
CATALOGUE
刀具补偿的原理与实现
刀具补偿的原理
刀具补偿的基本原理是通过对刀具位置 的调整,以实现工件表面形状和尺寸的 精确控制。补偿分为刀具长度补偿和刀
03
提高生产效率
降低成本
通过快速调整刀具补偿参数,可 以减少换刀和调试时间,提高生 产效率。
正确使用刀具补偿功能可以减少 刀具磨损和报废,降低生产成本 。
数控机床刀具补偿功能的发展趋势与前景
智能化
随着人工智能技术的发展,未来刀具补偿功能将更加智能化,能够根据加工条件和刀具磨损情况自动调整补偿参数, 提高加工精度和效率。
04
CATALOGUE
数控机床刀具补偿功能的优化与改进
刀具补偿的误差分析
01
02
03
刀具几何误差
刀具的几何形状和尺寸对 加工精度产生直接影响。
刀具磨损误差
刀具在切削过程中会逐渐 磨损,导致加工精度下降 。
受热变形误差
切削过程中产生的热量会 导致刀具和工件变形,从 而影响加工精度。
刀具半径补偿编程举例
刀具半径补偿编程1. 介绍刀具半径补偿编程是数控机床加工领域中的一项重要技术。
通过对刀具半径进行补偿,可以在工件加工过程中实现更加准确的切削。
本文将详细介绍刀具半径补偿编程的原理、应用以及编程实例。
2. 刀具半径补偿的原理刀具半径补偿是为了解决实际切削情况与刀具形状之间的偏差而引入的。
在加工过程中,刀具的实际切削宽度常常与理论计算不符,这可能导致工件尺寸偏差或刀具磨损。
通过刀具半径补偿,可以根据实际情况调整刀具路径,从而达到更加精确的切削效果。
刀具半径补偿分为刀具半径右补偿和刀具半径左补偿两种情况。
刀具半径右补偿适用于切削右侧的轮廓,而刀具半径左补偿适用于切削左侧的轮廓。
补偿的值一般为刀具半径的一半,以保证刃口的位置与所需位置对齐。
3. 刀具半径补偿的应用刀具半径补偿在数控机床加工中有广泛的应用。
下面列举一些常见的应用场景:3.1 外轮廓加工在加工外轮廓时,为了保证工件的尺寸精度,需要进行刀具半径补偿。
通过补偿刀具半径,可以使刀具实际切削轮廓与设计轮廓相吻合,从而达到更高的加工精度。
3.2 内轮廓加工与外轮廓加工类似,内轮廓加工也需要进行刀具半径补偿。
通过补偿刀具半径,可以调整刀具路径,使内轮廓的尺寸与设计要求一致。
3.3 孔加工在孔加工过程中,切削刀具常常需要进行刀具半径补偿。
通过补偿刀具半径,可以调整切削刀具的实际位置,保证孔的准确直径。
3.4 轴向切削在进行轴向切削时,为了避免因刀具半径导致的偏差,常常需要进行刀具半径补偿。
补偿的值一般为刀具半径的一半,以保证刃口的位置与所需位置对齐。
4. 刀具半径补偿的编程实例下面通过一个编程实例来详细介绍刀具半径补偿的编程过程。
1.设定刀具半径补偿值为R0.5。
2.G54代码:确定坐标系原点。
3.G90代码:设定绝对坐标模式。
4.G94代码:设定进给速度为每分钟进给。
5.T1代码:选择T1号刀具。
6.M3代码:启动主轴正转。
7.G0X100.0Y100.0:刀具快速移动到初始加工位置。
数控刀具补偿原理
3.3 刀具补偿原理刀具补偿(又称偏置),在20世纪60~70年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,容易产生错误。
补偿的概念出现以后很大地提高了编程的效率。
具有刀具补偿功能,在编制加工程序时,可以按零件实际轮廓编程,加工前测量实际的刀具半径、长度等,作为刀具补偿参数输入数控系统,可以加工出合乎尺寸要求的零件轮廓。
刀具补偿功能还可以满足加工工艺等其他一些要求,可以通过逐次改变刀具半径补偿值大小的办法,调整每次进给量,以达到利用同一程序实现粗、精加工循环。
另外,因刀具磨损、重磨而使刀具尺寸变化时,若仍用原程序,势必造成加工误差,用刀具长度补偿可以解决这个问题。
刀具补偿分为2种:☆刀具长度补偿;☆刀具半径补偿。
文献《刀具补偿在数控加工中的应用》(工具技术,2OO4年第38卷No7,徐伟,广东技术师范学院)中提到在数控加工中有4种补偿:☆刀具长度补偿;☆刀具半径补偿;☆夹具补偿;☆夹角补偿(G39)。
这四种补偿基本上能解决在加工中因刀具形状而产生的轨迹问题。
3.3.1 刀具长度补偿1.刀具长度的概念刀具长度是一个很重要的概念。
我们在对一个零件编程的时候,首先要指定零件的编程中心,然后才能建立工件编程坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
长度补偿只是和Z坐标有关,它不象X、Y平面内的编程零点,因为刀具是由主轴锥孔定位而不改变,对于Z坐标的零点就不一样了。
每一把刀的长度都是不同的,例如,我们要钻一个深为50mm的孔,然后攻丝深为45mm,分别用一把长为250mm的钻头和一把长为350mm的丝锥。
先用钻头钻孔深50mm,此时机床已经设定工件零点,当换上丝锥攻丝时,如果两把刀都从设定零点开始加工,丝锥因为比钻头长而攻丝过长,损坏刀具和工件。
此时如果设定刀具补偿,把丝锥和钻头的长度进行补偿,此时机床零点设定之后,即使丝锥和钻头长度不同,因补偿的存在,在调用丝锥工作时,零点Z坐标已经自动向Z+(或Z)补偿了丝锥的长度,保证了加工零点的正确。
刀具半径补偿原理及补偿规则
刀具半径补偿原理及补偿规则在加工过程中,刀具的磨损、实际刀具尺寸与编程时规定的刀具尺寸不一致以及更换刀具等原因,都会直接影响最终加工尺寸,造成误差。
为了最大限度的减少因刀具尺寸变化等原因造成的加工误差,数控系统通常都具备有刀具误差补偿功能。
通过刀具补偿功能指令,CNC系统可以根据输入补偿量或者实际的刀具尺寸,使机床自动加工出符合程序要求的零件。
1.刀具半径补偿原理(1)刀具半径补偿的概念用铣刀铣削工件的轮廓时,刀具中心的运动轨迹并不是加工工件的实际轮廓。
如图所示,加工内轮廓时,刀具中心要向工件的内侧偏移一定距离;而加工外轮廓时,同样刀具中心也要向工件的外侧偏移一定距离。
由于数控系统控制的是刀心轨迹,因此编程时要根据零件轮廓尺寸计算出刀心轨迹。
零件轮廓可能需要粗铣、半精铣和精铣三个工步,由于每个工步加工余量不同,因此它们都有相应的刀心轨迹。
另外刀具磨损后,也需要重新计算刀心轨迹,这样势必增加编程的复杂性。
为了解决这个问题,数控系统中专门设计了若干存储单元,存放各个工步的加工余量及刀具磨损量。
数控编程时,只需依照刀具半径值编写公称刀心轨迹。
加工余量和刀具磨损引起的刀心轨迹变化,由系统自动计算,进而生成数控程序。
进一步地,如果将刀具半径值也寄存在存储单元中,就可使编程工作简化成只按零件尺寸编程。
这样既简化了编程计算,又增加了程序的可读性。
刀具半径补偿原理(2)刀具半径补偿的数学处理①基本轮廓处理要根据轮廓尺寸进行刀具半径补偿,必需计算刀具中心的运动轨迹,一般数控系统的轮廓控制通常仅限于直线和圆弧。
对于直线而言,刀补后的刀具中心轨迹为平行于轮廓直线的一条直线,因此,只要计算出刀具中心轨迹的起点和终点坐标,刀具中心轨迹即可确定;对于圆弧而言,刀补后的刀具中心轨迹为与指定轮廓圆弧同心的一段圆弧,因此,圆弧的刀具半径补偿,需要计算出刀具中心轨迹圆弧的起点、终点和圆心坐标。
②尖角处理在普通的CNC装置中,所能控制的轮廓轨迹只有直线和圆弧,其连接方式有:直线与直线连接、直线与圆弧连接、圆弧与圆弧连接。
全功能数控机床刀具补偿知识
全功能数控机床刀具补偿知识全功能数控机床刀具补偿知识1.数控车床刀具补偿五金知识9月14,数控车床刀具补偿功能包括刀具位置补偿和刀具圆弧半径补偿两方面。
在加工程序中用T功能指定,T***X中前两个XX为刀具号,后两个XX为刀具补偿号,如T0202。
如果刀具补偿号为00,则表示取消刀补。
(1)刀具位置补偿刀具磨损或重新安装刀具引起的刀具位置变化,建立、执行刀具位置补偿后,其加工程序不需要重新编制。
办法是测出每把刀具的位置并输入到指定的存储器内,程序执行刀具补偿指令后,刀具的实际位置就代替了原来位置。
如图2所示的加工情况,如果没有刀具补偿,刀具从0点移动到1点,对应程序段是N60G00C45X93T0200,如果刀具补偿是X=+3,Z=+4,并存入对应补偿存储器中,执行刀补后,刀具将从0点移动到2点,而不是1点,对应程序段是N60G00X45Z93T0202。
(2)刀具圆弧半径补偿编制数控车床加工程序时,车刀刀尖被看作是一个点(假想刀尖P点),但实际上为了提高刀具的使用寿命和降低工件表面粗糙度,车刀刀尖被磨成半径不大的圆弧(刀尖AB 圆弧),这必将产生加工工件的形状误差。
另一方面,刀尖圆弧所处位置,车刀的形状对工件加工也将产生影响,而这些可采用刀具圆弧半径补偿来解决。
车刀的形状和位置参数称为刀尖方位,用参数0~9表示,P点为理论刀尖点。
(3)刀补参数每一个刀具补偿号对应刀具位置补偿(X和Z值)和刀具圆弧半径补偿(R和T值)共4个参数,在加工之前输入到对应的存储器,CRT上显示。
在自动执行过程中,数控系统按该存储器中的X、Z、R、T的数值,自动修正刀具的位置误差和自动进行刀尖圆弧半径补偿。
2.加工中心、数控铣床刀具补偿加工中心、数控铣床的数控系统,刀具补偿功能包括刀具半径补偿、夹角补偿和长度补偿等刀具补偿功能。
(1)刀具半径补偿(G41、G42、G40)刀具的半径值预先存入存储器HXX中,XX为存储器号。
数控机床的刀具补偿与补偿方法
数控机床的刀具补偿与补偿方法数控机床是一种通过计算机编程来控制刀具自动运动的高精度机床。
而在数控机床的加工过程中,刀具磨损是不可避免的。
为了确保加工的精度和质量,需要对刀具的磨损进行补偿。
本文将介绍数控机床的刀具补偿及其方法。
刀具补偿是指在数控机床的程序中,通过计算机控制的方式,根据刀具磨损的情况进行刀补操作,使得机床能够保持加工精度。
刀具补偿主要分为几种类型:半径补偿、长度补偿、倾斜补偿、刀尖位置补偿等。
首先,半径补偿是常见的刀具补偿方式之一。
在数控机床中,刀具刃尖的磨损会导致加工半径发生变化,从而影响到加工结果。
为了纠正加工误差,可以通过半径补偿进行校正。
一般来说,半径补偿是通过在程序中输入一个补偿值,将刀具的半径进行相应的增加或减少,以保持加工精度。
其次,长度补偿也是常用的一种刀具补偿方法。
在数控机床中,切削刀具的长度磨损会导致切削深度的变化。
为了保持加工的一致性和精度,可以通过长度补偿来进行校正。
长度补偿的原理是通过在程序中输入一个补偿值,使刀具的位置发生相应的变化,从而达到加工深度的控制。
倾斜补偿是指在加工过程中,刀具出现倾斜现象,导致加工精度下降。
为了解决这个问题,可以通过倾斜补偿来进行校正。
倾斜补偿的原理是通过在程序中调整坐标偏移量,使得刀具在加工过程中能够保持正确的倾斜角度,从而保持加工精度。
最后,刀尖位置补偿是一种通过调整刀具运动轨迹来控制加工精度的方法。
在数控机床的切削过程中,刀尖的位置可能会发生偏移。
通过刀尖位置补偿,可以通过调整刀具的路径来保持刀尖的正确位置,从而实现精确的加工。
综上所述,数控机床的刀具补偿方法主要包括半径补偿、长度补偿、倾斜补偿和刀尖位置补偿等。
这些方法通过在数控机床的程序中输入相应的补偿值或调整坐标偏移量,能够对刀具磨损进行有效的补偿,从而保证加工的精度和质量。
刀具补偿是数控机床加工过程中不可或缺的一部分,它使得机床能够适应刀具磨损的变化,同时提高了加工的效率与精度。
数车刀补
二、刀具补偿的种类
几何位置补偿G01
刀具的几何补偿
刀具补偿
(TXXXX实现)
磨损补偿W01
刀尖圆弧半径补偿
(G41、G42、G40 实现)
三、刀具的几何补偿
1、几何位置补偿 解决: (1)绝对偏置法:各刀设置不同的工件原 点.(偏置量表现)T指令 (2)相对偏置法:各刀位置进行比较,设定 刀具偏差补偿.G50 可以使加工程序不随刀尖位置的不同而改变.
2、磨损补偿(磨耗) 主要是针对某把车刀而言,当某把车刀 批量加工一批零件后,刀具自然磨损后而 导致刀尖位置尺寸的改变,此即为该刀具 的磨损补偿。
批量加工后,各把车刀都应考虑磨损补偿 如何设定的呢?
3、刀具几何补偿的合成
若设定的刀具几何位置补偿和磨损补偿 都有效存在时,实际几何补偿将是这两者 的矢量和。
(2)刀尖方位的设置
车刀形状很多,使用时安装位置也各异,由此 决定刀尖圆弧所在位置。 要把代表车刀形状和位置的参数输入到数据库中。 以刀尖方位号表示。
从图示可知,
若刀尖方位码设为0或9时,机床将以刀尖圆弧中 心为刀位点进行刀补计算处理;
当刀尖方位码设为1~8时,机床将以假想刀尖为 刀位点,根据相应的代码方位进行刀补计算处理。
刀尖位置方向:
使用刀具半径补偿指令时,要根据刀具 在切削时所摆的位置,选择假想刀尖的 方位。按假想刀尖的方位,确定补偿量。 假想刀尖的方位从0-9有十个方向。
5、刀具半径补偿指令 格式: 人站在Y轴箭头上,面朝进
G41 G00
给方向
如何判断左右呢?回忆一下 圆弧顺逆的判断方法
G42
G01
X __ Z __
X=Xj+Xm、 Z=Zj+Zm
数控机床操作中的自动刀具长度补偿方法
数控机床操作中的自动刀具长度补偿方法自动刀具长度补偿是数控机床操作中一个重要的技术要求。
在数控加工中,刀具长度的变化会对加工结果产生重要影响,因此正确地进行自动刀具长度补偿对于保证加工质量与效率至关重要。
本文将介绍数控机床操作中常用的自动刀具长度补偿方法。
1. 刀具长度补偿的概念及意义刀具长度补偿是指在数控加工过程中,通过对刀具长度进行补偿,使实际切削点与编程的切削点保持一致。
由于刀具磨损、加工过程中的刀具温度变化等原因,刀具长度可能会发生变化,如果不及时进行补偿,将导致加工尺寸偏差或加工质量下降。
2. 刀具长度补偿的基本原理数控机床通过测量刀具的实际长度,并与编程时的理论长度进行比较,确定长度差异,进而根据设定的刀具长度补偿值,在加工过程中自动调整刀具位置,使得实际切削点与理论切削点一致。
刀具长度补偿一般分为半径补偿和长度补偿两种。
3. 刀具长度补偿的具体方法(1)长度补偿值的确定刀具长度补偿值一般通过测试或运算得出。
在实际加工中,可以通过在工件上划线的方式,确定刀具实际位置与理论位置之间的差异。
另一种方法是通过机床自动检测功能,将刀具测量设备与数控系统相连,由数控系统进行测量与计算,得出刀具长度补偿值。
(2)刀具长度补偿的程序设置在数控机床的操作界面上,可以通过相应的功能选项设置刀具长度补偿程序。
具体设置过程中,需要输入刀具的编号、直径补偿值或长度补偿值,并设置补偿的方向(正、负),以及是否启用刀具长度补偿功能。
(3)刀具长度补偿的实施刀具长度补偿可在刀具加工前或加工中进行。
在加工前,通过设定的方法获取刀具实际长度,并在程序对刀过程中进行刀具长度补偿。
在加工中,刀具长度补偿可以根据加工过程中刀具磨损或变形的情况实时进行,保持刀具位置的准确性。
(4)半径补偿与长度补偿在数控机床操作中,刀具长度补偿一般同时进行半径补偿。
半径补偿主要用于修正刀具与加工轮廓的关系,保证加工轮廓的精度与准确性。
刀具长度补偿则主要用于修正刀具实际长度变化引起的位置偏差,保证加工尺寸的准确性。
数控机床:刀具半径补偿原理
第三节 刀具半径补偿原理
伸长型:矢量夹角90°≤α<180° 刀具中心轨迹长于编程轨迹的过
渡方式。
第三节 刀具半径补偿原理
插入型:矢量夹角α<90° 在两段刀具中心轨迹之间插入一段直线
的过渡方式。
缩短型:180°≤α<360° 伸长型:90°≤α<180°
插入型:α<90°
缩短型:180°≤α<360° 伸长型:90°≤α<180°
学习目标:
1 刀具半径补偿的基本概念
2 刀具半径补偿的工作原理
第三节 刀具半径补偿原理
一、刀具半径补偿的基本概念
1.为什么是刀具半径补偿? 数控机床在轮廓加工过程中,它所控制的是刀
具中心的轨迹,而用户编程时则是按零件轮廓编制的, 因而为了加工所需的零件,在进行轮廓加工时,刀具中 心必须偏移一个刀具半径值。
数控装置根据零件轮廓编制的程序和预先设定 的刀具半径参数,能实时自动生成刀具中心轨迹的功能 称为刀具半径补偿功能。
第三节 刀具半径补偿原理
2.刀具半径补偿功能的主要用途 ① 实现根据编程轨迹对刀具中心轨迹的控制。 ② 实现刀具半径误差补偿。 ③ 减少粗、精加工程序编制的工作量。
①
第三节 刀具半径补偿原理
3.刀具半径补偿的常用方法
B刀补
相邻两段轮廓的刀具中心 轨迹之间用圆弧连接。
C刀补
相邻两段轮廓的刀具中心 轨迹之间用直线连接。
第三节 刀具半径补偿原理
(1)B刀补 优点: √算法简单,容易实现 缺点: ×在外轮廓尖角加工时,由于轮廓尖角处,始终处于切削 状态,尖角加工的工艺性差。 ×在内轮廓尖角加工时,编程人员必须在零件轮廓中插入 一个半径大于刀具半径的圆弧,这样才能避免产生过切。
数控机床怎样刀补
数控机床怎样刀补数控机床的刀补是指通过数控系统对刀具位置进行微小调整,从而达到提高加工精度和效率的目的。
刀补是数控加工中非常重要的一环,正确的刀补可以保证产品的质量,同时也可以延长刀具的使用寿命。
本文将介绍数控机床的刀补原理、方法以及注意事项。
一、刀补原理在数控机床加工过程中,刀具会受到磨损和破损的影响,因此需要进行刀具补偿以保证加工精度。
刀补的原理是根据加工零件的尺寸偏差或刀具磨损情况,在数控系统中设定相应的补偿值,使得数控机床在运行时对刀具位置进行微调,从而达到期望的加工效果。
二、刀补方法1. 手动刀补手动刀补是最为简单的刀补方法,通过手动操作数控系统进行刀具偏置值的设定。
操作人员需要根据加工件的实际情况和刀具磨损程度,手动输入相应的刀补数值,来实现刀具位置的微调。
2. 自动刀补自动刀补是指利用数控系统中的自动刀补功能,通过设定相关参数和程序,实现对刀具自动补偿。
自动刀补通常可以根据加工程序、刀具类型和加工材料等因素自动计算刀补值,省时省力且准确度更高。
三、刀补注意事项1. 刀具选择在进行刀具补偿时,应根据加工零件的特点和刀具材质选择合适的刀具。
不同的刀具对应的刀补数值可能会有所不同,因此正确选择刀具对刀补的准确性至关重要。
2. 刀补数值刀补数值的设定应该准确可靠,避免过大或过小的刀补值导致加工精度下降或刀具磨损过快的情况发生。
在设定刀补数值时,应该参考实际加工情况和经验积累,保证刀补的有效性。
3. 定期检查为了确保刀补的有效性,操作人员应该定期检查刀具的磨损情况和加工零件的尺寸精度,及时调整刀补数值以保证加工质量。
四、结语数控机床的刀补是数控加工过程中至关重要的环节,正确的刀补方法和注意事项能够有效提高加工效率和产品质量。
通过合理的刀补调整,数控机床能够更好地发挥其加工能力,满足不同加工需要的要求。
希望本文的介绍能为广大数控机床操作人员提供一些参考和帮助。
数控机床刀补指令
数控机床刀补指令数控机床是一种高精度、高效率、自动化程度较高的现代化加工设备,广泛应用于各种金属、非金属零部件的加工制造过程中。
数控机床的核心部分是数控系统,而数控系统中的刀具补偿功能对加工的精度和质量起着至关重要的作用。
本文将介绍数控机床刀补指令的定义、作用及在加工中的应用。
一、概述数控机床刀补指令是数控编程中的一种重要指令,它用于对加工刀具的轨迹进行微调,以达到更高的加工精度和质量。
通过刀补指令,可以对刀具进行不同方向的补偿,使刀具的实际运动轨迹与设定的轨迹一致。
刀补指令通常由数控系统解释执行,可以在程序中灵活调用,实现对不同形状、大小的刀具进行精确加工。
二、刀补指令的分类根据不同的刀具补偿方式,刀补指令可以分为长度补偿、半径补偿和刀尖补偿等几种类型。
长度补偿主要用于修正刀具长度偏差,使加工深度更加准确;半径补偿主要用于修正刀具半径偏差,以确保加工轮廓的精度;而刀尖补偿则是用于修正刀具切削刃与轨迹的偏移,保证切削路径的正确性。
三、刀补指令的应用在数控加工中,刀补指令的应用非常普遍,它可以实现对各类形状、大小的工件进行高精度加工。
在程序编制过程中,操作人员可以根据加工要求和实际情况,通过刀补指令对刀具路径进行调整,以确保加工精度和质量。
此外,在复杂曲面加工中,刀补指令更显得尤为重要,通过对刀具的微调,可以实现对曲面的精细加工,提高加工效率和质量。
四、结语数控机床刀补指令作为数控加工中的重要一环,对于提高加工精度、减少误差至关重要。
通过合理灵活地运用刀补指令,可以实现对各类工件的高精度加工,提高生产效率和质量水平。
因此,在数控机床的操作和编程过程中,专业人士应该充分理解刀补指令的原理和应用,合理运用刀补功能,提高加工效率,满足市场对精密零部件加工的需求。
第2-2讲数控机床的刀具补偿原理
直线插补 以第一象限直线段为例。用户编程时,给出要加工直线 的起点和终点。如果以直线的起点为坐标原点,终点坐 标为(Xe,Ye),插补点坐标为(X,Y),如右图所 示,则以下关系成立: 若点(X,Y)在直线上,则 XeY - YeX = 0 若点(X,Y)位于直线上方,则Xe Y- Ye X>0 若点(X,Y)位于直线下方,则 XeY - Ye X<0 因此取偏差函数F = XeY - YeX。 事实上,计算机并不善于做乘法运算,在其内部乘法运 算是通过加法运算完成的。因此判别函数F的计算实际 上是由以下递推迭加的方法实现的。 设点(Xi,Yi)为当前所在位置,其F值为F = XeYi YeXi 若沿+X方向走一步,则Xi+1=Xi+1 Yi+1=Yi Fi+1=XeYi+1—Ye Xi+1=XeYi—Ye(Xi+1) = Fi—Ye 若沿+Y方向走一步,则Xi+1=Xi Yi+1=Yi+1 Fi+1=XeYi+1—Ye Xi+1=Xe(Yi +1)—YeYi= Fi+Xe 由逐点比较法的运动特点可知,插补运动总步数n = Xe+Ye,可以利用n来判别是否到达终点。每走一步使 n = n - 1,直至n = 0为止。终上所述第一象限直线插补 软件流程如图下图所示。
节拍 起始 1
2
3 4 5 6
F1 = -2 < 0
F2 = 2 > 0 F3 = 0 F4 = -2 < 0 F5 = 2 >0
+Y
+X +X +Y +X
简述数控车床刀具补偿的类型和意义
简述数控车床刀具补偿的类型和意义
数控车床是一种高精度、高效率的数控加工机床,广泛应用于机
械加工行业。
在数控车床的加工过程中,刀具是至关重要的一环,与
其精度和稳定性直接关系到加工的质量和效率。
然而,由于各种因素
的影响,刀具在使用过程中难免会出现一定的偏差和磨损,这就需要
进行刀具补偿。
数控车床刀具补偿可以分为以下两种类型:
1.轴向补偿:也称为长度补偿,是以刀具长度为基础的补偿方式。
它主要是根据刀具弯曲或者伸缩等情况,将刀尖位置调整到预设位置,从而达到精确加工的目的。
其值通常是以毫米为单位。
2.半径补偿:也称为补偿值,是以刀具弧形的半径为基础的补偿
方式,解决了物理形状偏差和摆线误差等问题。
其值可以为正值或负值,单位通常是毫米或微米。
这两种补偿方式都能够解决实际加工过程中的问题,提高加工精
确度和加工效率,从而提升整个加工业的竞争力。
数控车床刀具补偿的意义不可忽视。
首先,它可以保证加工质量
和精确度,达到客户的要求。
其次,补偿值可以达到最小,从而减少
废品率,不断提高生产效率,降低加工成本。
第三,它还能够扩大加
工技术的应用范围,满足复杂零件的加工需求。
总之,数控车床刀具补偿是数字化精密加工的重要环节之一。
通
过不断的改进和创新,能够不断提高加工质量、效率和科技含量,为
制造业打造出更为优质、高端、智能的产品。
数控机床刀具补偿的设置
数控机床刀具补偿的设置作者:郑善东来源:《科学大众》2018年第07期摘要:本文阐述了刀具半径补偿的原因,详细介绍了在切削加工中刀具补偿半径的设置方法和刀沿位置的设置等,通过实例说明在数控切削加工中刀具补偿对于保证加工精度、延长刀具寿命、提高生产效率等的重要意义。
关键词:切削;补偿;设置随着中国制造2025战略的实施,数字控制应用越来越广泛,很多机械制造工艺也越来越简单,这得益于控制系统功能的强大。
在西门子数控系统中,通过设置刀具的补偿,可以提高工件的尺寸精度,延长刀具的寿命和提高生产效率,降低企业生产成本等,下面将分析刀具进行补偿的原因和补偿的设置方法。
1 刀具半径补偿的原因数控车床总是按刀尖对刀,为了提高刀具的使用寿命和提高加工精度,通常将刀尖磨成半径不大的圆弧,但在实际的切削加工中,是按照假想的刀尖進行编程的,即利用刀具的刀位点来编程,而不是实际的刀尖圆弧。
这样在加工圆锥面和圆弧面的过程中,会因实际切削点和理想切削点的不同而造成刀具少切或过切现象,造成实际的刀具轨迹和编程轨迹不同,零件的加工精度必然不能保证,从而通过设置刀具的补偿来提高加工精度和质量。
2 半径补偿的设置在数控车床上,加工补偿半径通常指刀尖圆弧半径和圆刀片半径。
因为这两个半径的存在,在切削锥面、圆弧或其他仿型轮廓时,车刀理想刀尖的运动路径与刀具实际切削刃加工出的零件轮廓存在一定的偏差,这样将会产生过切或欠切的现象。
为了保证较高的加工精度和正确的补偿量,数控加工在建立车削刀具时应在刀具表中输入正确的数值。
3 常用刀沿位置设置在数控系统中设置了准确的补偿半径值后,系统将根据刀具切削刃的位置和加工运动方向计算出刀具的实际补偿量。
以数控机床后置刀塔为例,西门子系统刀具列表画面列出了8个常用的刀沿位置(见图1),刀沿就是切削刃。
数控系统是根据半径左右补偿G41/G42指令与刀具结构、加工位置和走刀方式等设置车削加工刀沿位置号。
例如,外圆车削用3号刀沿位置,内孔车削用2号刀沿位置,反向外圆车削用4号刀沿位置,反车内孔用1号刀沿位置。
数控机床为什么需要刀具补偿
经过译码后得到的数据,还不能直接用于插补控制,要通过刀具补偿计算,将编程轮廓数据转换成刀具中心轨迹的数据才能用于插补。
刀具补偿分为刀具长度补偿和刀具半径补偿。
1.刀具长度补偿
在数控立式铣镗床上,当刀具磨损或更换刀具使Z向刀尖不在原初始加工的程编位置时,必须在Z向进给中,通过伸长(见图1)或缩短1个偏置值e的办法来补偿其尺寸的变化,以保证加工深度仍然达到原设计位置。
图1 刀具长度补偿
在图2-4中,所画刀具实线为刀具实际位置,虚线为刀具编程位置,则刀具长度补偿控制程序如下:
设定H01 = - 4.0 (偏置值)
N1 G91 G00 G43 Z-32.0 H01;实际z向将进给-32.0+(- 4.0) = -36.0
N2 G01 Z-21.0 F1000; Z向将从- 36.0位置进给到-57.0位置。
N3 G00 G49 Z53.0; Z向将退回到53.0+4.0, 返回补始位置。
2.刀具半径补偿
刀具半径补偿是指数控装置使刀具中心偏移零件轮廓一个指定的刀具半径值。
根据ISO标准,当刀具中心轨迹在程序加工前进方向的右侧时,称右刀具半径补偿,用G42表示;反之称为左刀具半径补偿,用G41表示;撤销刀具半径补偿用G40表示。
刀具半径补偿功能的优点是:在编程时可以按零件轮廓编程,不必计算刀具中心轨迹;刀具的磨损,刀具的更换不要重新编制加工程序;可以采用同一程序进行粗、精加工;可以采用同一程序加工凸凹模。
数控机床刀补原理
数控机床刀补原理在数控机床加工中,刀具补偿(又称刀补)是一项非常重要的操作步骤,它可以有效地提高加工精度和效率。
本文将介绍数控机床刀补的原理及其在加工中的应用。
1. 刀具补偿的概念刀具补偿是指通过在数控编程中对刀具轨迹进行微小调整,以补偿刀具造成的尺寸误差。
在数控机床加工中,由于刀具磨损、热变形等原因,刀具的实际加工轨迹往往会与理论轨迹有一定的偏差,而通过刀具补偿可以在一定程度上消除这种偏差,从而保证加工件的质量。
2. 刀具补偿的类型2.1 几何补偿几何补偿是根据刀具的实际形状和尺寸对刀具轨迹进行调整。
主要包括半径补偿、长度补偿等。
通过对几何形状进行补偿,可以保证加工出的零件尺寸准确。
2.2 补偿方式补偿方式主要包括刀尖补偿、刀具半径补偿和长度补偿三种。
刀尖补偿是以刀尖坐标为基准进行的补偿;刀具半径补偿是以刀具圆弧轨迹的端点坐标为基准进行的补偿;长度补偿是以刀具长度方向的终点为基准进行的补偿。
3. 刀具补偿原理刀具补偿的原理是在数控编程中通过增加或减小刀具轨迹的相关参数来实现,这些参数会影响刀具所切削的路径。
根据实际情况,对刀具轨迹进行微调,从而达到补偿刀具尺寸误差的目的。
4. 刀具补偿的应用在数控机床加工中,刀具补偿广泛应用于各种加工类型,如铣削、钻削、车削等。
通过合理的刀具补偿操作,可以提高加工精度和效率,减少成本,并且适用于各种复杂曲线和曲面零件的加工。
5. 结语刀具补偿是数控机床加工过程中的重要环节,通过对刀具轨迹进行微小调整,可以有效地提高加工精度和效率。
掌握刀具补偿原理,合理应用刀具补偿技术,对于提高数控机床加工质量和效率具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 刀具长度补偿 以数控车床为例进行说明,数控装置控制的是刀架参考 点的位置,实际切削时是利用刀尖来完成,刀具长度 补偿是用来实现刀尖轨迹与刀架参考点之间的转换。 如图3-35所示,P为刀尖,Q为刀架参考点,假设刀尖 圆弧半径为零。利用刀具长度测量装置测出刀尖点相 对于刀架参考点的坐标xpq,zpq,存入刀补内存表中。 零件轮廓轨迹是由刀尖切出的,编程时以刀尖点P来编程, 设刀尖P点坐标为xp ,zp ,刀架参考点坐标Q(xq ,zq ) 可由下式求出:
图3-40a给出了普通数控系统的工作方法,在系统内, 数据缓冲寄存区BS用以存放下一个加工程序段的信息, 设置工作寄存区AS,存放正在加工的程序段的信息, 其运算结果送到输出寄存区OS,直接作为伺服系统的 控制信号。 图3-40b为CNC系统中采用C刀补方法的原理框图, 与3-40a不同的是,CNC装置内部又增设了一个刀补缓 冲区CS。当系统启动后,第一个程序段先被读入BS, 在BS中算得第一段刀具中心轨迹,被送到CS中暂存后, 又将第二个程序段读入BS,算出第二个程序段的刀具 中心轨迹。接着对第一、第二两段刀具中心轨迹的连 接方式进行判别,根据判别结果,再对第一段刀具中 心轨迹进行修正。
加工如图3-39外部轮廓零件ABCD时,由AB直线段开始,接 着加工直线段BC,根据给出的两个程序段,按B刀补处 理后可求出相应的刀心轨迹A1B1和B2C1。
事实上,加工完第一个程序段,刀具中心落在B1 点上, 而第二个程序段的起点为B2 ,两个程序段之间出现了 断点,只有刀具中心走一个从B1 至B2 的附加程序,即 在两个间断点之间增加一个半径为刀具半径的过渡圆 弧B1B2,才能正确加工出整个零件轮廓。 可见,B刀补采用了读一段,算一段,再走一段的控 制方法,这样,无法预计到由于刀具半径所造成的下 一段加工轨迹对本程序段加工轨迹的影响。为解决下 一段加工轨迹对本段加工轨迹的影响,在计算本程序 段轨迹后,提前将下一段程序读入,然后根据它们之 间转接的具体情况,再对本段的轨迹作适当修正,得 到本段正确加工轨迹,这就是C功能刀具补偿。C功能 刀补更为完善,这种方法能根据相邻轮廓段的信息自 动处理两个程序段刀具中心轨迹的转换,并自动在转 接点处插入过渡圆弧或直线从而避免刀具干涉和断点 情况。
在图3-42a中,编程轨迹为FG和GH,刀具中心轨迹为 AB和BC,相对于编程轨迹缩短一个BD与BE的长度,这 种转接为缩短型。 图3-42b中,刀具中心轨迹AB和BC相对于编程轨迹FG和 GH伸长一个BD与BE的长度,这种转接为伸长型。图 3-42c中,若采用伸长型,刀心轨迹为AM和MC,相对 于编程轨迹FG和GH来说,刀具空行程时间较长,为 减少刀具非切削的空行程时间,可在中间插入过渡直 线BB1,并令BD等于B1E且等于刀具半径r,这种转接为 插入型。根据转接角α不同,可以将C刀补的各种转接 过渡形式分为三类: (1)当1800< ɑ<3600时,属缩短型,见图3-41a和3-42a。 (2)当900≤ ɑ<1800 时,属伸长型,见图3-41b和3-42b。 (3) 当00< ɑ<900时,属插入型,见图3-41c和3-42c。
修正结束后,顺序地将修正后的第一段刀具中心 轨迹由CS送入AS中,第二段刀具中心轨迹由 BS送入CS中。 然后,由CPU将AS中的内容送到OS中进行插补 运算,运算结果送到伺服系统中予以执行。当 修正了的第一段刀具中心轨迹开始被执行后, 利用插补间隙,CPU又命令第三段程序读入 BS,随后,又根据BS和CS中的第三、第二段 轨迹的连接情况,对CS中的第二程序段的刀 具中心轨迹进行修正。依此下去,可见在刀补 工作状态,CNC内部总是同时存在三个程序段 的信息。
三 、刀具半径补偿算法 刀具半径补偿计算:根据零件尺寸和刀具半径值 计算出刀具中心轨迹。对于一般的CNC装置,所能实现 的轮廓仅限于直线和圆弧。刀具半径补偿分B功能刀补 与C功能刀补,B功能刀补能根据本段程序的轮廓尺寸 进行刀具半径补偿,不能解决程序段之间的过渡问题, 编程人员必须先估计刀补后可能出现的间断点和交叉 点等情况,进行人为处理。B功能刀补计算如下: 1. 直线刀具补偿计算 对直线而言,刀具补偿后的轨迹是与原直线平行 的直线,只需要计算出刀具中心轨迹的起点和终点坐 标值。
r
刀具 A
r
B
图3-34 刀具半径补偿
当实际刀具长度与编程长度不一致时,利用刀具 长度补偿功能可以实现对刀具长度差额的补偿。 加工中心:一个重要组成部分就是自动换刀装置, 在一次加工中使用多把长度不同的刀具,需要有刀具 长度补偿功能。 轮廓铣削加工:为刀具中心沿所需轨迹运动,需 要有刀具半径补偿功能。 车削加工:可以使用多种刀具,数控系统具备了 刀具长度和刀具半径补偿功能,使数控程序与刀具形 状和刀具尺寸尽量无关,可大大简化编程。 具有刀具补偿功能,在编制加工程序时,可以按 零件实际轮廓编程,加工前测量实际的刀具半径、长 度等,作为刀具补偿参数输入数控系统,可以加工出 合乎尺寸要求的零件轮廓。
2.
刀补撤销
刀补建立 O
x
a) G41 左刀补 b) G42右刀补
在切削过程中,刀具半径补偿的补偿过程分为三 个步骤: (1)刀补建立 刀具从起刀点接近工件,在原来的 程序轨迹基础上伸长或缩短一个刀具半径值,即刀具 中心从与编程轨迹重合过渡到与编程轨迹距离一个刀 具半径值。在该段中,动作指令只能用G00或G01。 (2)刀具补偿进行 刀具补偿进行期间,刀具中心 轨迹始终偏离编程轨迹一个刀具半径的距离。在此状 态下,G00、G01、G02、G03都可使用。 (3)刀补撤销 刀具撤离工件,返回原点。即刀具 中心轨迹从与编程轨迹相距一个刀具半径值过渡到与 编程轨迹重合。此时也只能用G00、G01。
y
y
y
r r
r r α
r α O a) x
α r
O b)
x
O c)
x
图3-41 G41刀补建立示意图
M C B A a) Dr r Gα E F H C H r E Gr B D α F A A B1 D G r r r E α F b) c)
图3-42 刀补进行直线与直线转接情况
B r
H C
四、刀具补偿的几种特殊情况 1. 在切削过程中改变刀补方向 如图3-43所示,切削轮廓MN段采用G42刀补,而后加工PQ 段,改变了刀补方向,应采用G41刀补,这时必须在 P 点产生一个具有长度为刀具半径的垂直矢量以获得一 段过渡圆弧AB。
A
r1 N11 r2 P Q N12
G42
B r2 G41
N
M
r1
图3-43 刀补方向改变的切削实例
图3-44 刀补半径改变的实例
2. 改变刀具半径值 在零件切削过程中刀具半径值改变了,则新的补偿 值在下个程序段中产生影响。如图3-44所示,N10段补 偿用刀具半径r1 ,N11段变为r2 后,则开始建立新的刀 补,进入N12段后即按新刀补r2进行补偿。刀具半径的 改变可通过改变刀具号或通过操作面板等方法来实现。 3. 过切问题 (1)刀具半径补偿可使刀具中心轨迹在走刀平面 (如xy面)内偏移零件轮廓一个刀具半径值。在刀补 建立后的刀补进行中,如果存在有二段以上没有移动 指令或存在非指定平面轴的移动指令段,则可能产生 过切。 如图3-45所示,设刀具开始位置距工件 表面上方50mm, 切削深度为8mm。z轴垂直于走刀平 面(xy面),则按下述方法编程,会产生过切。
刀具补偿原理
一、为什么要进行刀具补偿 如图3-34所示,在铣床上用半径为r的刀具加工外 形轮廓为A的工件时,刀具中心沿着与轮廓A距离为r的 轨迹B移动。我们要根据轮廓A的坐标参数和刀具半径r 值计算出刀具中心轨迹B的坐标参数,然后再编制程序 进行加工,因控制系统控制的是刀具中心的运动。在 轮廓加工中,由于刀具总有一定的半径,如铣刀半径 或线切割机的钼丝半径等。刀具中心(刀位点)的运 动轨迹并不等于所加工零件的实际轨迹(直接按零件 廓形编程所得轨迹),数控系统的刀具半径补偿就是 把零件轮廓轨迹转换成刀具中心轨迹。
如图3-37所示,被加工直线段的起点在坐标原点, 终点坐标为A。假定上一程序段加工完后,刀具中心在 O′点坐标已知。刀具半径为,现要计算刀具右补偿后 直线段O′A′的终点坐标A′。设刀具补偿矢量AA′的投影 坐标为,则
X X X Y Y Y
(3-46)
xOA AAK
y A(X,Y) ΔY α K A′(X′,Y′) r K ΔX x
y
B′(Xb′,Yb′)
O
α O′
ΔY B(Xb,Yb) K ΔX R r A′(Xa′,Ya′) A(Xa,Ya) x
β O
图3-37 直线刀具补偿
图3-38 圆弧刀具半径补偿
2. 圆弧刀具半径补偿计算 对于圆弧而言,刀具补偿后的刀具中心轨迹是一个 与圆弧同心的一段圆弧。只需计算刀补后圆弧的起点 坐标和终点坐标值。如图3-38所示,被加工圆弧的圆 心坐标在坐标原点O,圆弧半径为R,圆弧起点A,终 点B,刀具半径为r。 假定上一个程序段加工结束后刀具中心为A′,其坐 标已知。那么圆弧刀具半径补偿计算的目的,就是计 算出刀具中心轨迹的终点坐标B′ X b ,Y。设BB′在两个坐 b X 为则 , Y 标上的投影 X b X b X Yb Yb Y (3-49)
BOx B BK 来自Xb X r cos r R Y Y r sin r b R
(3-50)
rX b R rYb Yb Yb R Xb Xb
(3-51)
y D2 A2 O
D1 D A A1
C2 C B B1 x C1 B2
图3-39 B刀补示例
刀具半径补偿 ISO标准规定,当刀具中心轨迹在编程轨迹(零件轮廓 ABCD)前进方向的左侧时,称为左刀补,用G41表示。 反之,当刀具处于轮廓前进方向的右侧时称为右刀补, 用G42表示,如图3-36所示。G40为取消刀具补偿指令。