LTC6603/6601-1/6605-X:宽带有源滤波器/ADC驱动器

合集下载

华润矽威科技(上海)有限公司 PT2312B 恒压恒流原边反馈转换器说明书

华润矽威科技(上海)有限公司 PT2312B 恒压恒流原边反馈转换器说明书

PT2312B恒压恒流原边反馈转换器概述PT2312B 是一款高性能的AC/DC 功率转换器,可应用于充电器和适配器。

芯片采用原边反馈和控制,无需光耦和TL431即可实现较高的恒压恒流精度。

PT2312B 在恒流工作中采用PFM 控制,在恒压工作中采用PFM/PWM 复合控制。

此外,PT2312B 集成了准谐振开关控制以及输出线缆补偿功能,从而有利于减小开关损耗并简化系统EMI 设计,优化输出特性。

PT2312B 提供软启动,EMI 抖频技术以及多种保护功能,诸如自动重启,逐周期电流限制,VCC 过压欠压保护,采样电阻开路短路保护,过温保护等。

PT2312B 采用SOP-7封装。

特点● 原边采样和反馈,无需光耦和TL431 ● 在常规输入条件下,5%的恒流恒压精度 ● 准谐振开关控制 ● 抖频技术● 可编程的输出线缆补偿 ● 自适应峰值电流调节 ● 前沿消隐功能(LEB ) ● 逐周期限流功能● VCC 过压欠压保护(UVLO ,OVP ) ● 采样电阻开路、短路保护 ●过温保护(OTP )● 应用● 适配器,充电器等 ● LED 灯 ●辅助供电订购信息典型应用电路T1图1,PT2312B 的典型应用线路PT2312B恒压恒流原边反馈转换器封装及引脚排列7651234FBCRC VCC CSGNDDRAIN SOP-7DRAINPT2312B图2,PT2312B 的封装引脚图(正面)引脚说明极限参数 (注1)注1: 最大极限值是指超出该工作范围,芯片有可能损坏。

推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。

电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。

对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性简化模块图CRCGNDCS图3,PT2312B的简化模块图电气参数(无特别说明T A=25˚C, VCC=20.5V)功能描述PT2312B 是一款高性能的AC/DC 功率转换器,可应用于充电器和适配器。

变频逆变器技术转让软件硬件设计资料

变频逆变器技术转让软件硬件设计资料

深圳伊瑞以全心全意为顾客服务,帮助客户解决难题,也赢得了广大客户的一致好评。

深圳市伊瑞软件技术有限公司是一家致力于新能源汽车驱动器、变频器方案、伺服驱动器技术方案、步进驱动、PLC可编程控制器、HMI技术方案、电梯一体机技术方案,并且为客户提供系列化的解决方案于一体的综合性高新科技企业。

人生有许多次选择,一次对的选择将改变一生,深圳伊瑞欢迎你的来电.公司部分产品技术展示:技术简介:高性价比的美国TI高速芯片MS320F28034PNT/28035Piccolo该系列的代码与以往基于C28x的代码相兼容,并且提供了很高的模拟集成度。

采用高性能的矢量控制技术,低速高转矩输出,具有良好的动态特性、超强的过载能力、增加了用户可编程功能及后台监控软件,通讯总线功能,支持多种PG卡等,组合功能丰富强大,性能稳定。

可用于纺织、造纸、拉丝、机床、包装、食品、风机、水泵及各种自动化生产设备的驱动。

适用电机:三相感性电动机。

市场前景分析:中国变频器市场具有广阔的发展空间,目前则达到600亿元左右。

随着市场的扩大和用户端需求的多样化,国内变频器产品的功能在不断完善和增加,集成度和系统化越来越高,并且已经出现某些专用变频器产品。

据了解,近年来,中国变频器的市场保持着12-15%的增长率,预计至少在未来5年内将会保持10%以上的增长率。

目前,中国市场上变频器安装容量(功率)的增长率实际上在20%左右,预计至少在10年以后,变频器市场才能饱和并逐渐成熟。

竞争技术分析:高级变频控制技术的全套设计和软件资料,受让即可立即生产使用。

该软件设计成熟,为一流企业现在使用的版本。

转让标的:可以分部转让的部分包括:软件设计(含原代码),电路板设计,元器件清单和数量,调试软件。

关于售后:1、提供全套、有效的相关技术资料2、诚信第一,绝无后顾之忧3、完善的售全程跟踪回访,知道解决市场难题,服务无微不至4、人无我有,人有我优------------------------------------------------------------------变频驱动设备解决方案伺服驱动器生产方案提供商深圳市伊瑞软件技术有限公司Shenzhen Erik Software Technology Co.,Ltd扣扣:2512262471联系电话:高端1矢量3变频8技术2伺服3PLC1步进3电梯7逆变4源码6转让4。

CL1502LED驱动

CL1502LED驱动

推荐工作范围
符号 ILED_1 ILED_2 VLED_MIN
参数
LED输出电流@Vout=72V (输入电压175V~265V) LED输出电流@Vout=36V (输入电压175V~265V)
最低LED负载电压
参数范围 单位
<220
mA
<300
mA
>15
V
CL1502_CN Rev. 1.1
4
PN结到环境的热阻
188 ℃/W
工作结温范围
-40℃ to 150 ℃
最低/最高存储温度
-55℃ to 150 ℃
CL1502
封装耗散等级
封装 SOP8
RθJA (℃/W) 188
注:超出“最大额定值”可能损毁器件。推荐工作范围内器件可以工作,但不保证其特性。运行在最大额定条件下
长时间可能会影响器件的可靠性。
其中,VIN为系统经过整流桥后的输入电压;L系统工作电感;VLED为LED灯上的工作压降。 在功率管关断时,电感电流开始下降。功率管关断时间公式为:
储能电感选取值为:
tOFF
=
L ×IPEAK VLED
L = VLED × (VIN - VLED ) f ×IPAEK × VIN
CL1502内部设置了功率管的最小关断时间和最大关断时间,分别为4.5us和240us。如果储能电感的感值很
CL1502具有多种恒流辅助功能,实现优异的线性补偿和高精度恒流效果。CL1502工作于电感电流临界连续 模式(TM),输出电流不随电感和负载的变化而变化,具有优异的负载调整特性。
CL1502集成多种保护功能,极大的增强了系统的可靠性。保护功能包括LED开路保护、LED短路保护、欠 压锁定,电流采样电阻短路保护和过温调节功能。

EUCHIPS EUCP50XY-1WxxxxC-0MWWZ LED 恒流调光驱动器 产品说明书

EUCHIPS EUCP50XY-1WxxxxC-0MWWZ LED 恒流调光驱动器 产品说明书

SHANGHAI EUCHIPS INDUSTRIAL CO.,LTDEUCP50XY-1WxxxxC-0MWWZProduct FeaturesLED 恒流调光驱动器概述EUCP50XY-1WxxxxC-0MWWZ 系列是恒流模式输出的LED 驱动器,抗浪涌等级高,防护等级为IP67,适用于户外。

用户可根据调光方式和市场需求选择相应的型号,并可通过NFC 编程器修改输出电流。

电源电压: 100-277VAC 或 141-391VDC 10kV 浪涌等级- 60℃低温启动(可选择) 100,000小时的寿命@ Tc=75C 5 年保修 @ Tc<=80C Airset TM NFC 编程电流输出精度+/-2% (可编程模型) 0-10V/PWM/DALI 可调光 (取决于型号) 调灭后待机功耗0.5W(取决于型号)电源控制器与风扇的辅助电源为12V 300mA (取决于型号) 输入过压保护(可选择)UL Class P , Class 2,ENEC/CB/CCC,SELV 认证 安全依据EN 61347-1, 61347-2-3,61347-2-13, 62384 应用 :LED 灯带、景观灯、工矿灯、路灯、泛光灯上海欧切斯实业有限公司型号清单 技术参数上海欧切斯实业有限公司注: 除非特别注明,所有的测试结果均在220VAC ,25℃室温下测得。

* 可选择标记项目,获取详细功能请联系销售人员调光安规/电磁兼容调调光光曲曲线线a. 带调灭功能默认值)b. 无调灭功能(联系销售获取此功能调光接线图(End of Life: Maximum Failure Rate=10%)使用寿命 vs. 外壳温度功率因数vs.负载THD vs.负载EUCP50NN(FR)-1WxxxxC-0MWWUUnspecified tolerance :±1AC INPUT(UL SJTW 3×18AWG)DC OUTPUT(UL SJTW 2×18AWG)BLACK(ACL)WHITE(ACN)GREEN(GND)RED(V+)BLUE(V-)效率 vs.负载 (1050mA)尺寸 (mm)EUCP50AR(AN)-1WxxxxC-0MWWUUnspecified tolerance :±1AC INPUT(UL SJTW 3×18AWG)DC OUTPUT(UL SJTW 2×18AWG)DIMMING WIRE(UL SJTW 2×18AWG)BLACK(ACL)WHITE(ACN)GREEN(GND)PURPLE(Vdim+)GRAY(Vdim-)RED(V+)BLUE(V-)EUCP50ER-1WxxxxC-0MWWUUnspecified tolerance :±1AC INPUT(UL SJTW 3×18AWG)DC OUTPUT(UL SJTW 2×18AWG)DIMMING WIRE(UL SJTW 3×18AWG)BLACK(ACL)WHITE(ACN)GREEN(GND)BLACK&WHITE(Vaux/+12V)PURPLE(Vdim+)GRAY(Vdim-)RED(V+)BLUE(V-)EUCP50DR-1WxxxxC-0MWWUUnspecified tolerance :±1AC INPUT(UL SJTW 3×18AWG)DC OUTPUT(UL SJTW 2×18AWG)DIMMING WIRE(UL 2464 4×22AWG)BLACK(ACL)WHITE(ACN)GREEN(GND)RED(V+)BLUE(V-)PINK(DALI 2)BLACK&WHITE(Vaux+)GRAY(Vaux-)BLUE&WHITE(DALI 1)EUCP50NN(FR)-1WxxxxC-0MWWSUnspecified tolerance :±1AC INPUT(VDE H05RN-F 3×1.0mm2)DC OUTPUT(VDE H05RN-F 2×1.0mm2)BROWN(ACL)BLUE(ACN)YELLOW&GREEN (GND)BROWN(V+)BLUE(V-)EUCP50AR(AN)-1WxxxxC-0MWWSUnspecified tolerance :±1AC INPUT(VDE H05RN-F 3×1.0mm2)DC OUTPUT(VDE H05RN-F 2×1.0mm2)DIMMING WIRE(H05RN-F 2×0.75mm2)BROWN(ACL)BLUE(ACN)YELLOW&GREEN (GND)PURPLE(Vdim+)GRAY(Vdim-)BROWN(V+)BLUE(V-)EUCP50ER-1WxxxxC-0MWWSUnspecified tolerance :±1AC INPUT(VDE H05RN-F 3×1.0mm2)DC OUTPUT(VDE H05RN-F 2×1.0mm2)DIMMING WIRE(H05RN-F 3×0.75mm2)BROWN(ACL)BLUE(ACN)YELLOW&GREEN (GND)BLACK&WHITE(Vaux/+12V)PURPLE(Vdim+)GRAY(Vdim-)BROWN(V+)BLUE(V-)EUCP50DR-1WxxxxC-0MWWSUnspecified tolerance :±1AC INPUT(VDE H05RN-F 3×1.0mm2)DC OUTPUT(VDE H05RN-F 2×1.0mm2)DIMMING WIRE(H05RN-F 4×0.5mm2)BROWN(ACL)BLUE(ACN)YELLOW&GREEN (GND)BROWN(V+)BLUE(V-)PINK(DALI 2)BLACK&WHITE(Vaux+)GRAY(Vaux-)BLUE&WHITE(DALI 1)。

LTC6401IUD-26#PBF中文资料

LTC6401IUD-26#PBF中文资料

1640126fFREQUENCY (MHz)O U T P U T I P3 (d B m )10203040506050100150200640126 TA01bTYPICAL APPLICATIONFEATURESAPPLICATIONSDESCRIPTIONLow Distortion Differential ADC Driver for DC-140MHzThe LTC ®6401-26 is a high-speed differential amplifi er targeted at processing signals from DC to 140MHz. The part has been specifi cally designed to drive 12-, 14- and 16-bit ADCs with low noise and low distortion, but can also be used as a general-purpose broadband gain block.The LTC6401-26 is easy to use, with minimal support circuitry required. The output common mode voltage is set using an external pin, independent of the inputs, which eliminates the need of transformers or AC-coupling ca-pacitors in many applications. The gain is internally fi xed at 26dB (20V/V).The LTC6401-26 saves space and power compared to alternative solutions using IF gain blocks and transform-ers. The LTC6401-26 is packaged in a compact 16-lead 3mm × 3mm QFN package and operates over the –40°C to 85°C temperature range.Equivalent OIP3 vs Frequency■1.6GHz –3dB Bandwidth ■ Fixed Gain of 20V/V (26dB)■ –85dBc IMD3 at 70MHz (Equivalent OIP3 = 46.5dBm)■ –72dBc IMD3 at 140MHz (Equivalent OIP3 = 40dBm)■ 1nV/√H z Internal Op Amp Noise■ 1.5nV/√H z Total Input Referred Noise ■ 6.8dB Noise Figure■ Differential Inputs and Outputs ■ 50Ω Input Impedance■ 2.85V to 3.5V Supply Voltage ■ 45mA Supply Current (135mW)■ 1V to 1.6V Output Common Mode, Adjustable ■ DC- or AC-Coupled Operation■Max Differential Output Swing 4.7V P-P■ Small 16-Lead 3mm × 3mm × 0.75mm QFN Package■Differential ADC Driver ■ Differential Driver/Receiver■ Single Ended to Differential Conversion ■ IF Sampling Receivers ■ SAW Filter InterfacingSingle-Ended to Differential ADC Driver at 140MHz IF0.1μV2640126fABSOLUTE MAXIMUM RATINGSSupply Voltage (V + – V –) ..........................................3.6V Input Current (Note 2) ..........................................±10mA Operating Temperature Range(Note 3) ...............................................–40°C to 85°C Specifi ed Temperature Range(Note 4) ...............................................–40°C to 85°C Storage Temperature Range ...................–65°C to 150°C Maximum Junction Temperature ..........................150°C(Note 1)161514135678TOP VIEW UD PACKAGE16-LEAD (3mm × 3mm) PLA S TIC QFN 9101117124321V +V OCM V +V –V –ENABLE V +V ––I N–I N+I N +I N–O U T–O U T F+O U T F+O U TT JMAX = 150°C, θJA = 68°C/W, θJC = 4.2°C/WEXPOSED PAD (PIN 17) IS V –, MUST BE SOLDERED TO PCBORDER INFORMATIONLEAD FREE FINISH TAPE AND REELPART MARKING*PACKAGE DESCRIPTIONSPECIFIED TEMPERATURE RANGE LTC6401CUD-26#PBF LTC6401CUD-26#TRPBF LCDG 16-Lead (3mm × 3mm) Plastic QFN 0°C to 70°C LTC6401IUD-26#PBFLTC6401IUD-26#TRPBF LCDG16-Lead (3mm × 3mm) Plastic QFN–40°C to 85°CConsult LTC Marketing for parts specifi ed with wider operating temperature ranges. *The temperature grade is identifi ed by a label on the shipping container.Consult LTC Marketing for information on non-standard lead based fi nish parts.For more information on lead free part marking, go to: /leadfree/ For more information on tape and reel specifi cations, go to: /tapeandreel/LTC6400 AND LTC6401 SELECTOR GUIDEPART NUMBER GAIN(dB)GAIN (V/V)Z IN (DIFFERENTIAL)(Ω)I CC (mA)LTC6401-88 2.540045LTC6401-20201020050LTC6401-2626205045LTC6400-20201020090LTC6400-2626205085In addition to the LTC6401 family of amplifi ers, a lower distortion LTC6400 family is available. The LTC6400 is pin compatible to the LTC6401, and has the same low noise performance. The low distortion of the LTC6400 comes at the expense of higher power consumption. Please refer to the separate LTC6400 data sheets for complete details. Other gain versions from 8dB to 14dB will follow.Please check each datasheet for complete details.PIN CONFIGURATIONDC ELECTRICAL CHARACTERISTICSSYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Input/Output Characteristic (+IN, –IN, +OUT, –OUT, +OUTF, –OUTF)G DIFF Gain V IN = ±50mV Differential●252627dB TC GAIN Gain Temperature Drift V IN = ±50mV Differential●0.003dB/°C V SWINGMIN Output Swing Low Each Output, V IN = ±200mV Differential●0.090.15V V SWINGMAX Output Swing High Each Output, V IN = ±200mV Differential● 2.3 2.43V V OUTDIFFMAX Maximum Differential Output Swing1dB Compressed● 4.3 4.7V P-P I OUT Output Current Drive Each Output, V IN = ±200mV,V OUT > 2V P-P●10mA V OS Input Offset Voltage Differential●–2.5 2.5mV TCV OS Input Offset Voltage Drift Differential●1μV/°C I VRMIN Input Common Mode Voltage Range, MIN1V I VRMAX Input Common Mode Voltage Range, MAX 1.6V R INDIFF Input Resistance (+IN, –IN)Differential●42.55057.5ΩC INDIFF Input Capacitance (+IN, –IN)Differential, Includes Parasitic1pF R OUTDIFF Output Resistance (+OUT, –OUT)Differential●182532ΩR OUTFDIFF Filtered Output Resistance (+OUTF, –OUTF)Differential●85100115ΩC OUTFDIFF Filtered Output Capacitance (+OUTF, –OUTF)Differential, Includes Parasitic 2.7pF CMRR Common Mode Rejection Ratio Input Common Mode Voltage1.1V to1.4V●5075dB Output Common Mode ControlG CM Common Mode Gain V OCM = 1V to 1.6V1V/VV OCMMIN Output Common Mode Range, MIN●11.1VVV OCMMAX Output Common Mode Range, MAX●1.61.5VVV OSCM Common Mode Offset Voltage V OCM = 1.1V to 1.5V●–1515mV TCV OSCM Common Mode Offset Voltage Drift●3μV/°C IV OCM V OCM Input Current●515μA E N A B L E PinV IL E N A B L E Input Low Voltage●0.8V V IH E N A B L E Input High Voltage● 2.4V I IL E N A B L E Input Low Current E N A B L E = 0.8V●0.5μA I IH E N A B L E Input High Current E N A B L E = 2.4V● 1.43μA Power SupplyV S Operating Supply Range● 2.853 3.5V I S Supply Current E N A B L E = 0V, Both Inputs andOutputs Floating●354560mAI SHDN Shutdown Supply Current E N A B L E = 3V, Both Inputs andOutputs Floating●0.83mAPSRR Power Supply Rejection Ratio (DifferentialOutputs)2.85V to 3.5V●6095.5dBThe● denotes the specifi cations which apply over the full operating temperature range, otherwise specifi cations are at T A = 25°C. V+ = 3V, V– = 0V, +IN = –IN = V OCM = 1.25V, E N A B L E = 0V, No R L unless otherwise noted.3640126fAC ELECTRICAL CHARACTERISTICS Specifi cations are at TA = 25°C. V+ = 3V, V– = 0V, V OCM = 1.25V,E N A B L E = 0V, No R L unless otherwise noted.SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS –3dBBW–3dB Bandwidth200mV P-P,OUT (Note 6) 1.2 1.6GHz 0.5dBBW Bandwidth for 0.5dB Flatness200mV P-P,OUT (Note 6)0.5GHz 0.1dBBW Bandwidth for 0.1dB Flatness200mV P-P,OUT (Note 6)0.22GHz 1/f1/f Noise Corner16kHz SR Slew Rate Differential V OUT = 2V Step (Note 6)3300V/μs t S1%1% Settling Time V OUT = 2V P-P (Note 6)3ns t OVDR Overdrive Recovery Time V OUT = 1.9V P-P (Note 6)19ns t ON Turn-On Time+OUT, –OUT Within 10% of Final Values93ns t OFF Turn-Off Time I CC Falls to 10% of Nominal140ns –3dBBW VOCM V OCM Pin Small Signal –3dB BW0.1V P-P at V OCM, Measured Single-Endedat Output (Note 6)14.7MHz 10MHz Input SignalHD2,10M/HD3,10M Second/Third Order Harmonic Distortion V OUT = 2V P-P , R L = 200Ω–95/–81dBcV OUT = 2V P-P , No R L–93/–96dBcIMD3,10M Third-Order Intermodulation(f1 = 9.5MHz f2 = 10.5MHz)V OUT = 2V P-P Composite, R L = 200Ω–80dBc V OUT = 2V P-P Composite, No R L–97dBcOIP3,10M Equivalent Third-Order Output InterceptPoint (f1 = 9.5MHz f2 = 10.5MHz)V OUT = 2V P-P Composite, No R L (Note 7)52.5dBm P1dB,10M1dB Compression Point R L = 375Ω (Notes 5, 7)17.3dBm NF10M Noise Figure R L = 375Ω (Note 5) 6.8dB e IN,10M Input Referred Voltage Noise Density Includes Resistors (Short Inputs) 1.5nV/√H z e ON,10M Output Referred Voltage Noise Density Includes Resistors (Short Inputs)30nV/√H z 70MHz Input SignalHD2,70M/HD3,70M Second/Third Order Harmonic Distortion V OUT = 2V P-P , R L = 200Ω–83/–66dBcV OUT = 2V P-P , No R L–86/–81dBcIMD3,70M Third-Order Intermodulation(f1 = 69.5MHz f2 = 70.5MHz)V OUT = 2V P-P Composite, R L = 200Ω–74dBc V OUT = 2V P-P Composite, No R L–85dBcOIP3,70M Equivalent Third-Order Output InterceptPoint (f1 = 69.5MHz f2 = 70.5MHz)V OUT = 2V P-P Composite, No R L (Note 7)46.5dBm P1dB,70M1dB Compression Point R L = 375Ω (Notes 5, 7)17.2dBm NF70M Noise Figure R L = 375Ω (Note 5) 6.7dB e IN,70M Input Referred Voltage Noise Density Includes Resistors (Short Inputs) 1.44nV/√H z e ON,70M Output Referred Voltage Noise Density Includes Resistors (Short Inputs)28.8nV/√H z4640126fAC ELECTRICAL CHARACTERISTICSNote 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: Input pins (+IN, –IN) are protected by steering diodes to either supply. If the inputs go beyond either supply rail, the input current should be limited to less than 10mA.Note 3: The LTC6401C and LTC6401I are guaranteed functional over the operating temperature range of –40°C to 85°CNote 4: The LTC6401C is guaranteed to meet specifi ed performance from 0°C to 70°C. It is designed, characterized and expected to meet specifi ed performance from –40°C to 85°C but is not tested or QA sampled at these temperatures. The LTC6401I is guaranteed to meet specifi ed performance from –40°C to 85°C.Note 5: Input and output baluns used. See Test Circuit A.Note 6: Measured using Test Circuit B. R L = 87.5Ω per output.Note 7: Since the LTC6401-26 is a feedback amplifi er with low output impedance, a resistive load is not required when driving an AD converter. Therefore, typical output power is very small. In order to compare the LTC6401-26 with amplifi ers that require 50Ω output load, the output voltage swing driving a given R L is converted to OIP3 and P1dB as if it were driving a 50Ω load. Using this modifi ed convention, 2V P-P is by defi nition equal to 10dBm, regardless of actual R L.SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS 140MHz Input SignalHD2,140M/ HD3,140M Second/Third Order Harmonic Distortion V OUT = 2V P-P , R L = 200Ω–81/–54dBcV OUT = 2V P-P , No R L–85/–69dBcIMD3,140M Third-Order Intermodulation(f1 = 139.5MHz f2 = 140.5MHz)V OUT = 2V P-P Composite, R L = 200Ω–64dBc V OUT = 2V P-P Composite, No R L–72dBcOIP3,140M Equivalent Third-Order Output InterceptPoint(f1 = 139.5MHz f2 = 140.5MHz)V OUT = 2V P-P Composite, No R L (Note 7)40dBm P1dB,140M1dB Compression Point R L = 375Ω (Notes 5, 7)17.4dBm NF140M Noise Figure R L = 375Ω (Note 5) 6.5dB e N,140M Input Referred Voltage Noise Density Includes Resistors (Short Inputs) 1.43nV/√H z e ON,140M Output Referred Voltage Noise Density Includes Resistors (Short Inputs)28.6nV/√H zIMD3,130M/150M Third-Order Intermodulation(f1 = 130MHz f2 = 150MHz)Measure at 170MHz V OUT = 2V P-P Composite, R L = 375Ω–70–62dBc Specifi cations are at T A = 25°C. V+ = 3V, V– = 0V, V OCM = 1.25V,E N A B L E = 0V, No R L unless otherwise noted.5640126f6640126fTYPICAL PERFORMANCE CHARACTERISTICSFrequency ResponseGain 0.1dB FlatnessS21 Phase and Group Delay vs FrequencyInput and Output Refl ection and Reverse Isoloation vs FrequencyInput and Output Impedance vs FrequencyPSRR and CMRR vs FrequencyFREQUENCY (MHz)10G A I N (d B )51015203010010003000640126 G0125FREQUENCY (MHz)10–1.0G A I N F L A T N E S S (d B )–0.6–0.20.20.610010003000640126 G021.0–0.8–0.400.40.8FREQUENCY (MHz)0P H A S E (D E G R E E )GROUP DELAY (ns )–100–50800640126 G03–150–20020040060010000.40.60.200.8FREQUENCY (MHz)10–70S P A R A M E T E R S (d B )–60–40–20–50–30–10010*********640126 G04FREQUENCY (MHz)10I M P E D A N C E M A G N I T U D E (Ω)PHASE (DEGREE)601201001000640126 G0518030901500102030406050FREQUENCY (MHz)1P S R R , C M R R(d B )80100120101001000640126 G066040207640126fFREQUENCY (MHz)N O I S E F I G U R E (d B )INPUT REFERRED NOISE VOLTAGE (n V/√Hz)98640126 G075762.01.501.00.5100010100TIME (ns )0O U T P U T V O L T A G E (V )1.251.308640126 G081.201.15246101.35TIME (ns )0O U T P U T V O L T A G E (V )1.52.02.516640126 G091.00.50481220TIME (ns )O U T P U T V O L T A G E (V )1.52.02.5200640126 G101.00.550100150250TIME (ns )S E T T L I N G (%)1354640126 G11–1–3024–2–4–51235FREQUENCY (MHz)–40–50–60–70–80–90–100–110150640126 G1250100200H A R M O N I C D I S T O R T I O N (d B c )TYPICAL PERFORMANCE CHARACTERISTICSOverdriven Transient Response1% Settling Time for 2V Output StepHarmonic Distortion vs FrequencyNoise Figure and Input Referred Noise Voltage vs FrequencySmall Signal Transient ResponseLarge Signal Transient Response8640126fFREQUENCY (MHz)–40–50–60–70–80–90–100–110150640126 G1350100200T H I R D O R D E R I M D (d B c )FREQUENCY (MHz)–40–50–60–70–80–90–100–110150640126 G1450100200H A R M O N I C D I S T O R T I O N (d B c )FREQUENCY (MHz)–40–50–60–70–80–90–100–110150640126 G1550100200T H I R D O R D E R I MD (d B c )FREQUENCY (MHz)016.0O U T P U T 1d B C O M P R E S S I O N P O I N T (d B m)16.517.017.518.018.519.050100150200640126 G16FREQUENCY (MHz)O U T P U T I P 3 (d B m )10203040506050100150200640126 G17TIME (ns )–100V O L T A G E (V )I CC (mA)1.01.52.0200400640126 G180.500–0.501003002.53.03.520304010–10506070500TIME (ns )–100V O L T A G E (V )I CC (mA)1.01.52.0200400640126 G190.500–0.501003002.53.03.520304010–10506070500TYPICAL PERFORMANCE CHARACTERISTICSThird Order Intermodulation Distortion vs FrequencyHarmonic Distortion vs FrequencyThird Order Intermodulation Distortion vs FrequencyOutput 1dB Compression Point vs FrequencyEquivalent Output Third Order Intercept Point vs FrequencyTurn-On TimeTurn-Off Time9640126fBLOCK DIAGRAMPIN FUNCTIONSV + (Pins 1, 3, 10): Positive Power Supply (Normally tied to 3V or 3.3V). All three pins must be tied to the same voltage. Bypass each pin with 1000pF and 0.1μF capaci-tors as close to the pins as possible.V OCM (Pin 2): This pin sets the output common mode voltage. An 0.1μF external bypass capacitor is recom-mended.V – (Pins 4, 9, 12, 17): Negative Power Supply. All four pins must be connected to same voltage/ground.–OUT, +OUT (Pins 5, 8): Unfi ltered Outputs. These pins have series 12.5Ω resistors R OUT .–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins have 50Ω series resistors and a 2.7pF shunt capacitor.E N A B L E (Pin 11): This pin is a logic input referenced to V EE . If low, the part is enabled. If high, the part is disabled and draws very low standby current while the internal op amp has high output impedance.+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are internally shorted together.–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are internally shorted together.Exposed Pad (Pin 17): V –. The Exposed Pad must be connected to same voltage/ground as pins 4, 9, 12.APPLICATIONS INFORMATIONCircuit OperationThe LTC6401-26 is a low noise and low distortion fully differential op amp/ADC driver with:• Operation from DC to 1.6GHz –3dB bandwidth• Fixed gain of 20V/V (26dB)• Differential input impedance 50Ω• Differential output impedance 25Ω• Differential impedance of output fi lter 100ΩThe LTC6401-26 is composed of a fully differential amplifi er with on chip feedback and output common mode voltage control circuitry. Differential gain and input impedance are set by 25Ω/500Ω resistors in the feedback network. Small output resistors of 12.5Ω improve the circuit stability over various load conditions. They also provide a possible external fi ltering option, which is often desirable when the load is an ADC.Filter resistors of 50Ω are available for additional fi ltering. Lowpass/bandpass fi lters are easily implemented with just a couple of external components. Moreover, they offer single-ended 50Ω matching in wideband applications and no external resistor is needed.The LTC6401-26 is very fl exible in terms of I/O coupling. It can be AC- or DC-coupled at the inputs, the outputs or both. Due to the internal connection between input and output, users are advised to keep input common mode voltage between 1V and 1.6V for proper operation. If the inputs are AC-coupled, the input common mode voltage is automatically biased close to V OCM and thus no external circuitry is needed for bias. The LTC6401-26 provides an output common mode voltage set by V OCM, which allows driving ADC directly without external components such as transformer or AC coupling capacitors. The input signal can be either single-ended or differential with only minor difference in distortion performance.Input Impedance and MatchingThe differential input impedance of the LTC6401-26 is 50Ω. The interface between the input of LTC6401-26 and 50Ωsource is straightforward. One way is to directly connect them if the source is differential (Figure 1). Another ap-proach is to employ a wideband transformer if the source is single ended (Figure 2). Both methods provide a wide-band match. Alternatively, one could apply a narrowband impedance match at the inputs of the LTC6401-26 for frequency selection and/or noise reduction.Referring to F igure 3, LTC6401-26 can be easily confi gured for single-ended input and differential output without a balun. The signal is fed to one of the inputs through a matching network while the other input is connected to the same matching network and a source resistor. Because the return ratios of the two feedback paths are equal, the two outputs have the same gain and thus symmetrical swing. In general, the single-ended input impedance and termination resistor R T are determined by the combination of R S, R G and R F. For example, when R S is 50Ω, it is found that the single-ended input impedance is 75Ω and R T is 150Ω in order to match to a 50Ω source impedance.Figure 1. Input Termination for Differential 50Ω Input ImpedanceFigure 2. Input Termination for Differential 50Ω Input Impedance Using a Balun10640126f11640126fThe LTC6401-26 is unconditionally stable, i.e. differential stability factor Kf>1 and stability measure B1>0. However, the overall differential gain is affected by both source impedance and load impedance as shown in Figure 4:A V V R R R V OUT IN S L L==++10005025•The noise performance of the LTC6401-26 also dependsupon the source impedance and termination. A trade-off between gain and noise is obvious when constant noise fi gure circle and constant gain circle are plotted within the same input Smith Chart, based on which users can choose the optimal source impedance for a given gain and noise requirement.Output Impedance Match and FilterThe LTC6401-26 can drive an ADC directly without external output impedance matching. Alternatively, the differential output impedance of 25Ω can be made larger, e.g. 50Ω, by series resistors or LC network.Figure 4. Calculate Differential GainAPPLICATIONS INFORMATIONFigure 3. Input Termination for Single-Ended 50Ω Input ImpedanceThe internal low pass fi lter outputs at +OUTF/–OUTF have a –3dB bandwidth of 590MHz. External capacitors can reduce the low pass fi lter bandwidth as shown in Figure 5. A bandpass fi lter is easily implemented with only a few components as shown in Figure 6. Three 39pF ca-pacitors and 16nH inductor create a bandpass fi lter with 165MHz center frequency, –3dB frequencies at 138MHz and 200MHz.Output Common Mode AdjustmentThe LTC6401-26’s output common mode voltage is set by the V OCM pin, which is a high impedance input. The output common mode voltage is capable of tracking V OCM in a range from 1V to 1.6V. Bandwidth of V OCM control is typically 15MHz, which is dominated by a low pass fi lter connected to the V OCM pin and is aimed to reduce com-mon mode noise generation at the outputs. The internal common mode feedback loop has a –3dB bandwidth of 400MHz, allowing fast rejection of any common mode output voltage disturbance. The V OCM pin should be tied to a DC bias voltage with a 0.1μF bypass capacitor. When interfacing with 3V A/D converters such as the LTC22xx families, the V OCM pin can be connected to the V CM pin of the ADC.Driving A/D ConvertersThe LTC6401-26 has been specifi cally designed to interface directly with high speed A/D converters. F igure 7 shows the LTC6401-26 with single-ended input driving the LTC2208, which is a 16-bit, 130Msps ADC. Two external 5Ω resistors help eliminate potential resonance associated with bond wires of either the ADC input or the driver output. V OCMFigure 5. LTC6401-26 Internal Filter Topology Modifi ed for Low Filter Bandwidth (Three External Capacitors)Figure 6. LTC6401-26 with 165MHz Output Bandpass Filter Figure 7. Single-Ended Input to LTC6401-26 and LTC2208Figure 8. IMD3 for the Combination of LTC6401-26 and LTC2208of the LTC6401-26 is connected to V CM of the LTC2208 at 1.25V. Alternatively, a single-ended input signal can be converted to a differential signal via a balun and fed to the input of the LTC6401-26. Figure 8 summarizes the IMD3 performance of the whole system as shown in Figure 7. Test CircuitsDue to the fully-differential design of the LTC6401 and its usefulness in applications with differing characteristic specifi cations, two test circuits are used to generate the information in this datasheet. Test Circuit A is DC987B, a two-port demonstration circuit for the LTC6401 family. The silkscreen is shown in Figure 9. This circuit includes input and output transformers (baluns) for single-ended-to-differential conversion and impedance transformation, allowing direct hook-up to a 2-port network analyzer. There are also series resistors at the output to present the LTC6401 with a 375Ω differential load, optimizing distortion performance. Due to the input and output transformers, the –3dB bandwidth is reduced from 1.6GHz to 1.37GHz.Test Circuit B uses a 4-port network analyzer to measure S-parameters and gain/phase response. This removes the effects of the wideband baluns and associated circuitry, for a true picture of the >1GHz S-parameters and AC characteristics.APPLICATIONS INFORMATIONFigure 9. Top Silkscreen for DC987B, Test Circuit AFREQUENCY (MHz)–40–50–60–70–80–90–100–110150640126 F0850100200IMD3(dBc)12640126f13640126fTYPICAL APPLICATIONDemo Circuit 987B Schematic (Test Circuit A)VERSIONIC R3R4T1SL1SL2SL3-HLTC6401UD-26OPEN OPENM/A-COM MABA-007159-0000000dB20dB14dB640126 TA02J5–OUTS L3(2)J4+OUT TP2V CC2.85V TO3.5VμFTP5V OCMTE S J7TE S T OUTNOTE: UNLE SS OTHERWI S E S PECIFIED.(1) DO NOT S TUFF.(2)S L = S IGNAL LEVELTP3GNDTYPICAL APPLICATIONTest Circuit B, 4-Port Analysis+14640126f15640126fInformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.PACKAGE DESCRIPTIONRECOMMENDED S OLDER PAD PITCH AND DIMEN S ION SNOTE:1. DRAWING CONFORM S TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)2. DRAWING NOT TO S CALE3. ALL DIMEN S ION S ARE IN MILLIMETER S4. DIMEN S ION S OF EXPO S ED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDEMOLD FLA S H. MOLD FLA S H, IF PRE S ENT, S HALL NOT EXCEED 0.15mm ON ANY S IDE 5. EXPO S ED PAD S HALL BE S OLDER PLATED6. S HADED AREA I S ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGEBOTTOM VIEW—EXPO S ED PAD × 45° CHAMFERUD Package16-Lead Plastic QFN (3mm × 3mm)(Reference LTC DWG # 05-08-1691)16640126fLinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● © LINEAR TECHNOLOGY CORPORA TION 2008LT 0108 • PRINTED IN USARELATED PARTSPART NUMBER DESCRIPTIONCOMMENTSHigh-Speed Differential Amplifi ers/Differential Op AmpsLT ®1993-2800MHz Differential Amplifi er/ADC Driver A V = 2V/V, OIP3 = 38dBm at 70MHz LT1993-4900MHz Differential Amplifi er/ADC Driver A V = 4V/V, OIP3 = 40dBm at 70MHz LT1993-10700MHz Differential Amplifi er/ADC Driver A V = 2V/V, OIP3 = 40dBm at 70MHzLT1994Low Noise, Low Distortion Differential Op Amp 16-Bit SNR and SFDR at 1MHz, Rail-to-Rail OutputsLT5514Ultralow Distortion IF Amplifi er/ADC Driver with Digitally Controlled GainOIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB LT5524Low Distortion IF Amplifi er/ADC Driver with Digitally Controlled GainOIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB LTC6400-20 1.8GHz Low Noise, Low Distortion, Differential ADC Driver A V = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz LTC6400-26 1.9GHz Low Noise, Low Distortion, Differential ADC Driver A V = 26dB, 85mA Supply Current, IMD3 = –71dBc at 300MHz LTC6401-8 2.2GHz Low Noise, Low Distortion, Differential ADC Driver A V = 8dB, 45mA Supply Current, IMD3 = –80dBc at 140MHz LTC6401-20 1.3GHz Low Noise, Low Distortion, Differential ADC Driver A V = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz LT6402-6300MHz Differential Amplifi er/ADC Driver A V = 6dB, Distortion < –80dBc at 25MHz LT6402-12300MHz Differential Amplifi er/ADC Driver A V = 12dB, Distortion < –80dBc at 25MHz LT6402-20300MHz Differential Amplifi er/ADC Driver A V = 20dB, Distortion < –80dBc at 25MHzLTC64063GHz Rail-to-Rail Input Differential Op Amp1.6nV/√H z Noise, –72dBc Distortion at 50MHz, 18mALT6411Low Power Differential ADC Driver/Dual Selectable Gain Amplifi er16mA Supply Current, IMD3 = –83dBc at 70MHz, A V = 1, –1 or 2High-Speed Single-Ended Output Op AmpsLT1812/LT1813/LT1814High Slew Rate Low Cost Single/Dual/Quad Op Amps8nV/√H z Noise, 750V/μs, 3mA Supply Current LT1815/LT1816/LT1817Very High Slew Rate Low Cost Single/Dual/Quad Op Amps 6nV/√H z Noise, 1500V/μs, 6.5mA Supply Current LT1818/LT1819Ultra High Slew Rate Low Cost Single/Dual Op Amps 6nV/√H z Noise, 2500V/μs, 9mA Supply CurrentLT6200/LT6201Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps0.95nV/√H z Noise, 165MHz GBW, Distortion = –80dBc at 1MHz LT6202/LT6203/LT6204Rail-to-Rail Input and Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√H z Noise, 3mA Supply Current, 100MHz GBW LT6230/LT6231/LT6232Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.1nV/√H z Noise, 3.5mA Supply Current, 215MHz GBW LT6233/LT6234/LT6235Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps 1.9nV/√H z Noise, 1.2mA Supply Current, 60MHz GBWIntegrated Filters LTC1562-2Very Low Noise, 8th Order Filter Building Block Lowpass and Bandpass Filters up to 300kHz LT1568Very Low Noise, 4th Order Filter Building Block Lowpass and Bandpass Filters up to 10MHz LTC1569-7Linear Phase, Tunable 10th Order Lowpass Filter Single-Resistor Programmable Cut-Off to 300kHz LT6600-2.5Very Low Noise Differential 2.5MHz Lowpass Filter SNR = 86dB at 3V Supply, 4th Order Filter LT6600-5Very Low Noise Differential 5MHz Lowpass Filter SNR = 82dB at 3V Supply, 4th Order Filter LT6600-10Very Low Noise Differential 10MHz Lowpass Filter SNR = 82dB at 3V Supply, 4th Order Filter LT6600-15Very Low Noise Differential 15MHz Lowpass Filter SNR = 76dB at 3V Supply, 4th Order Filter LT6600-20Very Low Noise Differential 20MHz Lowpass FilterSNR = 76dB at 3V Supply, 4th Order Filter。

Linear Technology LTC6363 系列精密、低功耗差分放大器 ADC 驱动器系列说

Linear Technology LTC6363 系列精密、低功耗差分放大器 ADC 驱动器系列说

LTC6363 系列精密、低功耗差分放大器/ADC 驱动器系列特点⏹提供用户设置增益或0.5V/V、1V/V、2V/V的固定增益⏹折合到输入端噪声:2.9nV/√Hz⏹电源电流:2mA(最大值)⏹增益误差:45ppm(最大值)⏹增益误差漂移:0.5ppm/°C(最大值)⏹CMRR:94dB(最小值)⏹失调电压:100µV(最大值)⏹输入失调电流:50nA(最大值)⏹快速建立时间:720ns 至18 位,8V P–P输出⏹电源电压范围:2.8V (±1.4V) 至11V (±5.5V) ⏹差分轨到轨输出⏹输入共模范围包含地⏹低失真:115dB SFDR,2kHz 时,18V P–P⏹增益带宽积:500MHz⏹–3dB 带宽:35MHz⏹低功耗关断:20µA (V S = 3V)⏹8 引脚MSOP 和2 mm × 3mm 8 引脚DFN 封装应用⏹20 位、18 位和16 位SAR ADC 驱动器⏹单端至差分转换⏹低功耗ADC 驱动器⏹电平转换器⏹差分线路驱动器⏹电池供电仪器仪表说明LTC®6363系列包括四款全差分、低功耗、低噪声放大器,提供轨到轨输出,针对SAR ADC 驱动进行了优化。

LTC6363 是一款独立的差分放大器,其增益通常利用四个外部电阻设置。

LTC6363–0.5、LTC6363–1 和LTC6363–2 均有内部匹配电阻,形成增益分别为0.5V/V、1V/V 和2V/V 的固定增益模块。

每个固定增益放大器都有激光调整的精密片内电阻,可实现精确、超稳定的增益和出色的CMRR。

系列选型表产品型号增益配置LTC6363 用户设置LTC6363–0.5 0.5V/VLTC6363–1 1V/VLTC6363–22V/V所有注册商标和商标均属各自所有人所有。

典型应用从以地为基准的单端输入到LTC2378–20 SAR ADC 的直流耦合接口LTC6363–1 驱动LTC2378–20f IN = 2kHz,–1dBFS,131k 点FFTLTC6363 系列 绝对最大额定值(注释 1)总电源电压 (V + – V –) ........................................... 12V 输入电压(+IN 、–IN )(注释 2)LTC6363–0.5 ........ (V –) – 14.9V 至 (V +) + 14.9V LTC6363–1 ........... (V –) – 11.1V 至 (V +) + 11.1V LTC6363–2 ........... (V –) – 7.45V 至 (V +) + 7.45V 输入电流(+IN 、–IN )LTC6363(注释 3)............................................................................. ±10mA 输入电流(V OCM 、SHDN )(注释 3) .................................................. ±10mA 输出短路持续时间(注释 4) ......................................... 受散热限制 工作温度范围(注释 5)LTC6363I/LTC6363I–0.5/LTC6363I–1/ LTC6363I–2 ................................... –40°C 至 85°C LTC6363H/LTC6363H–0.5/LTC6363H–1/LTC6363H–2 ............................... –40°C 至 125°C 额定温度范围(注释 6)LTC6363I/LTC6363I–0.5/LTC6363I–1/LTC6363I–2 .................................. –40°C 至 85°C LTC6363H/LTC6363H–0.5/LTC6363H–1/LTC6363H–2............................... –40°C 至 125°C 最高结温 .............................................................. 150°C 存储温度范围 .................................. –65°C 至 150°C MSOP 引脚温度(焊接,10 秒) ................ 300°C引脚配置LTC6363LTC6363LTC6363–0.5/LTC6363–1/LTC6363–2订购信息 /product/LTC6363#orderinfo管装卷带和卷盘 器件标识* 封装说明温度范围 LTC6363IMS8#PBF LTC6363IMS8#TRPBF LTGSQ 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8#PBFLTC6363HMS8#TRPBFLTGSQ8 引脚塑料 MSOP –40°C 至 125°C LTC6363IMS8–0.5#PBF LTC6363IMS8–0.5#TRPBF LTGST 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8–0.5#PBF LTC6363HMS8–0.5#TRPBF LTGST 8 引脚塑料 MSOP –40°C 至 125°C LTC6363IMS8–1#PBF LTC6363IMS8–1#TRPBF LTGSR 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8–1#PBF LTC6363HMS8–1#TRPBF LTGSR 8 引脚塑料 MSOP –40°C 至 125°C LTC6363IMS8–2#PBF LTC6363IMS8–2#TRPBF LTGSS 8 引脚塑料 MSOP –40°C 至 85°C LTC6363HMS8–2#PBFLTC6363HMS8–2#TRPBFLTGSS8 引脚塑料 MSOP–40°C 至 125°CLTC6363 系列订购信息无铅表面处理卷带和卷盘(迷你型)卷带和卷盘器件标识*封装说明温度范围LTC6363IDCB#TRMPBF LTC6363IDCB#TRPBF LGVG 8 引脚(2mm × 3mm) 塑料DFN –40°C 至85°CLTC6363HDCB#TRMPBF LTC6363HDCB#TRPBF LGVG 8 引脚(2mm × 3mm) 塑料DFN –40°C 至125°CTRM = 500 片。

18V 4 pc Combo Cordless Tool Kit 8083362 用户手册说明书

18V 4 pc Combo Cordless Tool Kit 8083362 用户手册说明书
a) On/off trigger switch b) Forward/reverse switch c) 16 position torque control d) Keyless chuck e) Double-ended bit
For any technical questions, please call 1-800-665-8685 2
For any technical questions, please call 1-800-665-8685 4
Detail sander parts identification
a) On/off trigger b) Handle c) Sanding plate d) Hook and loop sanding pad e) Battery pack location
For any technical questions, please call 1-800-665-8685 3
Flashlight Operation
• Insert battery into flashlight slot and secure. • Slide the switch on the handle to 1 of the 2 brightness positions. • Slide the switch to the off position to turn off.
• To charge the battery, insert the battery pack in the charger. Plug the charger into a power outlet and press the ‘set’ button on the charger.

LTC4213 1 4213f 电子电路保护器说明书

LTC4213 1 4213f 电子电路保护器说明书

2µs/DIV4213 TA01b124213fBias Supply Voltage (V CC )...........................–0.3V to 9V Input VoltagesON, SENSEP, SENSEN.............................–0.3V to 9V I SEL ..........................................–0.3V to (V CC + 0.3V)Output VoltagesGATE .....................................................–0.3V to 15V READY.....................................................–0.3V to 9V Operating Temperature RangeLTC4213C ...............................................0°C to 70°C LTC4213I.............................................–40°C to 85°C Storage Temperature Range.................–65°C to 150°C Lead Temperature (Soldering, 10sec)...................300°CORDER PART NUMBER DDB PART*MARKING T JMAX = 125°C, θJA = 250°C/WEXPOSED PAD (PIN 9)PCB CONNECTION OPTIONALConsult LTC Marketing for parts specified with wider operating temperature ranges.*The temperature grade is identified by a label on the shipping container.LBHVLTC4213CDDB LTC4213IDDB ABSOLUTE AXI U RATI GSW W WU PACKAGE/ORDER I FOR ATIOUUW (Note 1)ELECTRICAL CHARACTERISTICSThe ● denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V CC = 5V, I SEL = 0 unless otherwise noted. (Note 2)SYMBOL PARAMETER CONDITIONSMIN TYP MAX UNITSV CC Bias Supply Voltage ● 2.36V V SENSEP SENSEP Voltage ●06V I CC V CC Supply Current●1.63mA V CC(UVLR)V CC Undervoltage Lockout Release V CC Rising● 1.8 2.07 2.23V ∆V CC(UVHYST)V CC Undervoltage Lockout Hysteresis ●30100160mV I SENSEP SENSEP Input Current V SENSEP = V SENSEN = 5V, Normal Mode 154080µA V SENSEP = V SENSEN = 0, Normal Mode –1±15µA I SENSENSENSEN Input CurrentV SENSEP = V SENSEN = 5V, Normal Mode 154080µA V SENSEP = V SENSEN = 0, Normal Mode –1±15µA V SENSEP = V SENSEN = 5V,50280µAReset Mode or Fault ModeV CBCircuit Breaker Trip Voltage I SEL = 0, V SENSEP = V CC●22.52527.5mV V CB = V SENSEP – V SENSEN I SEL = Floated, V SENSEP = V CC ●455055mV I SEL = V CC, V SENSEP = V CC ●90100110mV V CB(FAST)Fast Circuit Breaker Trip Voltage I SEL = 0, V SENSEP = V CC●63100115mV V CB(FAST)= V SENSEP – V SENSEN I SEL = Floated, V SENSEP = V CC ●126175200mV I SEL = V CC, V SENSEP = V CC ●252325371mV I GATE(UP)GATE Pin Pull Up Current V GATE = 0V●–50–100–150µA I GATE(DN)GATE Pin Pull Down Current ∆V SENSEP – V SENSEN = 200mV, V GATE = 8V ●1040mA ∆V GSMAX External N-Channel Gate Drive V SENSEN = 0, V CC ≥ 2.97V, I GATE = –1µA ● 4.8 6.58V V SENSEN = 0, V CC = 2.3V, I GATE = –1µA ● 2.65 4.38V ∆V GSARMV GS Voltage to Arm Circuit BreakerV SENSEN = 0, V CC ≥ 2.97V ● 4.4 5.47.6V V SENSEN = 0, V CC = 2.3V●2.53.57VTOP VIEWDDB PACKAGE8-LEAD (3mm × 2mm) PLASTIC DFN567894321READY ON I SEL GND V CC SENSEP SENSEN GATE34213f∆V GSMAX – ∆V GSARM Difference Between ∆V GSMAX and V SENSEN = 0, V CC ≥ 2.97V ●0.3 1.1V ∆V GSARMV SENSEN = 0, V CC = 2.3V●0.150.8VV READY(OL)READY Pin Output Low Voltage I READY = 1.6mA, Pull Down Device On ●0.20.4V I READY(LEAK)READY Pin Leakage Current V READY = 5V, Pull Down Device Off ●0±1µA V ON(TH)ON Pin High Threshold ON Rising, GATE Pulls Up ●0.760.80.84V ∆V ON(HYST)ON Pin Hysteresis ON Falling, GATE Pulls Down104090mV V ON(RST)ON Pin Reset Threshold ON Falling, Fault Reset, GATE Pull Down ●0.360.40.44V I ON(IN)ON Pin Input Current V ON = 1.2V●0±1µA ∆V OV Overvoltage Threshold ●0.410.7 1.1V ∆V OV = V SENSEP – V CCt OVOvervoltage Protection Trip Time V SENSEP = V SENSEN = Step 5V to 6.2V 2565160µs t FAULT(SLOW)V CB Trips to GATE Discharging ∆V SENSE Step 0mV to 50mV,●71627µs V SENSEN Falling, V CC = V SENSEP = 5V t FAULT(FAST)V CB(FAST) Trips to GATE Discharging ∆V SENSE Step 0V to 0.3V, V SENSEN Falling,●12.5µs V SENSEP = 5Vt DEBOUNCE Startup De-Bounce Time V ON = 0V to 2V Step to Gate Rising,2760130µs (Exiting Reset Mode)t READY READY Delay Time V GATE = 0V to 8V Step to READY Rising,2250115µs V SENSEP = V SENSEN = 0t OFF Turn-Off Time V ON = 2V to 0.6V Step to GATE Discharging 1.5510µs t ON Turn-On Time V ON = 0.6V to 2V Step to GATE Rising,4816µs (Normal Mode)t RESETReset TimeV ON Step 2V to 0V2080150µsNote 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.ELECTRICAL CHARACTERISTICSThe ● denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V CC = 5V, I SEL = 0 unless otherwise noted. (Note 2)SYMBOLPARAMETERCONDITIONSMIN TYP MAX UNITSNote 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.4564213ft RESET vs Temperaturet FAULT(SLOW) vs V CCt FAULT(SLOW) vs Temperaturet FAULT(FAST) vs V CCt FAULT(FAST) vs TemperatureTYPICAL PERFOR A CE CHARACTERISTICSU WSpecifications are at T A = 25°C. V CC = 5Vunless otherwise noted.t F A U L T (F A S T ) (µs )4213 G230.90.80.71.01.11.21.3TEMPERATURE (°C)–50050100125–252575BIAS SUPPLY VOLTAGE (V)2.010t F A U L T (S L O W ) (µs )14121618 3.0 4.0 5.0 6.04213 G202022 2.53.54.55.5TEMPERATURE (°C)–500501001254213 G21–25257510t F A U L T (S L O W ) (µs )141216182022TEMPERATURE (°C)–500501001254213 G19–252575t R E S E T (µs )60708090100BIAS SUPPLY VOLTAGE (V)2.0t F A U L T (F A S T ) (µs )3.04.05.06.04213 G222.53.54.55.50.90.80.71.01.11.21.374213fPI FU CTIO SU U UREADY (Pin 1): READY Status Output. Open drain output that goes high impedance when the external MOSFET is on and the circuit breaker is armed. Otherwise this pin pulls low.ON (Pin 2): ON Control Input. The LTC4213 is in reset mode when the ON pin is below 0.4V. When the ON pin increases above 0.8V, the device starts up and the GATE pulls up with a 100µA current source. When the ON pin drops below 0.76V, the GATE pulls down. To reset a circuit breaker fault, the ON pin must go below 0.4V.I SEL (Pin 3): Threshold Select Input. With the I SEL pin grounded, float or tied to V CC the V CB is set to 25mV, 50mV or 100mV, respectively. The corresponding V CB(FAST)values are 100mV, 175mV and 325mV.GND (Pin 4): Device Ground.GATE (P in 5): GATE D rive Output. An internal charge pump supplies 100µA pull-up current to the gate of the external N-channel MOSFET. Internal circuitry limits thevoltage between the GATE and SENSEN pins to a safe gate drive voltage of less than 8V. When the circuit breaker trips, the GATE pin abruptly pulls to GND.SENSEN (Pin 6): Circuit Breaker Negative Sense Input.Connect this pin to the source of the external MOSFET.During reset or fault mode, the SENSEN pin discharges the output to ground with 280µA.SENSEP (P in 7): Circuit Breaker Positive Sense Input.Connect this pin to the drain of external N-channel MOSFET.The circuit breaker trips when the voltage across SENSEP and SENSEN exceeds V CB . The input common mode range of the circuit breaker is from ground to V CC + 0.2V when V CC < 2.5V. For V CC ≥ 2.5V, the input common mode range is from ground to V CC + 0.4V.V CC (Pin 8): Bias Supply Voltage Input. Normal operation is between 2.3V and 6V. An internal under-voltage lockout circuit disables the device when V CC < 2.07V.Exposed Pad (Pin 9): Exposed pad may be left open or connected to device ground.8910114213fsupply transient dips below 1.97V of less than 80µs are ignored.ON FunctionWhen V ON is below comparator COMP1’s threshold of 0.4V for 80µs, the device resets. The system leaves reset mode if the ON pin rises above comparator COMP2’s threshold of 0.8V and the UVLO condition is met. Leaving reset mode, the GATE pin starts up after a t DEBOUNCE delay of 60µs. When ON goes below 0.76V, the GATE shuts off after a 5µs glitch filter delay. The output is discharged by the external load when V ON is in between 0.4V to 0.8V. At this state, the ON pin can re-enable the GATE if V ON exceeds 0.8V for more than 8µs. Alternatively, the device resets if the ON pin is brought below 0.4V for 80µs. Once reset, the GATE pin restarts only after the t DEBOUNCE 60µs delay at V ON rising above 0.8V. To protect the ON pin from overvoltage stress due to supply transients, a series resistor of greater than 10k is recommended when the ON pin is connected directly to the supply. An external resis-tive divider at the ON pin can be used with COMP2 to set a supply undervoltage lockout value higher than the inter-nal UVLO circuit. An RC filter can be implemented at the ON pin to increase the powerup delay time beyond the internal 60µs delay.Gate FunctionThe GATE pin is held low in reset mode. 60µs after leaving reset mode, the GATE pin is charged up by an internal 100µA current source. The circuit breaker arms when V GATE > V SENSEN + ∆V GSARM . In normal mode operation,the GATE peak voltage is internally clamped to ∆V GSMAX above the SENSEN pin. When the circuit breaker trips, an internal MOSFET shorts the GATE pin to GND, turning off the external MOSFET.READY StatusThe READY pin is held low during reset and at startup. It is pulled high by an external pullup resistor 50µs after the circuit breaker arms. The READY pin pulls low if the circuit breaker trips or the ON pin is pulled below 0.76V, or V CC drops below undervoltage lockout.∆V GSARM and V GSMAXEach MOSFET has a recommended V GS drive voltage where the channel is deemed fully enhanced and R DSON is minimized. Driving beyond this recommended V GS volt-age yields a marginal decrease in R DSON . At startup, the gate voltage starts at ground potential. The GATE ramps past the MOSFET threshold and the load current begins to flow. When V GS exceeds ∆V GSARM , the circuit breaker is armed and enabled. The chosen MOSFET should have a recommended minimum V GS drive level that is lower than ∆V GSARM . Finally, V GS reaches a maximum at ∆V GSMAX.Trip and Reset Circuit BreakerFigure 2 shows the timing diagram of V GATE and V READY after a fault condition. A tripped circuit breaker can be reset either by cycling the V CC bias supply below UVLO thresh-old or pulling ON below 0.4V for >t RESET . Figure 3 shows the timing diagram for a tripped circuit breaker being reset by the ON pin.Calculating Current LimitThe fault current limit is determined by the R DSON of the MOSFET and the circuit breaker voltage V CB .I V R LIMIT CB DSON=()2The R DSON value depends on the manufacturer’s distribu-tion, V GS and junction temperature. Short Kelvin-sense connections between the MOSFET drain and source to the LTC4213 SENSEP and SENSEN pins are strongly recommended.For a selected MOSFET, the nominal load limit current is given by:I V R LIMIT NOM CB NOM DSON NOM ()()()()=3The minimum load limit current is given by:I V R LIMIT MIN CB MIN DSON MAX ()()()()=4APPLICATIO S I FOR ATIOW UUU1213144213fOperating temperature of 0° to 70°C.R DSON @ 25°C = 100%R DSON @ 0°C = 90%R DSON @ 70°C = 120%MOSFET resistance variation:R DSON(NOM) = 15m • 0.82 = 12.3m ΩR DSON(MAX) = 15m • 1.333 • 0.93 • 1.2 = 15m • 1.488= 22.3m ΩR DSON(MIN) = 15m • 0.667 • 0.80 • 0.90 = 15m • 0.480= 7.2m ΩV CB variation:NOM V CB = 25mV = 100%MIN V CB = 22.5mV = 90%MAX V CB = 27.5mV = 110%The current limits are:I LIMIT(NOM) = 25mV/12.3m Ω = 2.03A I LIMIT(MIN) = 22.5mV/22.3m Ω = 1.01A I LIMIT(MAX) = 27.5mV/7.2m Ω = 3.82AFor proper operation, the minimum current limit must exceed the circuit maximum operating load current with margin. So this system is suitable for operating load current up to 1A. From this calculation, we can start with the general rule for MOSFET R DSON by assuming maxi-mum operating load current is roughly half of the I LIMIT(NOM). Equation 7 shows the rule of thumb.I V R OPMAX CB NOM DSON NOM =()()•()27Note that the R DSON(NOM) is at the LTC4213 nominal operating ∆V GSMAX rather than at typical vendor spec.Table 1 gives the nominal operating ∆V GSMAX at the various operating V CC . From this table users can refer to the MOSFET’s data sheet to obtain the R DSON(NOM) value.Table 1. Nominal Operating ∆V GSMAX for Typical Bias Supply VoltageV CC (V)∆V GSMAX (V)2.3 4.32.5 5.02.7 5.63.0 6.53.37.05.07.06.07.0Load Supply Power-Up after Circuit Breaker Armed Figure 4 shows a normal power-up sequence for the circuit in Figure 1 where the V IN load supply power-up after circuit breaker is armed. V CC is first powered up by an auxiliary bias supply. V CC rises above 2.07V at time point 1. V ON exceeds 0.8V at time point 2. After a 60µs debounce delay, the GATE pin starts ramping up at time point 3. The external MOSFET starts conducting at time point 4. At time point 5, V GATE exceed ∆V GSARM and the circuit breaker is armed. After 50µs (t READY delay), READY pulls high by an external resistor at time point 6. READY signals the V IN load supply module to start its ramp. The load supply begins soft-start ramp at time point 7. The load supply ramp rate must be slow to prevent circuit breaker tripping as in equation (8).∆∆V t I I C IN OPMAX LOADLOAD<−()8Where I OPMAX is the maximum operating current defined by equation 7.For illustration, V CB = 25mV and R DSON = 3.5m Ω at the nominal operating ∆V GSMAX . The maximum operating current is 3.5A (refer to equation 7). Assuming the load can draw a current of 2A at power-up, there is a margin of 1.5A available for C LOAD of 100µF and V IN ramp rate should be <15V/ms. At time point 8, the current through the MOSFET reduces after C LOAD is fully charged.APPLICATIO S I FOR ATIOW UUU1516174213fThe selected MOSFET V GS absolute maximum rating should meet the LTC4213 maximum ∆V GSMAX of 8V.Other MOSFET criteria such as V BDSS , I DMAX , and R DSON should be reviewed. Spikes and ringing above maximum operating voltage should be considered when choosing V BDSS . I DMAX should be greater than the current limit. The maximum operating load current is determined by the R DSON value. See the section on “Calculating Current Limit” for details.Supply RequirementsThe LTC4213 can be powered from a single supply or dual supply system. The load supply is connected to the SENSEP pin and the drain of the external MOSFET. In the single supply case, the V CC pin is connected to the load supply, preferably with an RC filter. With dual supplies,V CC is connected to an auxiliary bias supply V AUX where V AUX voltage should be greater or equal to the load supply voltage. The load supply voltage must be capable of sourcing more current than the circuit breaker limit. If the load supply current limit is below the circuit breaker trip current, the LTC4213 may not react when the output overloads. Furthermore, output overloads may trigger UVLO if the load supply has foldback current limit in a single supply system.V IN Transient and Overvoltage ProtectionInput transient spikes are commonly observed whenever the LTC4213 responds to overload. These spikes can be large in amplitude, especially given that large decoupling capacitors are absent in hot swap environments. These short spikes can be clipped with a transient suppressor of adequate voltage and power rating. In addition, the LTC4213can detect a prolonged overvoltage condition. WhenAPPLICATIO S I FOR ATIOW UUU point 6 should be within the circuit breaker limits. Other-wise, the system fails to start and the circuit breaker trips immediately after arming. In most applications additional external gate capacitance is not required unless C LOAD is large and startup becomes problematic. If an external gate capacitor is employed, its capacitance value should not be excessive unless it is used with a series resistor. This is because a big gate capacitor without resistor slows down the GATE turn off during a fault. An alternative method would be a stepped I SEL pin to allow a higher current limit during startup.In the event of output short circuit or a severe overload, the load supply can collapse during GATE ramp up due to load supply current limit. The chosen MOSFET must withstand this possible brief short circuit condition before time point 6 where the circuit breaker is allowed to trip. Bench short circuit evaluation is a practical verification of a reliable design. To have current limit while powering a MOSFET into short circuit conditions, it is preferred that the load supply sequences to turn on after the circuit breaker is armed as described in an earlier section.Power-Off CycleThe system can be powered off by toggling the ON pin low.When ON is brought below 0.76V for 5µs, the GATE and READY pins are pulled low. The system resets when ON is brought below 0.4V for 80µs.MOSFET SelectionThe LTC4213 is designed to be used with logic (5V) and sub-logic (3V) MOSFETs for V CC potentials above 2.97V with ∆V GSMAX exceeding 4.5V. For a V CC supply range between 2.3V and 2.97V, sub-logic MOSFETs should be used as the minimum ∆V GSMAX is less than 4.5V.1819Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.201630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● © LINEAR TECHNOLOGY CORPORA TION 2005LT/TP 0405 500 • PRINTED IN USA。

ISL6612_07资料

ISL6612_07资料

ISL6612, ISL6613
February 26, 2007
FN9153.8
Features
• Pin-to-pin Compatible with HIP6601 SOIC family for Better Performance and Extra Protection Features
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
612Z
ISL6612ECB
ISL66 12ECB
ISL6612ECBZ (Note)
6612 ECBZ
ISL6612EIB
ISL66 12EIB
ISL6612EIBZ (Note)
6612 EIBZ
ISL6612IB
ISL66 12IB
ISL6612IBZ (Note)
6612 IBZ
ISL6612IR
Copyright Intersil Americas Inc. 2005, 2006, 2007. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
元器件交易网
• Three-State PWM Input for Output Stage Shutdown

QT3618A_DATASHEET

QT3618A_DATASHEET

深圳棨天电子有限公司CERES QT3618A 高精度原边反馈CC/CV 芯片特点主要描述➢±5%的恒压精度 ±10%的恒流精度➢ 恒压环无需光耦和 TL431 ➢ 内部集成 700V 功率开关 ➢ 频率随机抖动低 EMI 干扰 ➢ 可调节输出线补偿电压 ➢ 低启动电流(5uA) ➢ 内置软起动 ➢ 内置输入电压补偿 ➢ 逐周期的电流限制 ➢ 反馈过压保护(OVP) ➢ 反馈环路开路保护 ➢输出短路保护应用范围➢ 手机或无绳电话充电器, ➢ 小功率适配器 ➢小功率 LEDQT3618A 适合于低成本,高精度要求的恒流恒压 (CC/CV)应用。

恒流恒压环无需光耦,TL431和补 偿电路, 内部集成700V 功率管,降低系统的成本。

QT3618A 可以满足输出电压±5%的量产精度。

极 低的启动电流,准谷底检测可以轻松满足EPA2.0 的能效要求。

输出线缆的电压补偿可以根据客户 的要求进行调节,大大方便了客户对系统的设计。

QT3618A 还集成了多种保护功能: 欠压锁定,前 沿消隐, 过压保护,过流保护,环路开路保护,输 出短路保护,极大增加了系统的稳定性。

QT3618A 提供SOP-8的封装,QT3618S 为SOP-7封装。

典型应用图1 QT3618A 典型应用图管脚号管脚名主要描述1 Cs 原边电流检测管脚2 Fb 输出电压的反馈管脚3 GND 芯片地4 Vcc 芯片电源端5.6 CAB 外接电阻电容,调整输出线的补充电压 7.8VC外接变压器的原边高压输出端, 可以耐700V 电压参数范围VCC – GND -0.3V ~ 18V FB - GND -0.3V ~ 8V Vc- GND 0.3V ~ 700V CS - GND 0.3V ~ 8V 工作温度范围 .-40℃ to +125℃ 结温范围 -40℃ to +150℃ 存储温度范围 -60℃ to +150℃ 静电保护人体模式 2000V (Note2) 静电保护机器模式500V管脚封装图管脚描述图2 脚位图应用极限参数 (Note1)订购信息Note1 : 最大极限值是指在实际应用中超出该范围,将 极有可能对芯片造成永久性损坏。

LC51(SOP8)车充IC系列

LC51(SOP8)车充IC系列
存储环境
输入电压(VIN) ............................................................................... 4.75V to 27V
输出电压(VSW) ............................................................................ 0.925 to 20V 环境温度......................................................................–20°C to +85°C
应用信息
设定输出电压
输出电压是由一个电阻分压从输出电压反馈到 FN 引脚的电压值.电阻分压以 一定比例把输出电压划分到反馈端:
VFB 是反馈电压而 VOUT 是输出电压因此输出电压:
封装尺寸:
SOP-8
封装尺寸:
ESOP-8
电性能参数(VIN = 12V, TA = +25°C, 除非另外注明。)
参数
符号
测试条件
最小值
待机电流
ISD
VEN ≤ 0.3V
静态电流
IQ
VENVFB
4.75V ≤ VIN ≤ 27V 0.900
反馈过压阈值
VFB_OVP
误差放大器电压增益 AEA
误差放大器跨导
产品特征
2.1A 输出电流 4.75V 到27V 输入电压 集成130mΩ 功率场效应管开关 输出电压从0.925V 到 0.8VIN 可调节 最高93% 转换效率 可编程软启动 固定340kHz 频率 周期性电流过流保护 低输检测保护电路 SOP-8 和ESOP-8

高速低压差LDO

高速低压差LDO

V
4
0
0.35
V
4
10
V
50
70
mA
第 2 页 共 12 页
MD53RXX 系列(MD53R18,输出电压+1.8V)
项目
记号
条件
输出电压 输出电流*1 输入输出电压差
输入稳定度
负载稳定度
抗纹波率
输出电压温度系数
电流消耗
静态电流
CE 上拉电流 CE 输入高电平 CE 输入低电平
输入电压 输出短路电流
输入电压 输出短路电流
VOUT IOUT Vdrop
△VOUT1 △VIN·VOUT
△VOUT2
PSRR
△VOUT △Ta·VOUT
ISS
ISS1
ICEH VCEH
VIN= 4.3V,IOUT=50mA VIN= 4.3V
IOUT=10 mA IOUT=200 mA 4.3V≤VIN≤10V
IOUT=1mA VIN=4.3V 1.0mA≤IOUT≤200mA VIN=VOUT(S)+1V+1Vp_p f = 1KC Iout=50mA VIN=4.3V,IOUT=10mA -40℃≤Ta≤85℃ VIN= VOUT(S)+2V
无负载
VIN=10V CE=GND 无负载
VIN=VCE=Vout+1V
VIN
--
Ilim
Vout=0V
(除特殊注明以外:Ta=25℃)
最小 典型 最大 单位 测定



电路
2.744 2.8 2.856
V
1
450
mA
3
12
18

中国电信无线宽带客户端各种错误代码描述及解决办法

中国电信无线宽带客户端各种错误代码描述及解决办法

错误代码类型错误提示5001网络接入您的登录信息填写不全!5002网络接入警告:本配置信息为客户端预置,随意修改可能会影响到该功能的接入。

您确认继续吗?5003网络接入网络连接失败!请检查您的网络配置后重试。

5004网络接入无线宽带(WLAN)无法连接,请选用其他无线宽带进行拨号接入;无线宽带(1X)无法连接,请选用其他无线宽带进行拨号接入;无线宽带(3G)无法连接,请选用其他无线宽带进行拨号接入;5005网络接入无线宽带(WLAN)无法连接,请选用其他无线宽带进行拨号接入;无线宽带(1X)无法连接,请选用其他无线宽带进行拨号接入;无线宽带(3G)无法连接,请选用其他无线宽带进行拨号接入;5006网络接入该连接用户配置信息不全,请到“场景配置”菜单项修改信息!5007网络接入未检测到可用的无线宽带(1X/3G)网络。

5008网络接入您的上网卡硬件没有插好或者UIM卡无效。

5009网络接入初始化连接失败,请确认Remote Access Connection Manager服务已经启动5010网络接入未检测到可用的无线宽带(WLAN)网络。

5011网络接入您尚未选择您要接入的网络!5012网络接入没有搜索到任何无线连接5013网络接入找不到 *.* 文件,重装本软件可解决此问题!5014网络接入系统文件被破坏或系统环境没配置好,无线宽带(1X/3G)接入模块不可用。

5015网络接入系统文件被破坏或系统环境没配置好,PPPOE接入模块不可用。

5016网络接入系统已经成功接入网络,但检测到网络可能并没有真正连通,如果确定不能正常上网,请再次接入!5017网络接入您的PIN码验证失败,无线宽带(1X/3G)功能无法使用5018网络接入您的上网卡PUK码已经锁定,无法使用该卡。

6600拨号过程操作挂起。

6601拨号过程检测到无效的端口句柄。

6602拨号过程指定的端口已打开。

6603拨号过程呼叫人的缓冲区太小。

常用开关电源芯片大全之欧阳美创编

常用开关电源芯片大全之欧阳美创编

常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A 106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293 151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。

采用面向低噪声的运放进行设计

采用面向低噪声的运放进行设计

采用面向低噪声的运放进行设计物理过程的现实使我们无法获得具有完美精度、零噪声、无穷大开环增益、转换速率和增益带宽乘积的理想运放。

但是,我们期待一代又一代连续面市的放大器可比前一代的放大器更好。

那么,低1/f 噪声运放的下一步会怎么样呢?回到1985 年,ADI的George Erdi 设计了LT1028。

30 多年过去了,该器件依然是市面上低频条件下电压噪声最低的运放,其在1kHz 时的输入电压噪声密度为0.85nV/√Hz,在0.1Hz 至10Hz 时的输入电压噪声为35nVP-P。

直到今年,一款新型放大器LT6018 才对LT1028 的地位提出了挑战。

LT6018 的0.1Hz 至10Hz 输入电压噪声为30nVP-P,并具有一个1Hz 的1/f 拐角频率,但是其宽带噪声为1.2nV/√Hz。

结果是,LT6018 是适合较低频率应用的较低噪声选择,而LT1028 则可为很多宽带应用提供更好的性能,如图 1 所示。

图1:LT1028 和LT6018 积分电压噪声嘈杂的噪声令人苦恼但是,与针对某个给定频段选择具最低电压噪声密度(en) 的放大器相比,设计低噪声电路要复杂得多。

如图 2 所示,其他噪声源开始起作用,不相干噪声源以平方根之和组合起来。

图2:运放电路噪声源首先,把电阻器看作是噪声源。

电阻器天生具有与电阻值的平方根成比例的噪声。

在300K 的温度下,任何电阻器的电压噪声密度为en = 0.13√R nV/√Hz。

该噪声也可被视为一种诺顿(Norton) 等效电流噪声:in = en/R = 0.13/√R nA/√Hz。

因此,电阻器具有一个17 zeptoWatts 的噪声功率。

优良的运放将具有低于该值的噪声功率。

例如:LT6018 的噪声功率(在1kHz 频率下测量) 约为1 zeptoWatt。

在图2 的运放电路中,源电阻、增益电阻器和反馈电阻器(分别为RS、R1 和R2) 均为产生电路噪声的因素。

CR6853规格书

CR6853规格书

减小了在宽电压输入(90V~264V)时最大输出 功率的变化;内置的前沿消隐电路可以消除开 关管每次开启产生的干扰。CR6853 内置了多 种保护功能:过压保护 、逐周期峰值电流限 制、欠压锁定(可以用它实现短路和过流保护) 以及输出驱动的高电平钳位在 18.0V 以下。 而驱动输出采用的图腾柱和软驱动有效降低 了 开 关 噪 声 。 CR6853 提 供 SOT23-6L , SOP-8L 和 DIP-8L 无铅封装。
焊接温度
储存温度范围
20秒 SOT-23-6L 10秒 DIP-8L 10秒 SOP-8L
值 40 20 -0.3 to 6V -0.3 to 6V 300 2000 200 220 260 230 -55 to + 150
单位 V mA V V
mW V V ℃ ℃ ℃ ℃
推荐工作环境
符号 VDD RI TOA PO FPWM
CR6853
具有低 EMI 技术的低成本绿色节能 PWM 控制器
主要特点
西安民展微电子 手机13418601901 QQ409545144
低成本、PWM&PFM&CRM (周期复位
在输入90V~264V的宽电压下可实现恒
模式)控制
定最大输出功率
低启动电流 (约3µA)
GATE引脚驱动输出高电平钳位18.0V
封装
应用
AC/DC电源适配器 电池充电器
开放式电源
备用开关电源 机顶盒开关电源 384X 代替
概述
CR6853 是一款高集成度,低功耗的电流 模 PWM 控制芯片,该芯片适用于离线式 AC-DC 反激拓扑的小功率电源模块。芯片可 以通过外接电阻改变工作频率;在轻载和无负 载情况下自动进入 PFM 和 CRM,这样可以 有效减小电源模块的待机功耗,达到绿色节能 的目的。CR6853 具有很低的启动电流,因此 可以采用一个 2 兆欧姆的启动电阻。为了提高 系统的稳定性,防止次谐波振荡,CR6853 内 置了同步斜坡补偿电路;而动态峰值限制电路

丹东华奥电子有限公司 LD33153 IGBT驱动器说明书

丹东华奥电子有限公司 LD33153 IGBT驱动器说明书

丹东华奥电子有限公司简介LD33153(替代MC33153)是专为IGBT 驱动器设计的,用于包括交流感应电机控制、无刷直流电机控制和不间断电源(UPS )的大功率应用。

虽然为驱动分立式和模块式IGBT 而设计,该器件也可以为驱动功率MOSFET 和双极型晶体管提供低成本的解决方案。

器件的保护功能包括去饱和或过流检测选择和欠压检测。

该器件提供双列直插和表面贴装封装。

特点系列信息●大电流输出端口:1A 拉电流/2A 灌电流●对常规型和感应型IGBT 都有保护电路●可预设故障消隐时间●过流和短路保护●为IGBT 优化的欠压锁定●负栅驱动能力●是驱动大功率MOSFET 和双极型晶体管的低成本解决方案内部方框图管脚图封装说明SOP8管装,编带,无铅DIP8单IGBT 栅极驱动器丹东华奥电子有限公司最大额定值电参数(V CC =15V ,V EE =0V ,开尔文地接至V EE ,T A =25℃,除非另外说明)参数缩写数值单位电源电压V CC 至V EE开尔文地至V EE V CC -V EE K GND -V EE2020V 逻辑输入V IN V EE -0.3至V CC V 电流检测输入V S -0.3至V CC V 消隐/去饱和输入V BD -0.3至V CCV 栅极驱动输入拉电流灌电流二极管箝位电流I O1.02.01.0A故障输出拉电流灌电流I FO 2510mA功耗和热特性SOP8封装最大功耗@Ta=50°C 热阻,结至环境DIP8封装最大功耗@Ta=50°C 热阻,结至环境PD R θJA PD R θJA 0.561801.0100W °C/W W °C/W 工作结温T J 150℃工作环境温度范围T A -40~+105℃储存温度范围T stg-65~+150℃参数缩写最小值典型值最大值单位逻辑输入输入门限电压高电平状态(逻辑1)低电平状态(逻辑0)V IH V IL 1.22.72.33.2V 输入电流高电平状态(V IH =3.0V )低电平状态(V IL =1.2V )I IH I IL13050500100µA驱动输出输出电压低电平状态(I Sink =1.0A )高电平状态(I Source =500mA )V OL V OH 12.02.013.9 2.5V 输出下拉电阻R PD100200k Ω电参数续(V CC=15V,V EE=0V,开尔文地接至V EE地,T A=25℃,除非另外说明)参数缩写最小值典型值最大值单位故障输出输出电压低电平状态(I Sink=5.0A)高电平状态(I Source=20mA)V FLV FH12.00.213.31.0V开关特性传输延迟(50%输入至50%输出,C L=1.0nF)逻辑输入至驱动输出上升逻辑输入至驱动输出下降T PLH(in/out)T PHL(in/out)80120300300ns驱动输出上升时间(10%至90%,C L=1.0nF)t r1755ns 驱动输出下降时间(90%至10%,C L=1.0nF)t f1755ns传输延迟电流检测输入至驱动输出故障消隐/去饱和输入至驱动输出t p(OC)t p(FLT)0.30.31.01.0µsUVLO起动电压V CC start11.31212.6V 禁用电压V CC dis10.41111.7V 比较器过流门限电压(V pin8>7.0V)V SOC506580mV 短路门限电压(V pin8>7.0V)V SSC100130160mV 故障销隐/去饱和门限(V pin1>100mV)V th(FLT) 6.0 6.57.0V 电流检测输入电流(V SI=0V)I SI-1.4-10µA 故障销隐/去饱和输入电流源(V pin8=0V,V pin4=0V)I chg-200-270-300µA 放电电流(V pin8=15V,V pin4=5.0V)I dschg 1.0 2.5mA 器件整体电源电流待机(V pin4=V CC,输出开路)工作(C L=1.0nF,f=20kHz)I CC7.27.91420mA丹东华奥电子有限公司图1.输入电流与输入电压关系曲线图2.输出电压与输入电压关系曲线图3.输入门限电压与温度关系曲线图4.输入门限电压与电源电压关系曲线图5.驱动输出低电平电压与温度关系曲线图6.驱动输出低电平电压与灌电流关系曲线丹东华奥电子有限公司图7.驱动输出高电平电压与温度关系曲线图8.驱动输出高电平电压与拉电流关系曲线图9.驱动输出电压与电流检测输入电压关系曲线图10.故障输出电压与电流检测输入电压关系曲线图11.过流保护门限电压与温度关系曲线图12.过流保护门限电压与电源电压关系曲线丹东华奥电子有限公司图13.短路比较器门限电压与温度关系曲线图14.短路比较器门限电压与电源电压关系曲线图15.电流检测输入电流与电压关系曲线图16.驱动输出电压与故障消隐/去饱和输入电压关系曲线图17.故障消隐/去饱和比较器门限电压与温度关系曲线图18.故障消隐/去饱和比较器门限电压与电源电压关系曲线丹东华奥电子有限公司图19.故障消隐/去饱和电流源与温度关系曲线图20.故障消隐/去饱和电流源与电源电压关系曲线图21.故障消隐/去饱和电流源与输入电压关系曲线图22.故障消隐/去饱和放电电流与输入电压关系曲线图23.故障输出低电平电压与灌电流关系曲线图24.故障输出高电平电压与拉电流关系曲线丹东华奥电子有限公司图25.驱动输出电压与电源电压关系曲线图26.UVLO与温度关系曲线图27.电源电流与电源电压关系曲线图28.电源电流与温度关系曲线图29.电源电流与输入频率关系曲线丹东华奥电子有限公司功能描述栅极驱动开关时间控制(管脚Pin5)栅极驱动的IGBT设计特点主要是优化开关功能特性。

数据采集软硬件解决方案

数据采集软硬件解决方案

DAQ 事业部将精心为您提供:
● 专业的售前咨询服务: DAQ 事业部工程师将根据您的测试要求以及预算为您度身 定制软硬件测试解决方案。 ● 完善的售后支持服务: DAQ 事业部将为您提供专家级的售后技术支持以及产品售 后质量保证服务。 ● NI 数据采集卡批量折扣支持 为 OEM 用户提供购买 NI 数据采集卡批量折扣优惠。 ● NI 数据采集卡租借服务 为 OEM 用户提供 NI 数据采集卡租借服务,降低 OEM 用户 前期研发成本。 ● 产品增值服务 为OEM用户提供产品增值服务,协助OEM更快推出新产品。 ● 培训课程服务 DAQ 事业部为使用 Visual Basic,Visual C++,Visual 的工程师提供 NI Measurement Studio 软件收 费培训课程服务,并为学员授予 DAQ 事业部与 NI 联合认 证的专业培训证书。
2006 年 5 月 8 日 DAQ 事业部推出全新 EaziDAQ 数据记 录软件,该软件是专为使用 NI 数据采集卡的用户提供的功 能强大、方便易用的数据记录软件。使用 EaziDAQ 数据记 录软件不仅可以获得实时的波形显示,更可以方便地进行数 据记录以及历史数据的动态回放等操作。
EaziDAQ 数据记录软件能够为您提供:
测量与自动化软件 DAQ 事业部软件产品(EaziDAQ 数据记录软件)............ 33
PCI 总线 PCI 总线(M 系列多功能数据采集产品)........................ 10 PCI 总线(S 系列同步多功能数据采集产品).................. 18 PCI 总线(数字 I/O 产品)................................................ 19 PCI 总线(计时器 / 定时器产品)..................................... 24 PCI 总线(模拟输出产品)............................................... 26
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
At e m l Cor or f p a on i www. f e , o am l r c n
Si7 x 车用 AM, M 收 音祝 接 收器 44 : F
过 一 个 串 行
RFN I
Slo a oaoi 发表 S4 4 i n b rtr s i L c e i7 x高集成度车用 A F S I端 口 调 M/M P 收音机接 收器芯片 。基于 Slo a oaois备受肯定 的 节 , 者可 以 i nL b rtr i c e 或 数字低 中频架构 , i 4 S4 x系列是首个采用 C 7 MOS工艺 的车 通 过 引 脚 搭
D 毽裔矗嘲 件 。新款 A R 6 0 1 A R 6 5 1 T 0 3 P 和 T 0 3 P 集成 电路基于 Ame标准 R S加载于所有接 收器的市场趋势 。 t l
GP S接收器 A R 6 0和 A R 6 5 T 03 T 0 3 。新器件 的尺 寸仅 为 7X S l i con abor 0res ww w.i i L at i sl abscom . 1 0 mm, 整合 了一个完 整的 GP S接收器。它们较小的尺寸、 出色 的 导航精 度 以及 达到 A C Q10 标 准 的汽车 质量 使 E— o A R 6 0 1 A R 6 5 1 为了车内导航系统 ( N ) T 03 P 和 T 0 3 P 成 I S、 V 信息通 讯业务 、 车队管理、 动态车保 险费系统以及配件市场导航产 品 等汽车应用的理想之选 。 新款 P 1型设备拥有最大 限度 的芯片集整合度 , 从而实
宽及 具 有 2 阶线 性 相位 巴特 沃 斯 (utr r )响应 。 B t wot e h
的 市 时 间 。 S4 4 i7 x系 列 支 持 全 球 收 音 机 频 道 , 括 F 、 LC 6 57 LC 6 51 包 M T 6 O — 、T 6 O —0和 L C 6 51 T 60— 4是 固定 频 率 、 线 2阶
A R 6 0和 A R 6 5完全兼容 , T 03 T 03 因此 , 新款 P 型设备使原 1
L C 6 3具有一个双路 匹配可编程 9阶开关电容器 线 T 60 性相位滤波器和 A C 驱动器。滤波器 高达 25 z的低通 D MH 截 止 频 率 及
其 增 益 可 通
先 的设计 能够 被重新使用 。 露蜀 露嘲
需求 的弹性。
的相位和增益特 性匹配 。 暖弱 矗圊
பைடு நூலகம்
S4 4 i7 x支持整 合算法 ,提供完全 客制化的多径干扰侦 Ln a e n l g www. n r r . n i e r ch o o y T 1 ea , n c i co
测和抑 制; 脉冲 噪声侦测和消 除;以及足 以适 应阻隔、 号 信
{ 抖 《薛l 详 墨 = , : g 盎 nn盛 1,

, —
r…
总汇
A R 6 0 1,3 P S 单芯片接 T 03P 65 1 GP :
收 器
衰减 或其它不 良收讯环境 的先进 音频性 能。其 中每一种先
进 功能都是完全 可编程 的,可针对 个别制造 业者和模式进
i x 7 D M Am l t e 推出两款具有出色导航性能 的新型汽车级 GP S器 行客制化 。S4 4 集 成先进的 R S解码器 ,以满足将 F

L C6 0 ,6 1 16 0 一 : 带 有 源 T 6 36 0 .16 5X 宽 滤 波 器/ C驱 动 器 AD
L e r 出一个 由 5个单和双路 高性 能、 i a推 n 宽带低通有源
现 了出色 的性价 比。由于更 小的尺寸 、 简化 的电路板 布局、
最少 的外 部部件数量 以及购 买、 储存费用 的降低 , 系统成本 有所减 少。A R 6 5 1的一18d m 的高灵敏性使得在城 T 03 P 5 B
F 无线 电数据 系统(DS 、 长 波( 、 M R )AM、 L 短波(w)u W) s 4 气象 性相位双路 匹配 低通有源滤波器 ,  ̄ 分别具有 7 z 1MH MH 、 0 z
频道 ( ah r a d ,以简易设计提 供支持全球各地不 同 和 1MH We te n ) B 4 z带 宽。每个滤波器对都经 过测试 , 保证提 供严格
用 AM F 接 /M
接来固定。 在
10 1频率 范 0:
收器 , 符合 可 车 用 等 级 的 收 音 机 性 能 需求 , 同时节 省 成 本 并 加 速 客 户 产 品
围 内的精细频 率控制可采用一个外部 D C 改变该器件的主 A 基准时钟来实现 。 L C 6 11 T 6 O— 是一个低 噪声 05 .%容 限的低通有源 滤波器 和 A C 驱动器 , D 该器件具有 5 z至 2 MH MH 8 z的可配置带
市街道 峡谷区也 能接 收和追踪 到微弱信号 。在 使用仪板表 滤波器/ D A C驱 动器放大器产 品组成 的系列 , 宽带无线 通 为 天线而 非外部天线时 , 这一追踪灵敏性 尤为有用 。 信和信号处 理设备 中具挑 战性 的滤波应 用提供 了外形尺 寸
由 于 它 们 在 引脚 对 引脚 以及 功 能 方 面 与工 业 级 标 准 的 最小和具成本效益 的解 决方案 。
相关文档
最新文档